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Abstract—Machine learning from functional data poses par-
ticular challenges that require specific computational tools that
take into account their structure. In this work, we present scikit-
fda, a Python library for functional data analysis, visualization,
preprocessing, and machine learning. The library is designed for
smooth integration in the Python scientific ecosystem. In partic-
ular, it complements and can be used in combination with scikit-
learn, the reference Python library for machine learning. The
functionality of scikit-fda is illustrated in clustering, regression,
and classification problems from different areas of application.

Index Terms—functional data analysis, data visualization, ma-
chine learning, Python toolbox

I. INTRODUCTION

In many application domains, the data available for learn-
ing consist of functions [1]. Examples are meteorology [2],
speech analysis [3], spectroscopy [4], and medicine [5], among
others. Because of their continuous nature, the analysis of
functional data presents specific difficulties. In general, they
are infinite-dimensional. Consequently, some quantities, such
as probability densities and the likelihood function, which are
central in statistical learning, are ill-defined [6]. Furthermore,
new types of problems arise when dealing with these types of
data. For instance, empirical observations can be contaminated
by noise. Smoothing techniques are thus required to uncover
the underlying functions, which are often assumed to be
continuous and differentiable [1]. Misalignements can also
occur when repeated observations are made. If such is the
case, registration techniques may be needed to correct for
such distortion [7]. In the functional context, variable selection
methods are especially important, not only for efficiency,
but also for interpretability: they can be used to identify
impact points, which capture the most relevant information
to explain the phenomenon at hand [8]. Finally, for machine
learning, standard algorithms, which are typically formulated
in a multivariate setting, need to be adapted, and new ones
designed so that they can deal with, and take advantage of the
specific characteristics of functional data.

The goal of this paper is to address a representative set
of machine learning problems with functional data, including
clustering, regression, and classification, from different areas
of application. They serve to illustrate the special properties
and the difficulties posed by the analysis of these types of data.
The study is carried out using scikit-fda [9], a Python package
that provides a comprehensive set of tools for functional data

analysis. The package is designed for smooth integration in
the Python scientific ecosystem. In particular, it can be readily
used in combination with scikit-learn library [10] to address
machine learning problems with functional characteristics. The
package is fully open source, released under a 3-Clause BSD
license and accepting contributions in its GitHub repository
https://github.com/GAA-UAM/scikit-fda.

For the sake of reproducibility, the code used in this article
is available at https://fda.readthedocs.io/ictai-examples, as part
of the documentation of the package, and can be executed in
the cloud using the link in the bottom part of each example.
Import statements are ommited in the code for clarity.

The structure of the paper is as follows: In Section II, the
framework for learning with functional data is introduced.
Section III contains an analysis of meteorological data with
a number of visualization tools and unsupervised (functional
PCA, clustering) methods. In Section IV, a supervised prob-
lem illustrates derivatives, basis expansions, regression and
variable selection. The last example in Section V illustrates
some preprocessing tools exclusive to functional data, such as
smoothing and registration, as well as classification methods.

II. MACHINE LEARNING WITH FUNCTIONAL DATA

In the functional setting, the data available for induction are
functions of a continuous parameter. Assuming, for the sake of
concreteness, that this parameter is time, the learning sample
consists of a set of trajectories {xn(t), t ∈ T ⊂ R}Nn=1, where
xn(t) is the nth observation in the sample. In supervised
learning, the target labels {yn}Nn=1 are also known.

Because of their infinite-dimensional nature, functional data
cannot be handled directly. Therefore, they need to be rep-
resented in a manageable form, without losing their func-
tional essence. To this end, the two main approaches are
discretization and basis representation. The first one consists
in representing each function by its values at some grid points
t = (t1, . . . , tM ) ∈ T M , i.e., x(t) = (x(t1), . . . , x(tM )).
Typically, this is the format in which functional processes
are recorded in actual measurements. Note that M should be
sufficiently large to preserve the functional character of the
data. For simplicity, from now on, we assume a regular grid,
common for all observations in the sample [11].

Alternatively, each observation can be represented by the
coefficients of an expansion in a proper functional basis, such
as Fourier, B-splines, or principal components [1]. To make
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Fig. 1. Functional temperature observations from the AEMET dataset (up)
as well as its corresponding boxplot (bottom).

computations feasible, the series, which is in general infinite,
is truncated to the B first elements. Thus, the function x(t)
is approximated by x(t) ≈

∑B
b=1 cbφb(t) where cb is the

expansion coefficient of φb(t), the bth basis function. The
package scikit-fda include both discretized and basis expansion
representations by means of the classes FDataGrid and
FDataBasis, respectively.

III. METEOROLOGICAL DATA: DATA VISUALIZATION,
CLUSTERING, AND FUNCTIONAL PCA

We now use a dataset of annual temperatures from Spain to
illustrate some of the functionalities offered by scikit-fda for
visualization, clustering and functional principal component
anaysis (FPCA). The data are taken from the State Mete-
orological Agency of Spain (AEMET) and contain several
meteorological observations (temperature, precipitation and
wind speed) at N = 73 weather stations throughout Spain.
These indicators are measured daily (M = 365) between
1980 and 2009 and averaged over years. We can download
the data directly with scikit-fda by using the following code.
The result is an object of class FDataGrid which contains
the functional data in a discretized form.

X, _ = fetch_aemet(return_X_y=True)

This is an example of the scikit-fda tools for fetching
datasets, based on the package scikit-datasets [12].

Now, we select the temperature curves (the first coordinate
function) and plot them in the upper part of Figure 1.

X = X.coordinates[0]
X.plot()

We can see that all stations present the typical behaviour of the
northern hemisphere, with higher temperatures in summer that
descend during winter. However, temperatures at some stations
are atypical with respect to the majority: a purple curve with
a significantly lower temperature than the others, and a set of
flatter curves with warmer winters. In fact, these are outliers
of magnitude and shape, respectively. The first one belongs to

the Navacerrada station, at 1894 meters in height near a ski
resort, while the others correspond to stations in the Canary
Islands, known for their subtropical climate.

One way to detect and visualize magnitude outliers is to use
the functional boxplot proposed in [13].

Boxplot(
X, depth_method=ModifiedBandDepth(),

).plot()

The resulting plot is in the bottom part of Figure 1. This is an
extension of the classical univariate boxplot to the functional
case. In pink, the central envelope of the data contains the
deepest 50% of observations. The outlying envelope, bounded
by the most external blue curves, separates the typical trajec-
tories from magnitude outliers such as Navacerrada, in red.

The centrality, or depth, of a curve is quantified by statistical
depths measures. For instance, the deepest observation in
a dataset corresponds to the median (depicted in black in
Figure 1), while outliers have depth values tending to zero.
There are many proposals of functional depths, each of which
defines different median and envelopes, and verifies different
properties [14]. In scikit-fda are available integrated depths
[15], as well as the band and the modified band depths [16].
The last one is used in the previously shown boxplot.

The functional boxplot is not very suitable for detecting
shape outliers. To this end, the magnitude-shape plot [17] and
the outliergram [18], both available in the library, can be used.
All these visual tools can be combined and used interactively.

We now center our attention in grouping the stations by
climate using the annual temperatures. This is a clustering
problem that can be addressed adapting the classical k-means
algorithm to the functional setting, using a distance between
functions. The library scikit-fda also provides hierarchical
clustering, and fuzzy c-means, a variant of k-means in which
each observation has a degree of membership to each cluster.
The package offers a variety of functional distances. Here,
we use the L2 distance. In the following code, the k-means
algorithm is executed for 5 clusters (climatic regions). As the
algorithm is sensitive to the initialization of the cluster centers,
the best of 10 different initializations is chosen.

kmeans = KMeans(
n_clusters=5, n_init=10,
metric=l2_distance)

clusters = kmeans.fit_predict(X)

In Figure 2 we can see each weather station in the map
of Spain, colored according to their cluster. The resulting
distribution fits very well with climatic maps of Spain. The red
points, located only in the Canary Islands, would correspond
to the subtropical climate. The green points, in the north of
mainland Spain, could represent the Atlantic climate. Yellow
stations are mainly distributed on the Mediterranean coast
suggesting the so-called Mediterranean climate. Orange points
cover the interior of mainland Spain, which has a continental
climate. Finally, the purple stations are scattered on the coldest
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Fig. 2. Weather stations clusters based on temperature curves in mainland
Spain (top) and on the Canary Islands (bottom).

points of Spain, including some mountain ranges, and are thus
examples of cold or high mountain climates.

Focusing on the Canary Islands, we can observe two points
(yellow-mediterranean and purple-mountain) that, at a first
glance, seem to be mislabeled. A closer inspection, however,
shows that the “Mediterranean” station is the airport of Los
Rodeos, characterized for having dense fog and a lower
temperature than their surroundings [19]. The cold-mountain
station corresponds to an observatory located on Mount Teide
(the highest mountain in Spain) at 2390 meters high.

Although the clustering of the complete curves seems really
accurate, it is difficult to interpret how the labels have been
assigned. Dimensionality reduction techniques may provide
some interpretability as they allow us to identify a few
characteristics of interest. The most popular dimensionality
reduction method is, probably, principal component analysis
(PCA), which projects the data in the (orthogonal) directions
of maximal variance. In the functional principal component
analysis (FPCA), the idea remains the same, but calculations
need to be adapted. As an example, projections are made
with the L2 inner product 〈x1, x2〉L2 =

∫
T x1(t)x2(t)dt.

The following code obtains the first two principal components
(fit) and projects the data on these directions (transform).

fpca = FPCA(n_components=2)
fpca.fit(X)
X_red = fpca.transform(X)
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Fig. 3. AEMET data projected to their first two principal components.

The first component captures the average temperature. The
second one marks the difference between summer (maximum
of temperatures) and winter (minimum). In some sense, it
measures the thermal amplitude. Moreover, dimensionality
reduction allow us to visualize the data in the reduced space.
For example, Figure 3 shows a scatter plot of the temperatures
in the space of the first two principal components. Colors
are those of the clusters obtained previously with k-means.
Following the previous discussion, we can interpret the first
component (x axis) as the average temperature, from colder
(left) to warmer (right) locations. On the other hand, the
second component (y axis) represents the thermal amplitude,
from small variations (bottom) to higher differences (top)
between summer and winter. We can see that stations from
Canary Islands (red points) are quite different to the others (as
seen in Figure 1), with warmer average temperatures and low
variation, which are characteristics of the subtropical climate.
Green points have colder temperatures, but have low thermal
amplitude too. These points correspond to the northern coast
of mainland Spain, having an Atlantic climate. Continental
and Mediterranean climates (orange and yellow) present a
much more pronounced amplitude, with the difference that
continental climate has lower overall temperatures. However,
two stations identified as Mediterranean by k-means seem
to be mislabeled in this PCA representation. With a closer
inspection, we see that one of these outliers is, precisely,
the already mentioned airport of Los Rodeos, which has
“Mediterranean” average temperature, with the low annual
variations of the Canary Islands, where it is located. The other
corresponds to Tarifa, in the Strait of Gibraltar. It is a very
windy place which receives the cold water from the Atlantic.
This causes Tarifa to have its own micro-climate characterized
by smoother annual temperatures, as shown in the scatter
plot. Finally, purple locations (cold-mountain climate) exhibit
a variety of amplitudes, but are characterized for the lowest
average temperatures. In particular, the leftmost point corre-
sponds to Navacerrada station, the magnitude outlier detected
in Figure 1.
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Fig. 4. On top, the curves of the Tecator dataset. A color gradient indicates
the fat content. The middle plot shows the derivative of these curves. The
bottom plot shows the dependency of the target on each function point. The
two points of higher dependency have been marked with vertical black lines.

IV. SPECTROMETRIC DATA: DERIVATIVES, REGRESSION,
AND VARIABLE SELECTION

In this section we use the Tecator dataset [20] to illustrate
the regression problem and some new functionalities. The data
consists of N = 215 observations of M = 100 channel
spectra of absorbances of different pieces of meat, as well as
their moisture, fat and protein contents. In this case, response
variables are retrieved jointly with the functional data. We only
keep the fat content as target for regression [11]. Trajectories
are plotted in the upper part of Figure 4 using a color gradient
for the fat content.

X, y = fetch_tecator(return_X_y=True)
y = y[:, 0]
X.plot(gradient_criteria=y)

We can appreciate that the magnitude of each curve bears
almost no correlation with its fat contents. Nevertheless, it is
well known in the literature that this problem becomes easier
by using the second derivative of the trajectories [11]. This can
be a convenient preprocessing which is exclusive of functional
data. So, we compute the second derivative of the data:

X_der = X.derivative(order=2)

The resulting derivatives are in the middle plot of Figure 4.
After derivation, the fat content is clearly proportional to the
magnitude of the curves at several points.

Before performing regression, as explained in [1], a com-
mon approach to prevent overfitting when working with con-
tinuous regression coefficients is to use the representation in
a basis expansion. As an example, we represent the original
data in a B-spline basis with B = 10 elements with scikit-fda:

basis = BSpline(n_basis=10)
X_der_basis = X_der.to_basis(basis)

We can split the data in train and test partitions using, for ex-
ample, the train_test_split function from scikit-learn,
which is able to deal with the functional objects of scikit-
fda. Then we use the standard functional linear regression
model with scalar response y = β0 +

∫
T β1(t)x(t)dt [1]. The

following code fits the regression model, obtains the predicted
values for the test partition, and compute the score of the
prediction in terms of the coefficient of determination R2:

regressor = LinearRegression()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
score = r2_score(y_test, y_pred)

Some alternatives available in the library include nonpara-
metric models based on nearest neighbors or kernel regression
It is even possible to add additional regularization terms for
the coefficients, if needed. Nevertheless, even with this simple
model, we are able to obtain a R2 score of 0.951 by using the
second derivatives of the Tecator trajectories.

Although this model has a good performance, it lacks inter-
pretability. In the plot of the derivatives, it is easy to identify
a couple of points that should provide a good prediction by
themselves. Thus, we would expect that a variable selection
procedure could find those points of interest and reduce the di-
mensionality of the data obtaining a more interpretable model.
Many classical multivariate methods for variable selection do
not work with continuous functional data due to the high
redundancy between close variables. The package scikit-fda
offers several variable selection methods that prevent this
problem, from adaptations of multivariate methods that take
redundancies into account, such as mRMR [21], to purely
functional methods that consider the nature of these data, such
as a proposal based on reproducing kernel Hilbert spaces [22]
or recursive maxima hunting [23]. Here, we use the maxima
hunting method (MH), that computes the relevance of each
point x(t) as its relation with the response variable (quantified
with a measure of statistical dependence). MH selects the local
maxima of the resultant relevance function, what automatically
removes redundant variables [8]. In the following example we
use MH to select the two most relevant local maxima.

var_sel = MaximaHunting(
local_maxima_selector=(

RelativeLocalMaximaSelector(
max_points=2)))

X_mv = var_sel.fit_transform(X_der, y)

In the bottom plot of Figure 4 we can see the relevance
function for Tecator derivatives with the distance correlation
measure [24], and the two selected variables. These are also
marked over the derivative curves in the middle plot, where
we can appreciate that they correspond to points where the fat
content was proportional to the magnitude of the curves.

After selection we can apply any multivariate regression
model from the scikit-learn library. For example, the standard
linear model obtains a R2 score of 0.917. This is slightly
worse than the score obtained with the whole trajectories, but
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Fig. 5. Ten curves from the Phoneme dataset with classes “aa” (in blue) and
“ao” (in orange). We can see original curves (top), smoothed curves (middle),
and the curves after per-class registration (bottom). Class means are plotted
in thick darker lines in the last two plots.

it is using only two variables, what entails a significant gain
in interpretability. Moreover, we could even use regression
trees or any other method available in the scikit-learn to try
to improve the performance without losing interpretability.

V. VOICE SIGNALS: SMOOTHING, REGISTRATION, AND
CLASSIFICATION

The Phoneme dataset [25] was chosen to illustrate smooth-
ing, functional data registration (alignment) and classifica-
tion. This dataset contains curves corresponding to 4509
log-periodograms with the pronunciation of five different
phonemes by 50 male speakers: “sh” as in “she”, “dcl” as
in “dark”, “iy” as the vowel in “she”, “aa” as the vowel in
“dark”, and “ao” as the first vowel in “water”. Here, we focus
on the binary classification problem, so we only consider the
N = 1717 curves of the first two classes, “aa” (class 0) and
“ao” (class 1), which are the most difficult to distinguish.
The domain of the functions is also restricted to the first 150
variables as suggested in [11].

Analogously to previous examples, we download the data
using the fetch_phoneme function. The top plot in Figure 5
shows the first 20 curves with a different color per class.

X[:20].plot(group=y)

We can observe that phoneme trajectories are particularly
noisy, which may complicate further analysis. This can be
solved by smoothing the curves, for example, using a weighted
average of neighbouring points x̂(t) =

∫
T wt(s)x(s)ds, where

x̂ is a smoothing estimation of the underlying signal and
wt(s) has its maximum at s = t and decreases monotonically
from that point. Several smoothing strategies are available
in scikit-fda ranging from different kernel smoothers, widely
used in density estimation, to smoothing via representation

in a basis, which also allows penalizing the curvature to
achieve additional smoothness. Here, we smooth the Phoneme
observations with a Nadaraya-Watson kernel smoother. The
bandwith parameter controls the degree of smoothing, and has
to be adjusted to prevent infra or over-smoothing.

smoother = KernelSmoother(
NadarayaWatsonHatMatrix(

bandwidth=0.1, kernel=normal)))
X_smooth = smoother.fit_transform(X)

The first 20 smoothed curves are shown in the middle plot of
Figure 5. We can see that the per-class means has much less
pronounced maxima and minima than the individual observa-
tions. This can be an indicator of misalignment. Misalignment
is a new challenge that did not appear in multivariate statistics.
It affects not only to the mean estimation, but methods such
as variable selection, that assume aligned data to start with.
Functional data registration is the process for which the data is
aligned so that maxima, minima, or other relevant landmarks
appear at the same points in each observation [7]. The package
scikit-fda offers shifting and elastic registration procedures. In
this case we do not have information about the landmarks
of interest, so we can use an advanced elastic registration
procedure based on the properties of the Fisher-Rao distance
[26]. For example, the following code registers together all
curves from the first class:

reg = FisherRaoElasticRegistration(
penalty=0.01)

X_reg = reg.fit_transform(X_smooth[y==0])

The result of the per-class registration is displayed in the
bottom plot of Figure 5. We can see that the registered
curves have now their landmarks properly aligned, and the
class means more closely resemble an typical trajectory of
the corresponding class. More importantly, we can appreciate
more clearly that the disposition of maxima and minima is
different between classes. Hence, we should not attempt to
register all curves together.

As we have just seen, aligning all the curves at the same
time entails a loss of discriminant information. Therefore, for
the classification task, we consider the unaligned smoothed
functions of the middle plot in Figure 5. Moreover, a classifier
that is resilient to unaligned data should be preferable. The
package scikit-fda offers a variety of classification algorithms
for functional data: distance-based classifiers such as near-
est centroids or k-nearest neighbors; depth-based classifiers,
including maximum-depth [27] and the DDG classifier [28];
or even functional logistic regression [29]. As an example,
we use a k-nearest neighbors classifier with the functional
Mahalanobis distance proposed in [30].

classifier = KNeighborsClassifier(
n_neighbors=67,
metric=MahalanobisDistance())

The sample is split in train and test, leaving the 30% of the
data as the test partition. We then fit the model and compute
the predictions, obtaining an accuracy score of 0.805:



classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
score = accuracy_score(y_test, y_pred)

For simplicity, we have fixed the number of neighbors to
√
N .

In a complete analysis is often better to choose the values for
the number of neighbors and the smoothing parameter via a
cross validation procedure. As most objects in scikit-fda have
the same application programming interface (API) as scikit-
learn classes [31], the hyperparameter selection and cross
validation utilities of that package can be directly applied,
making this an easy task.

VI. CONCLUSIONS

We have presented three real-data examples to illustrate
the functionalities of the Python scikit-fda package. As seen
from these use cases, scikit-fda offers powerful functional
data methods, easily integrable with the multivariate tools
available in scikit-learn. In addition to the showcased methods
for preprocessing, exploratory analysis and machine learning,
scikit-fda offers a variety of additional tools. These functional-
ities include generation of synthetic data, feature construction,
interactive visualization, interpolation, extrapolation, regular-
ization or statistical inference. They are thoroughly described
and illustrated with examples in the official documentation of
the package. All of the provided methods can be employed
in a variety of real applications, which makes FDA, and in
particular the package scikit-fda, a useful new tool for data
analysts, machine learning researchers and practitioners.
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