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Abstract—Convolutional Neural Network (CNN) is more and
more widely used in various fileds, and its computation and
memory-demand are also increasing significantly. In order to
make it applicable to limited conditions such as embedded
application, network compression comes out. Among them, re-
searchers pay more attention to network pruning. In this paper,
we encode the convolution network to obtain the similarity of
different encoding nodes, and evaluate the connectivity-power
among convolutional kernels on the basis of the similarity.
Then impose different level of penalty according to different
connectivity-power. Meanwhile, we propose Channel Pruning
base on the Dissimilarity of Angle (DACP). Firstly, we train a
sparse model by GL penalty, and impose an angle dissimilarity
(AD) constraint on the channels and filters of convolutional
network to obtain a more sparse structure. Eventually, the
effectiveness of our method is demonstrated in the section of
experiment. On CIFAR-10, we reduce 66.86% FLOPs on VGG-
16 with 93.31% accuracy after pruning, where FLOPs represents
the number of floating-point operations per second of the model.
Moreover, on ResNet-32, we reduce FLOPs by 58.46%, which
makes the accuracy after pruning reach 91.76%. Our code is
made public at: https://github.com/kangxiatao/prune tf2 master.

Index Terms—Convolutional neural network(CNN); network
pruning; angle dissimilarity; FLOP

I. INTRODUCTION

Convolutional Neural Networks (CNNs) bring excellent
performance, which makes great achievements in image pro-
cessing, speech recognition etc. Nevertheless, for devices with
limited computation and memory, such as mobile embedded
devices, even with the latest high-efficiency architecture , the
size and over-parameterization of its model are still burden-
some to deploy on neural networks , which will also affect
the combination of CNNs and many traditional industries.
Thus, network pruning provides the possibility and necessity
for neural network compression.

Early studies have proposed many methods of network
compression. Such as weight quantization [1], low-rank de-
composition [2], knowledge distillation [3], pruning [4]–[7].
In this paper, we focus on network pruning. After simplifica-
tion, the network not only reduces amounts of computation,
but also improves its generalization capability. Early pruning
methods are weight pruning mostly [8], which is practiced
by directly deleting unimportant parameters. However it will
cause unstructured sparsity of the model. Hence, by removing
filters [4]–[6], [9], [10] or channels [11] from the convolutional

kernels, it will become a more widespread choice to leave a
compact and coherent model by filter-level pruning.

At present, a great deal of pruning techniques base on
redundancy and importance. Redundancy-based pruning usu-
ally counts the number of filters/channels as its redundancy.
Important-based pruning depends on different definitions of
importance for pruning. Some of them attach importance to
norms, and nevertheless, this ”norm-only” pruning has great
limitations. For instance: (1) Remove the weight of the filters
according to the norm value [12]. (2) Directly remove part
of the filters [13]. (3) Sparse networks are left by pruning
connections with redundancy or low weights [7]. Some of
them do not take into account the diversity of distribution of
filters among layers, so they will have a negative impact on
accuracy [11]. Meanwhile, there are many pruning methods
based on “smaller-norm-less-informative”. In fact, small val-
ues are not equal to unimportant values [13]. Filters with small
norm values in the front may play an important role behind
[11].

(a) L2-norm penalty (b) GL pruning

Fig. 1. The connectivity-power of channels and filters on VGG-16. Horizontal
axis represents the number of layers, and vertical axis represents the similarity
between channels (filters) of each layer. Blue lines denote channels and yellow
lines denote filters. Inspired by the performance ability of related models, we
try to increase the difference and improve their performance ability.

We try to prune the model while maintaining its perfor-
mance, and encode the convolutional layer into a hypercube
network. When the m-base strings of the encoding nodes differ
by at most one bit, they are defined as a pair of adjacent nodes.
As shown in Fig. 1, we calculate the mean of adjacent nodes
to evaluate the connectivity-power of channels and filters
between 2D convolutional kernels. In addition, we attempt to
impose different LASSO penalties on the model to make the
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model structured sparsity. However, LASSO can only zero
out the parameters of a single feature. Features appear in
the form of groups, and a whole group of parameters need
to be zeroed out at the same time. To solve this problem,
Yuan [14] proposed Group LASSO (GL) in 2006. As can
be seen in Fig. 1(b), after compression the connectivity-
power of filters and channels in the middle layer increases
significantly. Meanwhile, the performance of model is weak.
Among them, the connectivity-power is the similarity between
the channels/filters of each layer. The dispersion of channels
in each layer is measured to facilitate dynamic pruning, and
the filters are pruned in the same way [13].

(a) GL constraints (b) AS constraints

Fig. 2. Clustering analysis of GL constraint and AS constraint. A comparative
experiment is conducted on VGG-16, with a total of 13-layers CNN, and each
coordinate axis represents a single layer. The horizontal axis indicates the
Euclidean distance between the channels or filters to the origin, and the vertical
axis indicates AS between the channels/filters and their mean vector. The
Euclidean distance and AS value are standardized between [0, 1]. Different
colors represent different categories. n is the number of categories, and ‘+’
represents the center point of category.

In order to solve the problems above, we propose a novel
model penalty method, Channel Pruning Based on the Dissim-
ilarity of Angle (DACP). Firstly, a sparse model is trained by
GL penalty, and then the Similarity of Angle (AS) constraint is
constructed on the channels/filters of the CNN to increase the
difference between the channels/filters and further screen out
important filters to obtain a more sparse structure. As can be
seen in Fig. 2, DACP separates the similarity between chan-
nels/filters and indirectly changes its norm value combined
with GL constraint. So that filters with small but important
values can be retained and the performance of convolutional
kernels can be enriched. Besides, channels/filters with larger
but similar values are penalized. In this case, it not only
improves the generalization but also makes the model sparse.

As for filter selection, DACP is somewhat similar to filter
pruning [4], but the latter is obtained by penalty-induced-
sparsity and considering that filters close to geometric median
have more redundancy. As for processing, it is resemblance
to Dynamic Pruning [15], which increases the connectivity-
power of the model and further inhibits the connectivity-power
of the redundancy. Besides, since our method is based on GL
to penalize the sparsity parts, our method does not need to
achieve with extra pre-training and to achieve a compact model

structure in the end of training. Above all, traditional pruning
methods can also be applied to our trained models.

In this paper, we make a new assumption and propose ours
for the existing limitations and shortcomings, which solves the
disadvantages of poor performance and generalization. Finally,
for verifying the effectiveness of DACP, we use multiple image
recognition datasets on multiple network architectures. We
compare it with a variety of widely used pruning methods,
and describe in detail in the third section of the paper.

II. RELATED WORK

As mentioned above, previous works can be divided into
unstructured pruning and structured pruning. Unstructured
pruning [7], [8], [16], [17] mainly includes weight pruning and
neuron pruning, which results in unstructured sparse model.
Structured pruning [4]–[6], [9], [10], [18] mainly contains filter
pruning and channel pruning. The compact network obtained
after pruning can maintain the original structure, but usually
leads to a significant decrease in accuracy [10].

A. Unstructured Pruning
Originally, LeCun [8] trimmed all unimportant weights in

the network to improve the accuracy and generalization of the
network by considering the weight parameters in the network
as a single parameter. Later, Hassibi [16] proposed OBS tech-
nique based on LeCun’s [8] to improve the restoration of the
weight updating. Compared with the former, OBS can prune
more weight as the same error. Recently, pruning focuses
on reserving important connections in network according to
norm value [7], so as to reduce the number of parameters
and computation consuming of the model without affecting
the final accuracy of the network [7]. Neuron pruning sets the
row/column of the matrix to zero, and the size of the matrix
does not change. Hu [17] defined “average percentage of zero”
to measure the number of zero activated in each filter, and
regards its neurons as redundant and prunes as a whole.

B. Structured Pruning
Contrary to unstructured pruning, sparsity brought by struc-

tured pruning is regular, and will obtain structured model
eventually. So it is more feasible currently. Filter pruning and
channel pruning belong to structured pruning. Previous prun-
ing based on norm value include the filters pruning on account
of L1-norm [10], L2-norm [9] and Lp-norm [5]. Besides, there
are also pruning methods based on redundancy, such as He’s
[4]. However, these methods always only lay emphasis on how
to prune in the same layer, without noticing the relationship
among different layers. Aiming at the limitations above, Luo
[6] attaches more importance to the relationship among layers,
and he supposed that statistics calculated in next layer are
used as the benchmark for pruning. Further, Xie [18] proposed
the concept of Extended Filter Group (EFG), which solves
the training of filters of the current layer and corresponding
channels of the next layer according to the penalty of EFG,
and conducted induced-sparsity of the model. Our approach
sorts out the above problems and put forward a more effecitve
method to achieve better performance.



III. METHOD

Our pruning method can be summarized as the following
steps: (1) Impose GL penalty on the model until what we
set. (2)Reduce the GL penalty, and add the penalty of AD in
channels until the final convergence. (3) Prune the channels
according to the norm value of 3D filter.In this section, we
will elaborate the setting of penalty terms and the learning
process of structured sparsity.

A. Preliminaries

We formally introduce the symbols and notations in this
subsection. We assume that a neural network has L lay-
ers, and in the i-th layer we parameterize CNN as W ={
W 1,W 2, . . . ,WL

}
as
{
W (i) ∈ Rk×k×cl×n l

}
, where k de-

notes kernel size, cl and n l denote l -th layer’s number of
channels and filters respectively. In addition, the convolutional
kernel of the n-th filter in the c-th channel at the l -th layer is
expressed as W l

c,n.

B. Convolutional Kernels Grouping

First we divide the convolutional kernels of each layer into
two groups: channel-filter and 3D-filter, and then impose L2-
norm penalty on each group in the objective function:

Rg =

L∑
l=1

 cl∑
c=1

∥∥∥W l
c,nl

∥∥∥
2
+

nl∑
n=1

∥∥∥W l
cl,n

∥∥∥
2

 (1)

Indeed we can also design more complex groups to obtain
better sparse effect in the training process, but the penalty
based on AS only needs group constraints to work simply.

C. Channel Pruning Based on the Dissimilarity of Angle

Channel is a group of multidimensional data in CNN’s
convolutional kernels. AS is used to impose constrains on the
model according to the difference. AS is widely used in natural
language processing and data mining to measure cohesion
within data clustering. AS S (A,B) of vectors A and B is
demonstrated as follows:

S (A,B) = 1−
(
cos−1 (fsimilarity (A,B))

π

)
(2)

fsimilarity(A,B) = cos(θ) =
A ·B
‖A‖‖B‖

=

∑n
i=1Ai ×Bi√∑n

i=1 (Ai)
2 ×

√∑n
i=1 (Bi)

2

(3)

where A and B are vectors to calculate AS Ai and Bi denote
the component of vector A and B respectively.

We calculate the norm value of each convolutional kernel
in the channel, and transform the channels and filters into the
vectors. Then calculate the value of DACP according to AS:

Rc =

L∑
l=1

cl−1∑
i=1

cl∑
j=i+1

S
(
X l

i , X
l
j

)
(4)

where X l
i and X l

j denotes the i -th and j -th channel vector of
the l -th layer respectively.

D. Loss function

In supervised learning, y represents the target tag. C(x,W )
represents the forward propagation result of input data x in
CNN. And L(·) represents the target tag and the loss of output
result. We use cross-entropy to calculate the fitting-error, and
add DACP penalty Rc and LASSO penalty Rg to construct
our channel pruning based on AD, which could be formulated
as:

L̃(y, C(x,W )) = L(y, C(x,W )) + λRc + βRg (5)

where λ and β denote the hyperparameter of the penalty term
based on AD and LASSO penalty term respectively, which is
conducive to adjust the level of penalty.

As for DACP penalty term, we use cosine-similarity instead
of angle’s. The larger the angle is, the smaller the similarity
will be. The cosine-similarity among channels and filters plays
a decisive role in our parameter penalty. The derivative of
fsimilarity by the single vector Xi is as follows:

∂(f)

∂Xi
=
Xj (‖Xi‖ ‖Xj‖)−

(
XT

i Xj

) Xi‖Xj‖
‖Xi‖

‖Xi‖2 ‖Xj‖2

=

(
1(
XT

i

) − Xi

‖Xi‖2

)
fsimilarity

(6)

where the fsimilarity denotes the cosine-similarity of channel
vector Xi and Xj . Thus the gradient of penalty term with AD
can be simplified as:

∇wλRc ∝
((

WT
)−1 − W

‖W‖2

)
fw (7)

where fw is the matrix of AS between vectors of channel.
It can be concluded from the gradient that the similarity

between channels changes during the optimization process-
ing. Combined with the constraints of GL, the similarity of
multiple channels and filters with high similarity is penalized
by AD. The similarity decreases gradually, and the norm value
of some channels decreases sharply. After pruning, the model
will become more compact, and generalization even improved.

E. Simplify the Calculation of Similarity

On VGG-16 model, the number of channels and filters
reaches 512 after the 8-th layer, which means that the cal-
culation of AS is huge. After calculating, the time complexity
is O

(
n3
)
. The larger the value of n is, the larger the floating-

point calculation resource is.
Considering the complexity to calculate AS among chan-

nels, we attempt to calculate the mean vector B of channels
and regard it as the base vector instead. We calculate AS
between each channel and the base vector for approximation.



Then the penalty term Rc of AD can be replaced by Rc
′ in

Eq.8.

R′c =
L∑

l=1

cl∑
i=1

S
(
X l

i , B
l
)

(8)

where Bl denotes the mean vector of channel of the l -th
layer. Meanwhile, with the calculating of the channel vector,
the time complexity after approximation processing is O

(
n2
)
,

which seems not to be significantly improved. However, when
calculating AS with the base vector. We can directly calculate
AS in the form of tensor, and the actual calculation reduces.

IV. EXPERIMENTS

A. Databases and Experimental Settings

We evaluated our approach on VGG-16, and ResNet Deep
Neural Networks (DNN) with the classical datasets: MNISIT,
Caltech-101, CIFAR-10, and CIFAR-100.

We selected the following pruning methods that have
worked well in both industry and academia to compare them
with our experiments in turn. (1)Network Slimming (NS) [19]
applies L1 regularization to the scaling factor of batch nor-
malization (BN) layer. L1 regularization inclines the scaling
factor of BN layer to zero, so as to distinguish unimportant
channels or neurons. (2) Soft Filter Pruning (SFP) [9], a
dynamic pruning method, which can enable the pruning filter
to participate in certain training to improve the efficiency of
pruning. (3) Filter Pruning via Geometric Median (FPGM)
[4], a network-compression method based on geometric center
pruning. (4) Stripe-wise Pruning (SWP) [20]. A learnable
matrix is introduced to reflect the shape of each filter, and
the matrix is used to guide model pruning.

Before model training, in addition to MNIST, we make
data augmentation of random trimming and random mirror for
other datasets. During the training, we have an arrangement
for cosine learning rate decay. Finally, we use the decline rate
of FLOPs as the pruning rate to evaluate the performance after
pruning.

B. Experiments on VGG-16

VGG-16 is a 16-layer-single-branch CNN with 13 convolu-
tional layers. We tested the performance of VGG-16 network
on CIFAR-10, CIFAR-100 and Caltech-101 by using various
pruning methods. Table I reveals the relevant experiment
results. Among them, NS [19] and SFP [9] are the data in the
initial papers by others, and others are from our experiments.

In order to analyze the influence of GL penalty-intensity
on AD, we have done a lot of experiments on CIFAR-10.
As shown in Table II, the performance of AD on strong GL
penalty is relatively stable in pruning and it generalizes better.
When AD acts on the GL with weak penalty, its performance
is stable in generalization and pruning improves.

C. Experiments on ResNet

ResNet is a multi-branch neural network structure composed
of multiple residual blocks. Different from single-branch net-
works, pruning tends to cause a mismatch between the number

TABLE I
PERFORMANCE OF VGG-16.

Datasets Method1 Pruned
FLOPs(%)

Pruned
Accuracy(%)

CIFAR-100

baseline with L2* 0 74.23
L1* 33.73 71.59

NS [19] 37.1 72.09
GL* 39.84 72.18

SFP [9] 41.8 70.28
Ours 42.18 73.12

CIFAR-10

baseline with L2* 0 93.73
L1* 60.20 92.45

NS [19] 51.0 92.8
GL* 66.57 92.51

SWP [20] 71.16 92.85
Ours 66.86 93.31

Caltech-101

baseline with L2* 0 95.28
L1* 20.3 95.1
GL* 16.3 93.5

Ours 22.95 95.55
1 In the “Method” column, “baseline with L2” means that L2

regularization is used in the model; “Pruned FLOPs” means that
the model reduces the number of FLOPs to be lost.

* The experiment is implemented by us.

TABLE II
THE INFLUENCE OF DIFFERENT LEVEL OF PENALTY OF GL ON THE

DISSIMILARITY OF ANGLE.

Method Pruned FLOPs (%) Pruned accuracy (%)
ORI 0 91.20(±0.30)
L1 60.20(±6.80) 92.45(±0.35)
L2 0.06(±0.06) 93.73 (±0.42)

GL(1)1 72.10(±4.50) 92.40(±0.30)
GL(2)2 56.83(±3.10) 93.10(±0.32)

GL(1)1+ ad3 75.30 (±4.25) 92.81(±0.44)
GL(2)2+ ad3 66.86(±4.50) 93.31(±0.26)
1 Group LASSO with strong penalty.
2 Group LASSO with weak penalty.
3 Our AD penalty.

of shortcuts filters for the residual block and the number of
output filters. We solve this problem by taking their union.

From Table III, we can compare the pruning of various
methods on CIFAR-10 and CIFAR-100s. ResNet itself is a
compact network. There is no obvious difference in accu-
racy between ours and others, but our method has distinct
advantages in pruning rate. For shortcuts in ResNet reduce
the number of effective filters in the residual blocks, and our
approach screens out important filters from a similarity term.

D. Feature Visualization

Further, we realize visualization analysis of output features
in the model. On CIFAR-10, make visualization analysis and
comparation on the output feature of second convolutional
kernel on VGG-16, which is shown in Fig. 3. We select a car
picture as the input feature. After the convolutional operation
of convolutional kernel of the second layer, we intercepted the
output feature of GL method and DACP, as depicted in Fig.
3(b) and Fig. 3(c) respectively. It is obvious that GL has a
higher similarity of adjacent features, while AD has a more



TABLE III
PERFORMANCE OF RESNET.

Datasets Model Method Pruned
FLOPs(%)

Pruned
Accuracy(%)

CIFAR
-10

ResNet
-18

baseline with L2* 0.2 92.37
L1* 22.62 90.55
GL* 37.08 90.58

Ours 52.5 90.51

ResNet
-20

baseline with L2* 0 92.63
L1* 24.5 90.75
GL* 40.26 90.56

SFP [9] 42.2 90.83
FPGM [4] 54 90.44

Ours 62.5 90.61

ResNet
-32

baseline with L2* 0 93.65
L1* 38.85 91.25
GL* 42.65 91.64

SFP [9] 41.5 92.08
FPGM [4] 53.2 91.93

Ours 58.46 91.76

CIFAR
-100

ResNet
-18

baseline with L2* 0 74.65
L1* 21.6 73.02
GL* 34.83 73.28

Ours 43.16 73.24

ResNet
-34

baseline with L2* 0 74.86
L1* 21.63 73.1
GL* 48.11 72.47

Ours 65.49 72.51
* The experiment is implemented by us. Some methods do not show the

best performance due to the influence of hyperparameters, but we try our
might to get the best results and then conduct correlative experiments.

well-stacked feature map. The feature map of the red box in
Fig. 3(b) can be replaced by the feature map in green box
in Fig. 3(c) after AD penalty is applied. The features of the
orange box in Fig. 3(b) are changed to those of the blue box
in Fig. 3(c), which can be regarded as the restoration of filters.

(a) Input (b) GL (c) DACP

Fig. 3. Feature visualization. There are 64 filters in the second layer of VGG-
16. Totally black blocks in the figure indicate that the filters have been cut
off.

V. CONCLUSION

In the experiment, it can be seen that 3D-filters show
different levels of clustering while applying different level
of LASSO penalties. Compared with L1 penalty, GL penalty
has better clustering effect. The distribution of 3D-filters is
relatively uniform, and the degree of model simplification is
higher. Combined with this circumstance, DACP is proposed.
The relationship of channels and filters in convolutional kernel
is discussed, and the corresponding DACP is constructed with

cosine similarity. Experiment results show that the DACP can
make the 3D-filter clustering in the model more uniform and
improve the sparsity of the model.

In this paper, the calculation of DACP adopts basis vector
approximation, which will be more convictive if a more
suitable way can be found to express it. In the future, we
will start with the connectivity-power that mentioned in the
beginning of this article. We attempt to guide model sparsity
based on connectivity-power, and play a role of regularization
to push the performance to a higher stage.
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