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Université d’Artois
Lens, France

condotta@cril.fr

Yakoub Salhi
CRIL-CNRS UMR 8188

Université d’Artois
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Abstract—Qualitative reasoning formalisms facilitate the rep-
resentation and interpretation of information involving complex
entities. We use in this paper qualitative spatial and temporal
reasoning to introduce novel data mining tasks, which consist in
extracting knowledge from quantitative databases that are trans-
formed into collections of qualitative relation networks (QRNs).
After describing our qualitative data mining framework, we first
propose an Apriori-like algorithm that exploits monotonicity and
QRN consistency for pruning the search space: the validity of a
pattern candidate depends on the supports of the larger patterns
that include it and on its consistency. We then introduce an
encoding of our data mining tasks into the well-known problem
of frequent itemset mining. We finally show the feasibility of our
approach by providing preliminary experimental results using
real-world datasets about the movements of football players
during matches.

Index Terms—qualitative reasoning, knowledge discovery, data
mining

I. INTRODUCTION

By abstracting and simplifying aspects of common-sense
and domain-specific knowledge, qualitative reasoning can be
the basis for a variety of systems that allow producing reason-
ing and explanations understandable by humans. The literature
witnesses a broad spectrum of qualitative formalisms for
reasoning about time and space. In particular, Point Algebra
(PA) [17] and Interval Algebra (IA) [3] are the most prevalent
formalisms in artificial intelligence for reasoning about time.
Regarding qualitative formalisms for reasoning about space,
we can mention Cardinal Direction Algebra (CDA) [5] and the
variants of Region Connection Calculus (RCC) [10]. All the
previous formalisms use binary relations for encoding relations
between temporal and spatial entities. Data mining aims at
discovering patterns that represent pieces of knowledge from,
generally large, datasets (e.g. see [1]). Dealing directly with
data from the physical world with continuous aspects, such as
time and space, can lead to complex patterns, making difficult
the task of interpretation. To remedy this problem, we use
in this work qualitative temporal and spatial formalisms for
simplifying data as well as patterns.

It is worth noting that a similar approach was proposed
in [12]. This approach uses qualitative reasoning for abstract-
ing data having different types in the same dataset: every
dataset is transformed into a set of qualitative relation networks

(QRNs) where each one encodes the relations between the data
rows w.r.t. a data attribute, i.e., every QRN concerns a single
entity. However, in our approach, every QRN is used to encode
a single data row, which means that a dataset can be seen as a
set of configurations about the same set of entities. Thus, our
framework introduces new data mining tasks different from
those proposed in [12].

In this work, we first introduce the notion of qualitative
database (q-database) that can be seen as a collection of QRNs.
Then, a qualitative pattern (q-pattern) is defined as a QRN, and
its quality in our data mining tasks is determined through the
notion of support, which corresponds to the number of QRNs
in a q-database that are included in the q-pattern. The inclusion
here refers to the inclusion between the qualitative relations
occurring in the QRNs. In this context, a q-pattern is said to
be frequent if its support is greater than or equal to a given
threshold. After defining the condensed representation of fre-
quent q-patterns and describing some interesting properties, we
show that algorithms used for frequent itemsets mining can be
adapted to our mining tasks. We focus in this work on Apriori
algorithm which is the first and most influential algorithm for
generating frequent itemsets [2]. Our Apriori-like algorithm
mainly results from the validity of the monotonicity property:
if a QRN is not frequent then all its sub-QRNs are not frequent.
Moreover, we introduce an encoding of our data mining
tasks into the problem of frequent itemset mining. We finally
provide a preliminary experimental evaluation that shows the
feasibility of our approach. We consider in our experiments
real-world datasets about the movements of football players
during matches.

II. PRELIMINARIES

A. Frequent Itemset Mining

Let Ω be a finite non empty set of symbols, called items.
From now on, we assume that this set is fixed. An itemset I
over Ω is defined as a non empty subset of Ω. A transaction
is an ordered pair (i, I) where I is an itemset and i a positive
integer, called transaction identifier. A transaction database T
is defined as a finite non empty set of transactions where each
transaction identifier refers to a unique itemset. The cover of



an itemset I in a transaction database T , denoted Cov(I, T ),
is defined as follows:

Cov(I, T ) = {i ∈ N | (i, J) ∈ T and I ⊆ J}.

The support of I in T , denoted Supp(I, T ), corresponds to
the cardinality of the cover of I in T , that is, Supp(I, T ) =
|Cov(I, T )|.

Tid Itemset
1 S1, S3, D1

2 S2, D2

3 S1, D1

4 S1, S2, D2

5 S1, D1

TABLE I
A TRANSACTION DATABASE T .

Given a transaction database T and a minimum support
threshold σ, the frequent itemset mining problem (FIM prob-
lem), considered as the root of pattern mining field in the
literature [1], consists in finding the itemsets occurring in T
with supports greater than or equal to σ. Formally, it consists
in computing the following set: {I ⊆ Ω | Supp(I, T ) ≥ σ}.

In this work, we are also interested in the two following
well-known condensed representations of frequent itemsets.
An itemset I is said to be closed in a database T if
Supp(I ∪ {a}, T ) < Supp(I, T ) for every a in Ω \ I . It
is said to be maximal w.r.t. a minimum support threshold σ if
Supp(I, T ) ≥ σ and Supp(I ∪ {a}, T ) < σ for every a in
Ω \ I .

For instance, consider the transaction database T described
in Table I, where the items Si=1,2,3 designate symptoms,
and Di=1,2 designate diseases. We have Cov({S1, D1}, T ) =
{1, 3, 5} and Supp({S1, D1}, T ) = 3. Note that {S1, D1} is
closed and maximal w.r.t. the threshold σ = 3.

B. Qualitative Spatial and Temporal Formalisms

Each binary qualitative formalism [8] considers a set of
elements D allowing to represent spatial or temporal entities. It
is based on a finite set of non-empty binary relations B defined
on D called base relations. Each base relation of B represents a
particular temporal or spatial qualitative configuration between
two entities. The set B forms a partition of D×D. Moreover,
it is assumed that the identity relation on D, denoted by idB
and defined by idB = {(x, x) | x ∈ D}, belongs to B.
Additionally, the converse of each base relation b ∈ B, denoted
by b−1, is also one element of B, i.e., there exists b′ ∈ B such
that b′ = b−1 = {(y, x) | (x, y) ∈ b} for all b ∈ B. The
set B is also equipped with the weak composition operation
also called algebraic composition, denoted by ⋄ and defined
by b ⋄ b′ = {b′′ ∈ B | ∃x, y, z ∈ D with (x, y) ∈ b, (y, z) ∈
b′ and (x, z) ∈ b′′}. Hence, the weak composition of two base
relations b⋄ b′ is the set of base relations corresponding to the
possible qualitative configurations between two entities x and

z while there is a third entity y such that the qualitative config-
uration between the entities x and y (respectively the entities
y and z) corresponds to the base relation b (respectively b′).

As illustration, consider the temporal qualitative formalisms
called Point Algebra (PA) [17] and Interval Algebra (IA) [3].
PA represents the temporal entities by the points of the line
whereas IA uses intervals of the line. Hence, the domain D
can be defined by D = Q for PA and by D = {(x, y) ∈
Q×Q | x < y} for IA. The base relations of PA (resp. IA) are
depicted in Figure 2 (resp. Figure 1). In Figure 3 are given
the tables of converse and weak composition of PA.

x y p pi precedes
x y m mi meets
x y

o oi overlaps
x y

s si starts
x y

d di during
xy

f fi finishes
x y

eq eq equals

Fig. 1. The thirteen base relations of
IA.
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Fig. 2. The three base relations of
PA.
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b
b′

< = >

< {<} {<} {<,=, >}
= {<} {=} {>}
> {<,=, >} {>} {>}

Fig. 3. The table of converse and the table of weak composition of PA.

Concerning spatial qualitative reasoning, the Cardinal Direc-
tion Algebra (CDA) [7] considers points to represent spatial
entities and is based on a set of nine base relations B =
{N,NW,W,SW,S,SE,E,NE,EQ} corresponding to compass
relations between two entities in the plane (see Figure 5). The
family of the Region Connection Calculi (RCC) formalisms
are also widely used for spatial qualitative reasoning. These
formalisms are based on binary topological relations between
the regions of a topological space. As illustration, in Figure
4 are depicted the eight base relations of the RCC8 [10]
calculus.

x y

x DC y

x y

x EC y

x y

x PO y

x y

x TPP y
y TPPI x

x y

x NTPP y
y NTPPI x

x,y

x EQ y

Fig. 4. The eight base relations of
RCC8.
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Fig. 5. Qualitative spatial direc-
tions in CDA.

Definite knowledge between any two entities can be repre-
sented by one base relation of B whereas indefinite knowledge
can be defined by the union of the possible base relations



between the two entities. Such a union of base relations is
called qualitative relation or just relation and is represented
by the set of its included base relations. Hence, the set 2B

represents the relations of the considered qualitative formalism
based on B. Among the relations of 2B, the particular relation
B is called the universal relation whereas the particular
relation {} is called the empty relation. The universal relation
allows to represent the absence of any information between
two entities. This relation is always satisfied between two
entities whereas the empty relation is never satisfied. The set of
relations 2B is equipped with the usual set-theoretic operations
(intersection and union). Moreover, the weak composition is
extended to 2B in the following way: for all r, r′ ∈ 2B,
r ⋄ r′ =

⋃
b∈r,b′∈r′{b ⋄ b′} [11]. Note that r ⋄ r′ corresponds

to the strongest relation of 2B containing the elements of the
usual relational composition r ◦ r′ = {(x, z) ∈ D ×D | ∃y ∈
D with (x, y) ∈ r and (y, z) ∈ r′}.

In what follows, we generically consider a qualitative for-
malism defined from a set of base relations B.

III. QUALITATIVE DATABASES AND MINING TASKS

We first describe the notion of qualitative relation network
which underlies the notions of qualitative database and pattern.

Definition 1 (QRNa). A Qualitative Relation Network (QRN)
is an ordered pair N = (E,R) where E is a set of (spatial or
temporal) entities and R a function that associates a relation
in 2B to each element of E × E s.t. R(e, e) = {idB} and
R(e, e′) = (R(e′, e))−1.

We use QRN(E) to denote the set of all QRNs over E
and E(N ) to denote the set of entities occurring in N . The
QRN defined on the set of entities E such as R′(e, e′) = B
for every e, e′ ∈ E is denoted by ⊤E . N[e,e′]/r with r in
2B is the QRN N ′ = (E,R′) defined by R′(e, e′) = r and
R′

(E×E)\{(e,e′)} = R (E×E)\{(e,e′)}. A QRN N1 = (E,R1)
is a sub-QRN of N2 = (E,R2) if for every e, e′ ∈ E we have
R1(e, e

′) ⊆ R2(e, e
′) and we note N1 ⊆ N2.

A QRN N = (E,R) is said to be consistent if there exists
a solution s, i.e. a function from E to the domain D such
that, for every (e, e′) ∈ E × E, (s(e), s(e′)) ∈ b for some
b ∈ R(e, e′).

In Figure 6, a consistent QRN N1 of PA and one of its
solutions are depicted. Note that for every QRN, an entity is
represented by a node, and a relation by an arc labeled with
it. For the sake of simplicity, idB loops (R(e, e)), converse
relations and universal relations are omitted.

Definition 2 (Qualitative Database). A qualitative database (q-
database) is a structure of the form ⟨E,C⟩ where E is a finite
set of entities and C a finite set of ordered pairs (i,S), called
q-row, s.t. i is a positive integer, called q-row identifier, S
a consistent QRN s.t. E(S) = E. Each identifier refers to a

aA similar definition in the literature is that of qualitative constraint
networks (QCNs) [14], [15]. However, we do not consider constraints on
variables but relations between entities.
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Fig. 6. A consistent QRN N1, a solution s of N1, and a minimally labelled
QRN N2.

unique q-row, that is, for every two distinct q-rows (i,Si) and
(j,Sj), i ̸= j.

Alternatively stated, a q-database can be seen as a finite
multiset of consistent QRNs. In the sequel, we fix QB =
⟨E, {(0,S0), . . . , (m− 1,Sm−1)}⟩ with E = {e0, . . . , en−1}.

Consider the set E of the temporal entities {e1, e2, e3, e4}
and the PA formalism. Figure 7 is an illustration of a qualita-
tive database QB as a multi-set of 4 QRNs. We emphasize that
the multiple presence of the same QRN is possible according
to the definition (S1 = S3) and that, for more simplicity, a
node e is omitted iff for every e′ ∈ E such that R(e, e′) = B.
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Fig. 7. Example of a qualitative database.

A qualitative pattern (q-pattern) is simply defined as a
QRN. We say that a q-row (i,Si) supports a q-pattern N
if Si ⊆ N . The cover of a q-pattern N in a q-database QB,
denoted Cov(N , QB), is the set of the identifiers of the q-
rows in QB that support N . That is, Cov(N , QB) = {i ∈
N | Si ⊆ N}. In our framework, the quality of a q-pattern in a
q-database is determined through the notion of support defined
as the size of its cover, i.e., Supp(N , QB) = |Cov(N , QB)|.

Definition 3 (FQP). Given a minimum support threshold
σ > 0, the problem of generating Frequent Q-Patterns (FQP)
consists in computing the set of q-patterns that have supports
greater than or equal to σ, i.e., FQP(QB) = {N ∈
QRN(E) | Supp(N , QB) ≥ σ}.

Proposition 4 (Monotonicity). If N = (E,R) is a frequent
q-pattern in QB, then, for every (e, e′) ∈ E × E with e ̸= e′

and every base relation b ∈ B, N[e,e′]/R(e,e′)∪{b} is also a
frequent q-pattern in QB.

Proof. Let α = (i,Si) be a q-row in QB that sup-
ports N , (e, e′) ∈ E × E s.t. e ̸= e′ and b ∈ B.
Then Si ⊆ N holds. Owing to N ⊆ N[e,e′]/R(e,e′)∪{b},
we obtain Si ⊆ N[e,e′]/R(e,e′)∪{b}. Therefore, we have
Supp(N[e,e′]/R(e,e′)∪{b}, QB) ≥ Supp(N , QB).



The monotonicity property leads to the following condensed
representations.

Definition 5 (Closed Q-Pattern). A q-pattern N = (E,R) is
said to be closed in QB if, for every (e, e′) ∈ E×E with e ̸=
e′ and every b ∈ R(e, e′), Supp(N[e,e′]/R(e,e′)\{b}, QB) <
Supp(N , QB).

Definition 6 (Maximal Q-Pattern). A q-pattern N = (E,R)
is said to be maximal in QB w.r.t. a given minimum support
threshold σ if Supp(N , QB) ≥ σ (i.e., it is frequent) and, for
every (e, e′) ∈ E × E with e ̸= e′ and every b ∈ R(e, e′),
Supp(N[e,e′]/R(e,e′)\{b}, QB) < σ.

One can easily see that every maximal q-pattern is closed.
To illustrate the two definitions above, consider the database
of Figure 7 and a minimum support threshold equals to
2. The QRN Na below illustrate a maximal q-pattern
while the QRN Nb illustrate a closed but not maximal q-
pattern since Nb[e1,e3]/{<,=}\{<} = Nc is frequent with a
Supp(Nc, QB) = 2.

e1 e2

{<,=}

Na

e1 e3

{<,=}

Nb

e1 e3

{=}

Nc

Definition 7 (Minimally Labelled Q-Pattern). A QRN N =
(E,R) is said to be minimally labelled if, for every (e, e′) ∈
E × E with e ̸= e′ and every b ∈ R(e, e′), N[e,e′]/{b} is
consistent.

As illustration, a minimally labelled QRN N2 of PA, and
a consistent but not minimally labelled QRN N1 are depicted
in Figure 6. For example, one can see that there is no solution
meeting the choice of R(e2, e3) = {<}.

Proposition 8. Let QB be q-database. If all the QRNs
occurring in QB are minimally labelled, then the following
properties are satisfied:

1) every closed q-pattern in QB is minimally labelled, and
2) every maximal q-pattern in QB is minimally labelled.

Proof. We only need to show Property 1, the other being
a direct consequence of Property 1 and the fact that every
maximal q-pattern is closed.

Let N = (E,R) be a closed q-pattern in QB. For the sake
of contradiction, suppose that N is not minimally labelled.
Then, there exist (e, e′) ∈ E×E with e ̸= e′ and b ∈ R(e, e′)
s.t. N[e,e′]/{b} is inconsistent. Let α = (i,Si) be a q-row in
QB that supports N . Then we have Si ⊆ N . Thus, due to
the fact that Si is minimally labelled, we have b /∈ Si[e, e′].
Thus, Supp(N[e,e′]/R(e,e′)\{b}, QB) = Supp(N , QB) holds
and, since N is closed, we obtain a contradiction.

The minimal labelling problem (MLP) consists in determin-
ing all the feasible base relations in a QRN [9]. In other words,
this consists in determining the greatest minimally labelled
QRN included in a given QRN. It might be interesting to
replace every QRN occurring in a q-database with their corre-
sponding minimally labelled QRN before generating frequent

q-patterns. However, MLP is NP-hard in the case of several
qualitative reasoning formalisms, such as IA and RCC8 [9].

One of the best trade-offs can be the use of the tractable
method called path-consistency method or still ⋄-consistency
method, consisting in the calculation of the closure by weak
composition of the considered QRN and that by removing
some unfeasible base relations through the operation of weak
composition to obtain an equivalent ⋄-consistent sub-QRN
[13]. A QRN N = (E,R) is said ⋄-consistent or closed
under weak composition if for every e, e′, e′′ ∈ E we have
R(e, e′) ⊆ (R(e, e′′)⋄R(e′′, e′)). The path-consistency method
iterates the triangulation operation R(e, e′) ← (R(e, e′′) ⋄
R(e′′, e′)) for every e, e′, e′′ ∈ E until a fix point is reached.
This method can be realized in O(|E|3). It is sound but not
complete for the consistency problem of a QRN. Indeed, in
general, it removes some but not all unfeasible base relations
of the QRN. In the case where the empty relation is obtained,
we can affirm that the initial QRN is inconsistent.

Similarly to Proposition 8, we have the following proposi-
tion.

Proposition 9. Let QB be q-database. If all the QRNs occur-
ring in QB are ⋄-consistent, then the following properties are
satisfied:

1) every closed q-pattern in QB is ⋄-consistent and
2) every maximal q-pattern in QB is ⋄-consistent.

Thus, whenever the database contains only ⋄-consistent
QRNs, the ⋄-consistent frequent q-patterns can be seen as
a condensed representation, which is weaker than closed
frequent q-patterns.

IV. APRIORI-LIKE ALGORITHM

This section aims to show that algorithms used for frequent
itemsets mining can be adapted to our mining tasks. We focus
here on Apriori algorithm which is the first and most influential
algorithm for generating frequent itemsets [2]. It proceeds by
a level-wise search: it first computes the frequent itemsets of
size one; then, assuming the frequent itemsets of size n known,
it computes a set of candidates of size n + 1 and compute
their supports, so that I is a valid candidate if and only if its
subsets of size n are frequent (a consequence of monotonicity
property); this procedure is iterated until no more candidate is
found.

To define our Apriori-like algorithm, we represent a q-
pattern by the set of base relation occurrences removed from
the QRN whose relations are all universal, called qr-set; this
allows us to have a compact representation of q-patterns and
emphasize the informative part. The removed base relation
occurrences that correspond to a q-pattern are written as a set
of expressions of the form (e, b, e′), where b is a base relation,
and e, e′ are occurring entities belonging to E.

The expression ⊤E \ C with C a qr-set of the form
{(e0, b0, e′0), . . . , (ek, bk, e′k)} with e0, . . . , ek, e

′
0, . . . , e

′
k ∈ E

and b0, . . . , bk ∈ B, represents the QRN N = (E,R) defined
by R(e, e′) = B \ {b | (e, b, e′) ∈ C or (e′, b−1, e) ∈ C}



for every e, e′ ∈ E and e ̸= e′. The pairs of entities
(e0, e

′
0), . . . , (ek, e

′
k) are not necessarily distinct.

For instance, consider the QRN N1 from Figure 6. This
QRN is represented with the qr-set {(e1, >, e2), (e1, <
, e3), (e1, >, e3), (e1,=, e4), (e2, <, e4), (e2,=, e4)}. It is
worth mentioning that to check if a q-row supports a
q-pattern, we only need to show that none of the relations
occurring in the QRN associated with the q-row is empty
after removing the elements in the set associated with the
q-pattern.

In our algorithm 1, we consider that there is an order on the
set of entities E and a lexicographical order ≺ on the qr-set.

The algorithm 1 starts initially by generating the frequent
q-patterns associated with the qr-sets of size 1, i.e. the set
of {(e, b, e′)} for every e, e′ ∈ E with e < e′ and b a base
relation of B, and that by calculating the support of the qr-sets
corresponding to them. Having thus the set Freq1, we reiterate
the procedure from line 2 to line 11 of the algorithm 1 until
no more candidates can be found. We generate the set of can-
didates using GENERATE CAND procedure, calculate their
supports by a simple scan of the database, and finally keep
those with minimum support of σ. The candidates’ generation
procedure remains the most important step of the algorithm 1
since it is at this stage that the search space is pruned using
the two properties, monotonicity, and consistency. Having a set
Freqi of frequent q-patterns of size i, GENERATE CAND
considers all possible ordered pairs of two qr-sets P, P ′ of
Freqi which differ only by one base relation and reiterate
the following. A candidate C is formed by joining P and P ′,
however, the consistency of this one in addition to the mono-
tonicity property is still to be verified. We emphasize here that
the CONSISTENCY procedure noted in the algorithm 2, can
correspond to a complete or incomplete approach; however,
given the complexity of the consistency problem which is NP-
complete for a large number of formalisms in general [8], it
is more feasible to consider one of the incomplete approaches
as the ⋄-consistency method. The monotonicity property is
verified by assuring that all the sub-sets of size i−1 of the qr-
set C belong to Freqi−1. Finally, only candidates verifying the
two conditions are retained and their supports are calculated.
Candidates with a minimum support threshold σ only make the
set Freqi. Once the set of candidates is empty, we return the
qr-sets associated with all frequent q-patterns and thus obtain
all the frequent q-patterns.

V. A FIM-BASED ENCODING

In this section, we propose an encoding of the problem of
generating frequent q-patterns into that of generating frequent
itemsets. To this end, we use again the qr-sets associated with
the QRNs.

We first associate a distinct item abij with every expression
ei, ej ∈ E with i < j and b ∈ B. Then, for every QRN
N , we associate the itemset T (N ) := {abij | 0 ≤ i < j ≤
n−1, and b ∈ B\R(ei, ej)}. Finally, the transaction database
T associated with QB, denoted T (QB), corresponds to the
set {(0, T (S0)), . . . , (m− 1, T (Sm−1))}.

Algorithm 1: Apriori-Like Procedure
Data: A q-database QB and a minimum support

threshold σ
Result: The qr-sets associated with all frequent

q-patterns
1 Freq1 ← {{(e, b, e′)} | e, e′ ∈ E, e < e′, b ∈
B and Supp(⊤E \ {(e, b, e′)}, QB) ≥ σ}

2 for (i← 2; Freqi−1 ̸= ∅; i++) do
3 Candi ← GENERATE CAND(Freqi−1)
4 for (j ← 0 to m− 1) do
5 for (C ∈ Candi) do
6 if Sj supports (⊤E \ C) then
7 C.supp++
8 end
9 end

10 end
11 Freqi ← {C ∈ Candi | C.supp ≥ σ}
12 end
13 return

⋃
i Freqi

Algorithm 2: Procedure GENERATE CAND

Data: A set Freqi−1 of frequent q-patterns of size
i− 1

Result: A set of qr-sets of size i representing
candidates

1 Candi ← ∅
2 for (P, P ′ ∈ Freqi−1 with |P \ P ′| = |P ′ \ P | = 1

and P ≺ P ′) do
3 C ← P ∪ P ′

4 if (CONSISTENCY(⊤E \ C) and
5 ∀S ⊂ C with |S| = i− 1, S ∈ Freqi−1) then
6 Candi ← Candi ∪ {C}
7 end
8 end
9 return Candi

Given an itemset I , we use QRN(I) to denote the QRN
⊤E \ {(ei, b, ej) | abij ∈ I}.

The following property is a direct consequence of the
definitions of T (·) and QRN(·).

Proposition 10. Let N be a QRN. Then, I = T (N ) iff
QRN(I) = N .

Consider the q-database QB2 in Figure 8 with four QRNs
of three entities e1, e2 and e3 on PA. The table illustrate the
associated transaction database T (QB2) of QB2.

Theorem 11. The following properties are satisfied:

1) I is a frequent itemset in T (QB) w.r.t. a given threshold
iff QRN(I) is a frequent q-pattern in QB w.r.t. the same
threshold;

2) I is a closed itemset in T (QB) iff QRN(I) is a closed
q-pattern in QB;



e1

e2

e3

{=, >}

{>}

{>}

S1 e1

e2

e3

{=}

{=}

{=}

S2 e1

e2

e3

{<,>}

{>}

{<,>}

S3 e1

e2

e3

{=, >}

{=, >}

{=, >}

S4

Tid T (Si)
1 a<12, a<13, a=13, a<23, a=23
2 a<12, a<13, a<23, a>12, a>13, a>23
3 a<13, a=13, a=23, a=12
4 a<12, a<13, a<23

Fig. 8. Example of a transaction database associated with the q-database
QB2.

3) I is a maximal itemset in T (QB) w.r.t. a given threshold
iff QRN(I) is a maximal q-pattern in QB w.r.t. the
same threshold.

Proof. We only consider Property 1, the others being similar.
Part ⇒. Let I be a frequent itemset in T (QB). Using
Proposition 10, we obtain for every transaction ti = (i, T (Si))
in T (QB), if I ⊆ T (Si) (ti supports I) then QRN(T (Si)) =
Si ⊆ QRN(I) (Si supports QRN(I)). Thus, the support of I
in T (QB) is equal to that of QRN(I) in QB. Consequently,
QRN(I) is a frequent q-pattern in QB w.r.t. the same
minimum support threshold.
Part ⇐. Let I be an itemset such that QRN(I) is a frequent
q-pattern in QB. We have for every QRN Si occurring in
QB, if Si ⊆ QRN(I) then T (QRN(I)) ⊆ T (Si). Using
again Proposition 10, T (QRN(I)) = I holds. Due to the
definition of T (QB), the support of I in T (QB) is equal to
that of QRN(I) in QB. Therefore, I is a frequent itemset in
T (QB) w.r.t. the same threshold.

For instance, consider the q-database of Figure 8, a mini-
mum support threshold equal to 3 and the q-pattern represented
by the QRN N of Figure 9.

e1

e2

e3

{=, >}

{=, >}

{=, >}

N

Fig. 9. Example of a maximal QRN with Supp(N , QB2) = 3.

N is associated to the itemset I = {a<12, a<13, a<23}. I is
maximal with a Supp(I, T (QB2)) = 3. One can easily check
using Proposition 6 that N is maximal.

VI. COMPUTATIONAL EXPERIMENTS

In this section, we examine the practical feasibility of our
approach by running experiments on real-world datasets of
soccer games, which are available on Metrica-sportsb. All
experiments have been conducted on a node with Intel XEON

bhttps://github.com/metrica-sports/sample-data/tree/master/data/Sample
Game 2

E5-2643 Quad-Core 3,3 GHz, 64 Go of RAM, of a cluster of
34 nodes.

The datasets represent quantitative data from soccer games,
describing the movement of the players and the ball by
their x and y coordinates on the field over time. For the
considered game the initial number of records is 141159 (25
records each second). After a necessary cleaning of these data
(missing values, outliers) and conversion into qualitative data,
we end up with 67891 q-rows. To get these q-rows, we have
chosen to represent the relations between the players positions
using three formalisms: PA formalism by choosing one axis
of movement (the x axis), CDA formalism and finally an
abstraction of CDA to an algebra of five base relations called
CD5 and that by regrouping the relations N and NE into a
single relation NEE and similarly E and SE into SEE, S and
SW into SSW and finally W and NW into NWW. We used
the FIM-based encoding described in Section V to translate
the q-database into a transaction database.

In the first instance, we consider all binary relations between
the 4 players (2,3,21, and 22) only. In a second instance, the
ball (11) is taken into consideration, hence all the relations
between the four players and the ball are considered as well.
Only 1 record per 20 has been taken into account in the q-
database ending up with 3394 q-rows. We made these choices,
taking into account the size of the data on the one hand (the
number of q-rows and the number of resulting relations which
are of the order of m×n× n−1

2 , n being the number of players
and m the number of base relations of the formalism), and on
the other hand considering that this application proves only
the feasibility of the problem. Figure 10 represents a record
of the game at a specific point in time and the 3 associated
QRNs according to each formalism.

p2

p3 p21

p22

{>}

{>}

{>}

{>}

{>}

{>}

PA p2

p3 p21

p22

{NNE}

{SEE}

{SEE}

{NNE}

{NNE}

{SEE}

CD5 p2

p3 p21

p22

{NE}

{E}

{SE}

{NE}

{NE}

{SE}

CDA

Fig. 10. The positioning of the players in a game at a given moment, where
numbers from 0 to 10 are the players of team 1 and 12 to 22 those of team
2 and finally 11 correspond to the ball. On the left are the associated QRNs
according to the three qualitative formalisms PA, CD5, CDA.

We resolved here the problems of mining frequent QRNs,
closed and maximal frequent QRNs. A timeout of 4 hours was
set and we used the Linear time Closed (LCM) itemset Miner



[16] to resolve the 3 problems. LCM is the winner of the FIMI
2004 competition [4].

Table II (respectively III and IV) describes the number of
frequent (#F), maximal (#M), and closed (#C) QRNs discov-
ered in the q-database considering the four players (2,3,21 and
22) and according to the PA formalism (respectively CD5, and
CDA) w.r.t a minimum support threshold σ and the time (in
seconds) it took to obtain them.

σ(%) #F (time) #C (time) #M (time)
0.95 64 (0.0) 64 (0.0) 1 (0.0)
0.90 64 (0.0) 64 (0.0) 1 (0.0)
0.85 256 (0.0) 224 (0.0) 3 (0.0)
0.80 384 (0.0) 320 (0.0) 3 (0.0)
0.75 670 (0.0) 447 (0.0) 9 (0.0)
0.70 960 (0.0) 560 (0.0) 4 (0.0)
0.65 1024 (0.0) 576 (0.0) 1 (0.0)
0.60 1152 (0.0) 640 (0.0) 2 (0.0)
0.55 1408 (0.0) 736 (0.0) 3 (0.0)
0.50 1916 (0.0) 945 (0.0) 13 (0.0)
0.45 2368 (0.0) 1088 (0.0) 3 (0.0)
0.40 2816 (0.0) 1200 (0.0) 3 (0.0)
0.35 4032 (0.0) 1384 (0.0) 6 (0.0)
0.30 4864 (0.0) 1584 (0.0) 5 (0.0)
0.25 5768 (0.0) 1697 (0.0) 8 (0.0)
0.20 7168 (0.0) 1732 (0.0) 3 (0.0)
0.15 7832 (0.0) 1839 (0.0) 10 (0.0)
0.10 10360 (0.0) 2155 (0.0) 14 (0.0)
0.05 14848 (0.0) 2432 (0.0) 17 (0.0)

TABLE II
EXPERIMENTS WITH THE FOUR PLAYERS 2,3,21 AND 22 USING THE PA

FORMALISM.

σ(%) #F (time) #C (time) #M (time)
0.95 672 (0.00) 84 (0.00) 7 (0.00)
0.90 3480 (0.00) 435 (0.00) 21 (0.00)
0.85 10352 (0.00) 1294 (0.00) 40 (0.00)
0.80 26000 (0.00) 3250 (0.00) 77 (0.00)
0.75 49136 (0.00) 6142 (0.01) 108 (0.01)
0.70 79936 (0.01) 9984 (0.01) 110(0.01)
0.65 127584 (0.01) 15652 (0.02) 232 (0.02)
0.60 243824 (0.02) 28214 (0.03) 460 (0.03)
0.55 465744 (0.03) 49645 (0.04) 525 (0.04)
0.50 788592 (0.04) 76015 (0.06) 655 (0.07)
0.45 1261616 (0.05) 107758 (0.10) 944 (0.10)
0.40 1997240 (0.08) 152657 (0.14) 1230 (0.15)
0.35 3394888 (0.12) 218528 (0.2) 1518 (0.21)
0.30 5494672 (0.17) 297772 (0.28) 1696 (0.30)
0.25 8966832 (0.25) 397826 (0.38) 2270 (0.41)
0.20 14955208 (0.34) 508391 (0.50) 3348 (0.54)
0.15 26719936 (0.50) 673692 (0.69) 3556 (0.75)
0.10 49382984 (0.72) 848675 (0.90) 4268 (0.99)
0.05 99401072 (1.04) 1066489 (1.22) 5277 (1.32)

TABLE III
EXPERIMENTS WITH THE FOUR PLAYERS 2,3,21 AND 22 USING THE CD5

FORMALISM.

Table V, VI, and VII describe the same results discovered in
a q-database with the four players (2,3,21 and 22) and where
the ball (11) is taken into consideration as an other entity.

A first observation that is immediately obvious, is that the
number of the q-patterns discovered depends on the granularity
of the formalism. Indeed, the more the formalism is large in
terms of base relations the more the number of discovered q-
patterns will be important. This said, the choice of a formalism

σ(%) #F (time) #C (time) #M (time)
0.95 ≈ 1.0×1010 (0.05) 38307 (0.05) 425 (0.05)
0.90 ≈ 5.5×1010 (0.22) 208606 (0.25) 1896 (0.24)
0.85 ≈ 1.7×1011 (0.57) 590563 (0.7) 2766 (0.66)
0.80 ≈ 4.2×1011 (1.26) 1296021 (1.55) 4339 (1.48)
0.75 ≈ 8.0×1011 (2.05) 2091131 (2.69) 6594 (2.54)
0.70 ≈ 1.3×1012 (2.96) 3004016 (3.94) 5267 (3.76)
0.65 ≈ 2.1×1012 (4.11) 4225057 (5.51) 10338 (5.25)
0.60 ≈ 4.0×1012 (6.36) 6475899 (8.58) 17055 (8.24)
0.55 ≈ 7.7×1012 (9.44) 9410051 (12.55) 17983 (12.28)
0.50 ≈ 1.3×1013 (12.26) 11869287 (16.05) 17276 (15.36)
0.45 ≈ 2.1×1013 (15.83) 15057971 (20.44) 24064 (19.78)
0.40 ≈ 3.3×1013 (20.25) 18814955 (25.99) 26191 (29.25)
0.35 ≈ 5.7×1013 (25.79) 23125139 (32.52) 26149 (31.14)
0.30 ≈ 9.2×1013 (30.56) 26793663 (37.78) 21491 (36.13)
0.25 ≈ 1.5×1014 (35.79) 30240298 (42.66) 23082 (47.13)
0.20 ≈ 2.5×1014 (41.05) 33522666 (48.30) 25250 (45.59)
0.15 ≈ 4.5×1014 (46.39) 36406732 (51.79) 17574 (50.37)
0.10 ≈ 8.3×1014 (52.06) 38460444 (54.95) 13852 (52.73)
0.05 ≈ 1.7×1015 (55.16) 39927173 (58.01) 11197 (55.10)

TABLE IV
EXPERIMENTS WITH THE FOUR PLAYERS 2,3,21 AND 22 USING THE CDA

FORMALISM.

σ(%) #F (time) #C (time) #M (time)
0.95 1024 (0.0) 1024 (0.0) 1 (0.0)
0.90 1024 (0.0) 1024 (0.0) 1 (0.0)
0.85 4096 (0.0) 3584 (0.0) 3 (0.0)
0.80 9216 (0.0) 6400 (0.0) 4 (0.0)
0.75 18856 (0.01) 10651 (0.01) 55 (0.01)
0.70 43172 (0.01) 17448 (0.01) 78 (0.01)
0.65 70708 (0.01) 23193 (0.02) 68 (0.02)
0.60 125176 (0.01) 29767 (0.02) 24 (0.02)
0.55 200640 (0.02) 34174 (0.02) 27 (0.03)
0.50 285503 (0.02) 39549 (0.03) 126 (0.03)
0.45 333424 (0.02) 45890 (0.03) 39 (0.04)
0.40 442600 (0.03) 53948 (0.04) 66 (0.04)
0.35 613256 (0.03) 59063 (0.04) 64 (0.05)
0.30 820474 (0.04) 65074 (0.05) 48 (0.05)
0.25 1063264 (0.04) 71044 (0.06) 35 (0.06)
0.20 1408848 (0.04) 74951 (0.06) 43 (0.06)
0.15 1832384 (0.04) 78756 (0.06) 59 (0.07)
0.10 2374848 (0.05) 84007 (0.07) 95 (0.07)
0.05 4310656 (0.05) 92133 (0.08) 118 (0.08)

TABLE V
EXPERIMENTS WITH THE FOUR PLAYERS 2,3,21,22 AND THE BALL (11)

USING THE PA FORMALISM.

with a few base relations can result in the lack of expressive-
ness of the information and therefore of the q-patterns. One
solution would be to find a formalism, sufficiently expressive
but also allowing for ease of computation. The CD5 here for
instance, represents such a trade-off between the PA formalism
that remains clearly unable to express correctly the spatial
information of the movements of the players, since they move
in two directions and CDA which shows, as we can see in
table VII, a difficulty for the computation if the number of
players exceeds 4.

The comparison between the results in Tables II and V (III
and VI), and (IV and VII) shows that the number of entities
can also lead to an exponential increase in the computation
run time. It should be noted that adding a single player to
the database results in the addition of n new relations (all
the binary relations between the player to be added and the



σ(%) #F (time) #C (time) #M (time)
0.95 11488 (0.0) 358 (0.0) 17 (0.0)
0.90 85248 (0.01) 2542 (0.01) 54 (0.01)
0.85 399072 (0.01) 110572 (0.02) 174 (0.01)
0.80 1741408 (0.03) 340349 (0.04) 810 (0.05)
0.75 6826624 (0.07) 127592 (0.13) 2262 (0.13)
0.70 22866367 (0.19) 336896 (0.35) 5224 (0.36)
0.65 65402816 (0.42) 742674 (0.76) 8558 (0.79)
0.60 ≈ 1.5×108 (0.79) 1365562 (1.47) 10962 (1.51)
0.55 ≈ 3.1×108 (1.35) 2284773 (2.40) 16406 (2.57)
0.50 ≈ 5.9×108 (2.43) 4085406 (4.46) 34907 (4.76)
0.45 ≈ 1.2×109 (4.66) 7703023 (8.54) 61940 (9.12)
0.40 ≈ 2.7×109 (8.89) 14116606 (16.04) 99241 (17.32)
0.35 ≈ 6.0×109 (16.68) 25552637 (29.88) 171580 (32.44)
0.30 ≈ 1.4×1010 (32.04) 47264954 (56.21) 319418 (61.64)
0.25 ≈ 3.3×1010 (63.62) 88064501 (107.05) 557722 (117.92)
0.20 ≈ 9.1×1010 (126.09) ≈ 1.6×108 (196.49) 884483 (221.48)
0.15 ≈ 2.7×1011 (250.69) ≈ 2.7×108 (351.35) 1417224 (389.8)
0.10 ≈ 9.0×1011 (509.63) ≈ 4.5×108 (616.66) 2197078 (688.64)
0.05 ≈ 4.1×1012 (1154.05) ≈ 7.3×108 (1130.35) 3159685 (1239.55)

TABLE VI
EXPERIMENTS WITH THE FOUR PLAYERS 2,3,21,22 AND THE BALL (11)

USING THE CD5 FORMALISM.

σ(%) #F (time) #C (time) #M (time)
0.95 ≈ 9.8×1015 (77.22) ≈ 5.6×107 (90.94) 1124157 (85.18)
0.90 ≈ 8.1×1016 (460.55) ≈ 3.5×108 (564.37) 3703082 (524.55)
0.85 ≈ 3.9×1017 (1715.52) ≈ 1.3×109 (2101.44) 10058343 (1988.89)
0.80 ≈ 1.7×1018 (4922.69) ≈ 3.6×109 (6196.11) 18111949 (5859.21)
0.75 ≈ 6.9×1018 (10699.64) ≈ 7.7×109 (13458.67) 29467108 (12802.89)

≤ 0.70 - - -
TABLE VII

EXPERIMENTS WITH THE FOUR PLAYERS 2,3,21,22 AND THE BALL (11)
USING THE CDA FORMALISM.

already existing n players in the database).

VII. CONCLUSION AND PERSPECTIVES

We have introduced a data mining framework that exploits
qualitative reasoning formalisms for knowledge representation.
In this context, we have proposed an adaptation of Apriori
algorithm to our framework; this algorithm is the first and
most influential algorithm for solving the problem of frequent
itemset mining. We have also proposed an encoding of the
considered data mining tasks into the problem of frequent
itemset mining. Additionally, we have provided an experi-
mental evaluation of our encoding by considering real-world
datasets.

One of the main perspectives of this work is the generation
of association rules from frequent qualitative patterns, simi-
larly to the use of frequent itemsets in the computation of
association rules [1]. Future work will also be concerned with
the study of adaptations of other data mining algorithms to
our framework, such as FP-Growth [6] and LCM [16].
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