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Abstract—A Pseudo-Boolean (PB) constraint is a linear in-
equality constraint over Boolean literals. One of the popular,
efficient ideas used to solve PB-problems (a set of PB-constraints)
is to translate them to SAT instances (encodings) via, for example,
sorting networks, then to process those instances using state-
of-the-art SAT-solvers. In this paper we show an improvement
of such technique. By using a variation of a greedy set cover
algorithm, when adding constraints to our encoding, we reuse
parts of the already encoded PB-instance in order to decrease
the size (the number of variables and clauses) of the resulting SAT
instance. The experimental evaluation shows that the proposed
method increases the number of solved instances.

Index Terms—CNF encoding, Pseudo-Boolean constraints,
Comparator networks, SAT-solvers, Set cover

I. INTRODUCTION

Boolean satisfiability (SAT) problem has been receiving a
continuous interest in the field of computer science. Many hard
decision problems can be reduced to SAT and be efficiently
solved by recently-developed SAT-solvers. Some of those
problems are formulated with the help of different high-level
constraints, which should be either encoded into CNF formulas
or solved inside a SAT-solver by a specialized extension. One
type of such constraint is a Pseudo-Boolean constraint.

A Pseudo-Boolean constraint (a PB-constraint, in short) is
a linear inequality with integer coefficients, where variables
are over Boolean domain. More formally, PB-constraints are
of the form a1x1 + a2x2 + · · ·+ anxn # k, where n, k ∈ N,
{x1, . . . , xn} is a set of propositional literals (that is, variables
or their negations), {a1, . . . , an} is a set of integer coefficients,
and # ∈ {<,≤,=,≥, >}. PB-constraints are more expressive
and more compact than clauses to represent some Boolean
formulas, especially for optimization problems. PB-constraints
are used in many real-life applications, for example, in logic
synthesis, verification and cumulative scheduling.

One of the most successful techniques used to solve PB-
problems is via translation to SAT, and more specifically, via
encodings based on comparator networks. This method, first
introduced by Eén and Sörensson [1], has been improved lately
by Karpiński and Piotrów [2], [3] and implemented in the
solver called UWRMAXSAT [4], which took the first place
in Weighted Complete Track of the MaxSAT Evaluation 2020
competition. It appears that the same core-guided MaxSAT
solving technique can be applied to PB-problems and it is
used as default in the solver.

In this paper we further develop the UWrMaxSat solver
by introducing a more efficient encoding of PB-constraints.
We show that similarities in the structure of consecutive
comparator networks introduced by the algorithm can be
exploited, in order to reduce the size of the resulting CNF
formula.

A. Related Work

One way to solve a PB-constraint is to transform it to a
SAT instance (via Binary Decision Diagrams (BDDs), adders
or sorting networks [1]) and process it using – increasingly
improving – state-of-the-art SAT-solvers. Recent research have
favored the approach that uses BDDs, which is evidenced by
several new constructions and optimizations [5]. The main
advantage of BDD-based encodings is that the resulting size
of the formula is not dependent on the size of the coefficients
of a PB-constraint. Karpiński and Piotrów [2], [3] showed
that encodings based on comparator networks can still be
very competitive, and later incorporated their encodings in an
incremental algorithm for solving SAT instances with Pseudo-
Boolean goal functions.

Another approach to solving Pseudo-Boolean instances is
via method called cutting planes, originally used in solving
integer programs, which is done by iteratively refining a fea-
sible set or objective function by means of linear inequalities,
called cuts. It has been observed that cutting plane inference
is stronger than resolution, therefore it is being used as
viable alternative to clause-driven approaches. PB-solvers like
SAT4J, or more recent ROUNDINGSAT [6], implement this
technique. Lately, Devriendt et al. extended ROUNDINGSAT
[7] with core-guided search, and reported that the cutting
planes method allows the solver to derive stronger, non-clausal
cores, which leads to better updates of the solution bounds,
meaning the optimal solution can be found faster.

PB-constraints are gaining an increasing interest in the
MaxSAT community, as one way to solve a MaxSAT in-
stance is to encode the maximization objective as the PB-
constraint, and then translate it – as mentioned above – to
an equisatisfiable SAT instance. We then iteratively enforce
the current optimization result to be larger than the last
one, until the optimum is found. Alternatively, a PB-problem
can be translated into a MaxSAT-problem and solved by
MaxSAT specific algorithms. Several successful ideas have



emerged using this scheme to solve MaxSAT instances. For
example, QMAXSAT implements encodings based on totalizer
networks: the original totalizer sorting network, generalized
totalizer networks, mixed radix weighted totalizer, and modulo
totalizer. Paxian et al. modified the Polynomial Watchdog
encoding for solving PB-constraints by replacing the static
watchdog with a dynamic one allowing to adjust the opti-
mization goal, and showed how to apply it to solve MaxSAT
instances.

B. Our Contribution

In MINISAT+ [1], the authors implement a scheme to
decompose the PB-constraint into a number of interconnected
sorting networks, where each sorter represents an adder of
digits in a mixed radix base. The solver UWRMAXSAT
[4] implements a modified version of this algorithm, where
(among other improvements) 4-Way Merge Selection Network
[3] is used as the underlying comparator network.

In their paper, Abío et al. [8] note that their future work
would be: “to develop encoding techniques for cardinality
constraints that do not process constraints one-at-a-time but
simultaneously, in order to exploit their similarities”, and that
they: “foresee that the flexibility of the approach presented
here [...] will open the door to sharing the internal networks
among the cardinality constraints present in a SAT problem”.
Up to our knowledge, the only paper that explores the possibil-
ity of reusing parts of cardinality constraint encodings is [9].
It presents an algorithm, where, in the process of core-guided
MaxSAT solving, a set of cardinality constraints is encoded
more efficiently by finding common parts among totalizers in
a greedy fashion. The fact that no further mention or research
paper has appeared on this topic creates an opportunity for
improvement in the field of encoding constraints. To this
end we have modified the UWRMAXSAT solver [4] in the
following way. When the new network is introduced (to be
encoded) in the interconnected sorting network construction,
we make use of a variation of the known greedy set cover
algorithm [10] to try to maximize the size of the overlap
between input sequences of the previous networks and the
new one. We aggregate the overlapping input sub-sequences
from the previous networks and the remaining non-overlapping
inputs from the new network, then, those sequences are sorted
by length and used as an input to the modified version of
the 4-Way Merge Selection Network, which utilises a novel
construction called a Multi-way Merging Network.

We experimentally compare our new solver with state-of-
the-art general constraints solver NAPS [5] and a recently
developed PB-solver ROUNDINGSAT (the core-guided version
of Devriendt et al. [7]), in order to prove that our techniques
are good in practice. The set of benchmarks we use come from
the Pseudo-Boolean 2016 competition.

C. Structure of the Paper

In Section II we briefly describe our comparator network
algorithm with a novel merging procedure, then we explain
the Mixed Radix Base technique used in UWRMAXSAT and

we show how it is applied to encode a PB-constraint by
constructing a series of comparator networks. In Section III
we show how to leverage the similarities between consecutive
comparator networks introduced to the solver, in order to build
an efficient PB-solving algorithm on top of UWRMAXSAT.
We present the results of our experiments in Section IV, and
we give concluding remarks in Section V.

II. PRELIMINARIES

In this section we describe two key components for encod-
ing a series of PB-constraints using our method: a selection
network, and a mixed radix base technique. We start with basic
definitions.

Definition 1 (Boolean sequences): A Boolean sequence (or
simply – a sequence) of length n, say x̄ = 〈x1, . . . , xn〉, is
an element of Xn, where X is a set of Boolean literals (i.e.,
variables or their negations). The length of x̄ is denoted by
|x̄|. The number of occurrences of a given literal l in x̄ is
denoted by |x̄|l.

Let S = {s̄1, s̄2, . . . , s̄m}, be a set of sequences of Boolean
literals, and let d̄ also be a sequence of Boolean literals. We
say that sequences from S are mutually disjoint in d̄, if and
only if for each literal l,

∑
1≤i≤m |s̄i|l ≤ |d̄|l. Furthermore,

we denote the length of S, to be len(S) =
∑

1≤i≤m |s̄i|.
We assume a global ordering of the literals of X , that is,

literals in each defined sequence are arranged according to this
ordering.

Definition 2 (binary sequences): A binary sequence of
length n, say x̄ = 〈x1, . . . , xn〉, is an element of {0, 1}n.
We say that a sequence x̄ ∈ {0, 1}n is sorted if xi ≥ xi+1,
1 ≤ i < n. A sequence x̄ ∈ {0, 1}n is top k sorted, for
k ≤ n, if 〈x1, . . . , xk〉 is sorted and xk ≥ xi, for each
i > k. The length of x̄ is denoted by |x̄|. Given two binary
sequences x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , ym〉 we define
concatenation as x̄ :: ȳ = 〈x1, . . . , xn, y1, . . . , ym〉.

Remark 1: The reason we use two separate definitions
for sequences is as follows. In Subsection II-B we show an
improved merging network from our previous work [3]. Thus,
for completeness, we briefly describe the original merger in
Subsection II-A. It is easier to present and reason about those
constructions in terms of oblivious sorting algorithms over
the domain of binary sequences. For this reason Definition
2 is introduced. In the actual PB-solving (MaxSAT-solving
etc.), inputs and outputs of constructions, which are later
transformed to CNF formulas, are sequences of literals, with
possible repetitions. Therefore, with the exceptions mentioned
above, the rest of the paper uses Definition 1 for sequences.

A. 4-Way Merge Selection Network

The main tool in our encoding algorithms is a comparator
network. Traditionally comparator networks are presented as
circuits that receive n inputs and permute them using com-
parators (2-sorters) connected by “wires”. Each comparator
has two inputs and two outputs. The “lower” output is the
minimum of inputs, and “upper” one is the maximum. Their
standard definitions and properties can be found, for example,



in [11]. The only difference is that we assume that the output
of any sorting operation or comparator is in a non-increasing
order.

The main building block of our encoding is a direct selection
network, which is a certain generalization of a comparator.
Encoding of the direct selection network of order (n, k) with
inputs 〈x1, . . . , xn〉 and outputs 〈y1, . . . , yk〉 is the set of
clauses {xi1 ∧ · · · ∧ xip ⇒ yp : 1 ≤ p ≤ k, 1 ≤ i1 <
· · · < ip ≤ n}. The direct n-sorter is a direct selector of order
(n, n).

Sorting/selection networks used to encode constraints are
usually constructed using a divide-and-conquer principle, sim-
ilar to the merge-sort algorithm. The key component of such
network is a merging network – a network that outputs sorted
binary sequence (or top k sorted sequence) given outputs
of recursive calls. In the following definition we assume
that comparators are functions and comparator networks are
composition of comparators. This makes the presentation clear.

Definition 3 (m-merger): A comparator network fnk is an
m-merger of order (n, k), if for each tuple T = 〈x̄1, . . . , x̄m〉,
where each x̄i is a top k sorted binary sequence and n =∑m

i=1 |x̄i|, fnk (T ) is top k sorted and is a permutation of x̄1 ::
· · · :: x̄m.

The formal description of the comparator network used in
UWRMAXSAT – called 4-Way Merge Selection Network –
and the proof of correctness can be found in [3].

B. Multi-way Merging Network

Each merging sub-network of the 4-Way Merge Selec-
tion Network receives input sequences of almost the same
length (except for possibly the last input sequence), which
is the consequence of splitting the input sequence into
subsequences of length 5. Thus, input sequences of each
"layer" of mergers are always sorted in a non-increasing
order by length (notice that Definition 3 does not have such
constraint). From [3], the number of variables/clauses used
in the encoding of network oe_4mergenn(x̄1, x̄2, x̄3, x̄4) is
O(
(
|x̄1|+ |x̄2|+ |x̄3|+ |x̄4|

)
log |x̄1|) (assuming k = n, for

simplicity). So merging arbitrary number of sorted sequences
of roughly the same size (for which total length is n) us-
ing 4-Way Mergers will result in an encoding consisting of
O(n log2 n) variables and clauses. In Section III we will see
a situation, were we would like to merge m > 1 sorted se-
quences of varying lengths. Therefore, using the same merging
strategy as in the 4-Way Merge Selection Network can be very
inefficient. For example, if one of the input sequences is of
length n/2 and the others are of length c (n/2c of them, where
c is a constant), then the longest sequence will participate
in about O(log n) merging steps, each of them consisting of
O(n log n) variables and clauses. On the other hand, if we
were to first merge all the small sequences, and then merge the
longest one in, then the longest sequence (in the best scenario)
would only need to participate once in the merging process.
Asymptotically, this does not change much, but in practice we
can save a lot of variables and clauses used if we process the
input sequences with this skip technique.

Algorithm 1 multiWayMerge
Input: A tuple 〈x̄1, . . . , x̄m〉, where each x̄i is a top k sorted

binary sequence, |x̄i| ≥ |x̄i+1| (for 1 ≤ i < m), and
n =

∑m
i=1 |x̄i|.

Output: The output is top k sorted and is a permutation of
the inputs.

1: T1 ← 〈x̄11, . . . , x̄m1 〉 = 〈x̄1, . . . , x̄m〉; l = 1
2: out← ∅
3: while |Tl| > 1 do
4: Jl ← {j ≤ |Tl| − 4 : min(|x̄jl |, k) >

∑4
c=1 |x̄

j+c
l |}

5: s← 0
6: if |Tl| > 4 & Jl 6= ∅ then s = max(Jl)

7: s′ ← m− ((m− s) mod 4)
. Do a merging pass with the 4-Way Merging

8: for j ← s+ 1 to s’ step 4 do
9: oe_4merge(x̄jl , x̄

j+1
l , x̄j+2

l , x̄j+3
l )

10: if s’ < m then oe_4merge(x̄s
′+1

l , . . . , x̄ml )

11: Take sequences of indexes ≤ s and top k elements
from each sequence of the output of (8–10) and rename
them to Tl = {x1l+1, . . . , x

m′

l+1}, in the same order.
12: Aggregate the non-top k elements and concatenate

them with out.
13: l← l + 1,m← m′

14: return x1l :: out

We propose a Multi-way Merging Network, where a certain
number of the longest input sequences (sorted by length in a
non-increasing order) are skipped, and the rest of the input
sequences are selected for merging in a given iteration, only
if the resulting sequences do not break the ordering (by
length). The pseudo-code for this procedure can be seen in
Algorithm 1.

Theorem 1: The output of Algorithm 1 is top k sorted.
Proof: See extended version of the paper [12].

C. Mixed Radix Base Technique

The authors of MINISAT+ devised a method to decompose
a PB-constraint into a number of interconnected sorting net-
works, where sorters play the role of adders on unary numbers
in a mixed radix representation. Here we present a slightly
optimized version proposed in NAPS [5], which is already
implemented in UWRMAXSAT.

In the classic base r radix system, positive integers are
represented as finite sequences of digits d = 〈d0, . . . , dm−1〉
where for each digit 0 ≤ di < r, and for the most significant
digit, dm−1 > 0. The integer value associated with d is
v = d0+d1r+d2r

2+ · · ·+dm−1rm−1. A mixed radix system
is a generalization where a base B is a sequence of positive
integers 〈r0, . . . , rm−1〉. The integer value associated with d is
v = d0w0+d1w1+d2w2+ · · ·+dmwm where w0 = 1 and for
i ≥ 0, wi+1 = wiri. For example, the number 〈2, 4, 10〉B in
base B = 〈3, 5〉 is interpreted as 2×1+4×3+10×15 = 164
(values of wi’s in boldface).
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Fig. 1. Decomposition of a PB-constraint into a series of interconnected
sorting networks.

The decomposition of a PB-constraint into sorting networks
is roughly as follows: first, find a “suitable” finite base B
for the given set of coefficients, for example, in MINISAT+
the base is chosen so that the sum of all the digits of the
coefficients written in that base is as small as possible. Then
for each element ri of B construct a sorting network where
the inputs of the i-th sorter will be those digits d (from the
coefficients) where di is non-zero, plus the potential carry
digits from the (i− 1)-th sorter.

We show a construction of a sorting network system using
an example. We present a step-by-step process of translating a
PB-constraint ψ = 2x1 +2x2 +2x3 +2x4 +5x5 +18x6 ≤ 22.
Let B = 〈2, 3, 3〉 be the considered mixed radix base. Weights
of the digit positions of B are w̄ = 〈1, 2, 6, 18〉. First, we nor-
malize the constraint by adding a constant 13 = 〈1, 0, 2, 0〉B
to both sides of ψ, resulting in ψ′ = 2x1 +2x2 +2x3 +2x4 +
5x5 + 18x6 + 13 < 36. Notice that 36 = 〈0, 0, 0, 2〉B, having
only one non-zero digit in base B (the reason for this step
will be revealed later).

Thus, the decomposition of the LHS of ψ′ is:

1·(1+x5)+2·(x1+x2+x3+x4+2x5)+6·(1+1)+18·(x6)

Now we construct a series of four sorting networks in order to
encode the sums at each digit position of w̄. Given values for
the variables, the sorted outputs from these networks represent
unary numbers d1,d2,d3,d4 such that the LHS of ψ′ takes the
value 1 · d1 + 2 · d2 + 6 · d3 + 18 · d4.

The final step is to encode the carry operation from each
digit position to the next. Observe that if a binary sequence
b = (b1, . . . , bn) is sorted then for any d and r, where 0 ≤
d ≤ n and 1 < r ≤ n, if b contains exactly d ones then
(br, b2r, b3r, . . . ) contains exactly

⌊
d
r

⌋
ones, that is, the carry

value for a digit r. To this end, each third output of the second
and third network is fed into the next network as carry input,
and the second output of the first network is fed to the second
network. The full construction is illustrated in Figure 1.

To enforce the constraint, we have to add clauses represent-
ing the relation < 36 (in base B). But since we choose the
constant 36 such that in base B it has only one non-zero digit,
enforcing the < 36 constraint is as easy as adding a singleton
clause ¬l182 . Notice that outputs of any other network which
are not used as carry digits, are irrelevant in enforcing the
constraint.

III. THE ALGORITHM

In this section we present our method to reuse comparator
networks while encoding a series of PB-constraints with mixed

x
5

1 186

x
5

x
6 l 1

18

l 2

18

1 1
1

x
1

x
2

x
4

x
5

1
x

3

M
E
R
G
E

0
0

0
0

1

0
0

0

1
1

0

Fig. 2. An example of a comparator network being reused in the encoding
of another PB-constraint.

radix base technique explained in the previous section. We start
with an example.

Example 1: Suppose we want to encode an instance of a PB-
problem consisting of (possibly among others) the following
two PB-constraints:

φ = x1 + x2 + x3 + x4 + x5 < 4,

ψ = 2x1 + 2x2 + 2x3 + 2x4 + 5x5 + 18x6 + 13 < 36

We choose the same base as before for ψ, i.e., B = 〈2, 3, 3〉,
but first we encode the constraint φ. Since φ is a cardinality
constraint, its base is empty, and the decomposition consists
of a single sorting network (the upper sorter in Figure 2).
The constraint ψ is the same as in the example from the
previous section, but when decomposing it to sorting networks
we notice, that the input sequence of the second network
(which is 〈x1, x2, x3, x4, x5, x5, c〉 where c is a carry digit; see
Figure 1) contains the entire input sequence of the network
of the encoding of φ. The fact that we have already sorted
the sequence 〈x1, x2, x3, x4, x5〉 can now be exploited in the
following way. We reduce the second sorting network of ψ to
contain only two inputs: x5 and c. We now have two sorted
output sequences for inputs 〈x1, x2, x3, x4, x5〉 and 〈x5, c〉.
Merging them to a single sorted sequence is equivalent to the
sorting of the entire input sequence 〈x1, x2, x3, x4, x5, x5, c〉,
but with fever variables and clauses used. To this end, we
take the outputs of the first network for the encoding of φ
and feed them to the merging network (in this case, a 4-Way
Merging Network; see dashed lines in Figure 2). We do the
same with the outputs of the sorting of 〈x5, c〉. The rest of the
construction is done as in the previous example.

There is another benefit of this technique, which can be
demonstrated in this example. Notice, that in order to enforce
the < 4 constraint of φ, we set the fourth output of its sorting
network to false (0, in Figure 2). We can also set all the
lower outputs to false as well, for better unit propagation.
Those values will be also fed to any merger which reuses
this network, as seen in Figure 2. In consequence, those zeros
can be used to further simplify mergers and any other sorter
down the line, as seen in the figure, which makes the entire
encoding smaller.

From the example we can see that a simple re-wiring of
the inputs/outputs of comparator networks has a potential to



Algorithm 2 greedyBooleanSequenceCover
Input: A set S = {s̄1, . . . , s̄n} (for n ∈ N), where each s̄i =
〈xi1, . . . , xiki

〉 (for 1 ≤ i ≤ n, and ki ∈ N) is a sequence of
Boolean literals; a sequence d̄ = 〈xd1, . . . , xdm〉 of Boolean
literals.

Output: A set S′ ⊂ S, where all sequences in S′ are mutually
disjoint in d̄.

1: S′ ← {}
2: repeat
3: let s̄ ∈ S be the longest subsequence of d̄
4: if s̄ = ∅ then return S′

5: S ← S \ {s̄}; S′ ← S′ ∪ {s̄}
6: d̄← d̄− s̄

reduce the size of the encoding of a series of PB-constraints.
In contrast to the example, in real-life instances, there might be
more than one sorter eligible for re-wiring, in fact, there might
be more than one way to choose a subset from the available
set of sorters to be reused in the currently constructed sorter.
This leads to the following optimization problem.
BOOLEANSEQUENCECOVER
Input: A set S = {s̄1, . . . , s̄n} (for n ∈ N), where each s̄i =
〈xi1, . . . , xiki

〉 (for 1 ≤ i ≤ n, and ki ∈ N) is a sequence
of Boolean literals. Let d̄ = 〈xd1, . . . , xdm〉 be a sequence of
Boolean literals.
Output: A set S′ ⊆ S, where all sequences in S′ are mutually
disjoint in d̄, and the value len(S′) is maximized.

In the BOOLEANSEQUENCECOVER problem, d̄ represents an
input sequence of the newly constructed sorter, and the set
S contains input sequences of sorters already present in the
encoding. The result, a set S′, is a set of sorters which inputs
cover the most inputs of the new sorter. Unfortunately, we do
not expect to find a polynomial-time algorithm for finding an
optimal solution to this problem.

Theorem 2: BOOLEANSEQUENCECOVER is NP-hard.
Proof: See extended version of the paper [12].

We settle on an approximate solution, as the consequence
of Theorem 2. To this end, we use a greedy algorithm for
solving the BOOLEANSEQUENCECOVER problem, presented
in Algorithm 2. It is a simple strategy, where we choose
a sequence which covers the most elements of d̄. Then we
remove this sequence from S and d̄, and the process is repeated
until reaching a fix point.

One can see the similarity to the known greedy set cover
algorithm [10] – both algorithms pick the set (sequence) that
covers the largest number of elements. The difference is that
here, we try to maximize the number of covered elements,
while in the set cover problem we minimize the number of
sets used in the cover. We note that – similar to the greedy set
cover – this strategy does not necessarily output an optimal
solution in our case.

Theorem 3: There exist S, S′, O and d, such that S′, O ⊆ S,
S′ is an output of Algorithm 2 on S and d, O is an optimal
solution to the BOOLEANSEQUENCECOVER problem given

inputs S and d, such that len(S′) =
√
len(O). Moreover,

for any S, S′, O and d, such that S′, O ⊆ S, S′ is an output
of Algorithm 2 on S and d, O is an optimal solution to the
BOOLEANSEQUENCECOVER problem given inputs S and d,
we have len(S′) ≥

√
len(O).

Proof: See extended version of the paper [12].
Even though the technique we use is simple and not optimal,

in the next section we show that it is still beneficial in practice.

IV. EXPERIMENTAL EVALUATION

We have implemented the discussed greedy-reuse tech-
nique in the PB and MaxSAT solver UWRMAXSAT (commit
8d6c451, compiled without SCIP and MaxPre libraries but
with bigint support1) and run two versions of it: UWR-R
with greedy-reuse switched on and UWR-N — without it.
A variable opt_reuse_sorters in the source code was
used to switch between these two versions. COMINISATPS
by Chanseok Oh [13] is our default SAT solver.

The set of instances we have selected as benchmarks is from
the most recent Pseudo-Boolean Competition 2016.2 We use
instances with linear, Pseudo-Boolean constraints that encode
optimization problems, that is, from OPT-SMALLINT-LIN
category (1600 instances).

As hardware, we used the machines with Intel(R) Core(TM)
i7-2600 CPU @ 3.40GHz and 16GB of memory run-
ning Ubuntu linux, version 16.04.3. The timeout limit was
set to 5000 seconds and the memory limit is 15 GB,
which are enforced with the following commands: ulimit
-Sv 15872000 and timeout -k 5 5000 <solver>
<parameters> <instance>.

UWR-R found the possibility to reuse some previously-
generated sorters in 130 instances and, in effect, it reduced
the number of variables in their encoding by 8.7% (from
416 659 544 of UWR-N to 380 573 352) and the number
of clauses by 7.7% (from 1 395 227 515 of UWR-N to
1 287 723 519) in total.

We have compared our solvers with two state-of-the-art
general purpose PB-constraint solvers.

The first solver is NAPS 1.02b (commit 5956838a, version
bignum) by Masahiko Sakai and Hidetomo Nabeshima [5]
which implements improved ROBDD structure for encoding
constraints in band form, as well as other optimizations.
As far as we know, it does not contain any core-guided
techniques. This solver was built on the top of MINISAT+,
similar to UWRMAXSAT. NAPS won two of the optimization
categories in the Pseudo-Boolean Competition 2016: OPT-
BIGINT-LIN and OPT-SMALLINT-LIN. We have launched
the main program of NAPS on each instance, with parameters
-a -s.

The second one is ROUNDINGSAT (abbreviated to RSAT)
with core-guided optimizations (commit b5de84db) by
J. Devriendt, S. Gocht, E. Demirović, J. Nordström and
P. J. Stuckey [7]. It extends cutting planes methods with core-
guided search techniques. The results of their experiments

1See https://github.com/marekpiotrow/UWrMaxSat
2See http://www.cril.univ-artois.fr/PB16/

https://github.com/marekpiotrow/UWrMaxSat
http://www.cril.univ-artois.fr/PB16/


Fig. 3. Cactus plot for OPT-SMALLINT-LIN division of PB16 suite

presented in the paper show that it is one of the best PB-solvers
nowadays. It was run with just one option -print-sol=1.

We have launched our solvers UWR-R and UWR-N on
each instance, with parameters -a -s -cs, where -cs
means that in experiments the solver used just one encoding
technique described in this paper: the Multi-way Merge Selec-
tion Networks described in Section II, combined with a direct
encoding of small sub-networks. Thus, none of the constraints
was encoded with BDDs or Adders.

solver Solved Opt UnSat cpu (h) scpu (s) avg(scpu)
UWR-R 992 906 86 845.6 127 033 128.06
UWR-N 988 901 87 858.0 135 568 137.21

RSAT 977 877 100 886.0 97 806 100.11
NAPS 909 822 87 976.1 115 977 127.59

TABLE I
RESULTS SUMMARY FOR THE OPT-SMALLINT-LIN CATEGORY

In Table I, we present the numbers of solved instances by
each solver. In the Solved column we show the total number of
solved instances, which is the sum of the number of instances
where the optimum was found (the Opt column) and the
number of unsatisfiable instances found (the UnSat column).
In the cpu column we show the total solving time (in hours) of
the solver over all instances, and scpu is the total solving time
over solved instances only. The average has been computed as
follows: avg(scpu) = scpu/solved.

solver UWR-R UWR-N RSAT NAPS
UWR-R - 8 81 92
UWR-N 4 - 80 88

RSAT 66 69 - 120
NAPS 9 9 52 -

TABLE II
AT THE INTERSECTION OF X ROW AND Y COLUMN: THE NUMBER OF

INSTANCES SOLVED BY X BUT NOT SOLVED BY Y.

Results in Table I and Figure 3 clearly show that the
greedy-reuse technique in our sorter-base encoding of UWR-
R increased the number of solved instances and reduced the
average running time with respect to UWR-N. Therefore, it
is chosen as default in the current version of UWRMAXSAT.
On the other hand, ROUNDINGSAT was the best in deciding
on UNSAT instances and had the best average solving time

with respect to solved instances. Since each of UWRMAXSAT
and ROUNDINGSAT implements different strategies of solving
PB-problems, it is worth noting that there are quite a lot of
instances solved by one solver, but not by the other, and vice
versa. See Table II for details.

V. CONCLUSIONS

We define the optimization problem BOOLEANSEQUENCE-
COVER and show that, despite its NP-hardness, a greedy
strategy can be effectively implemented and used to get
smaller sorter-base encoding of industrial instances of NP-
hard problems. The application of an approximation algorithm
in PB-constraint encoding techniques gives new opportunities
for many interesting research directions, for example, finding
negative results (i.e., inapproximability results) could be inter-
esting.

Finally, the results of experiments suggest that UWR-
MAXSAT should be probably extended with some cutting
planes methods.
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