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Abstract—Recent advances in machine learning and deep
learning have led to the widespread use of Conversational
AI in many practical applications. However, it is still very
challenging to leverage auxiliary information that can provide
conversational context or personalized tuning to improve the
quality of conversations. For example, there has only been limited
research on using an individual’s persona information to improve
conversation quality, and even state-of-the-art conversational
AI techniques are unable to effectively leverage signals from
heterogeneous sources of auxiliary data, such as multi-modal
interaction data, demographics, SDOH data, etc. In this paper,
we present a novel Persona-Coded Poly-Encoder method that
leverages persona information in a multi-stream encoding scheme
to improve the quality of response generation for conversations.
To show the efficacy of the proposed method, we evaluate our
method on two different persona-based conversational datasets,
and compared against two state-of-the-art methods. Our experi-
mental results and analysis demonstrate that our method can
improve conversation quality over the baseline method Poly-
Encoder by 3.32% and 2.94% in terms of BLEU score and HR@1,
respectively. More significantly, our method offers a path to better
utilization of multi-modal data in conversational tasks. Lastly, our
study outlines several challenges and future research directions
for advancing personalized conversational AI technology.

Index Terms—Conversational AI, Dialogue Systems, Persona,
Personalization, Multi-Modal Data

I. INTRODUCTION

Practical uses of conversational agents have increased dra-
matically in recent years by leveraging advances in natural
language processing, machine learning and deep learning tech-
niques. Today, these agents play important roles in automated
customer service, personal assistants, healthcare, and more.
Many applications require an agent to perform at a level that
is comparable to or surpasses human performance in terms
of understanding the current state, personalizing responses,
and other standards. In certain fields, such as healthcare, these
requirements are particularly critical, as conversational topics
can often be much more personal and sensitive.

Traditional conversational AI methods are often hard to
scale due to strict requirements around data and supporting
technologies, such as a well-constructed knowledge graph or
database, and excessive API calls for external dependencies or
real-time information. They also often require domain exper-
tise and human intervention for evaluation. These requirements
have largely limited the ability of traditional methods to
expand to many potentially valuable, but complex, use cases.

Recent advances in deep learning have opened up tremen-
dous opportunities to expand the capabilities and scalability
of conversational AI. Sequence-to-sequence (Seq2Seq) mod-
els [1] and transformers [2]–[4] are widely used to capture the
basic characteristics of a conversation, such as language flow
and grammar. Beyond that, a significant amount of research
effort around deep conversational AI has attempted to leverage
auxiliary resources that could improve and personalize con-
versations. These auxiliary resources typically supplement the
conversational context with information beyond the language
itself, such as personas of the speakers [5], [6], the envi-
ronments in which the speakers are interacting [7], external
knowledge-bases [8], etc. These approaches also inspire and
facilitate many applications in the industry. For example, one
of the target applications that we are developing is a persona-
driven conversational agent to improve patients’ experience
and drive them towards better health outcomes. In addition to
presenting a generic machine learning framework for combin-
ing multi-modal data, we also present several open challenges
in building persona-guided conversational agents.

In this paper: we (i) present a novel multi-stream Persona-
Coded Poly-Encoder (PCPE) network, (ii) provide the design
and evaluation of various post-fusion strategies for auxil-
iary data, and (iii) experimentally evaluate the superiority
of the proposed PCPE network as compared to the state-of-
the-art pre-fusion-based, single-stream networks. Specifically,
the PCPE method outperforms the state-of-the-art ColBERT
method in response retrieval by 3.32% (BLEU) and 2.94%
(HR@1), respectively. Moreover, it presents a flexible frame-
work that can better utilize multi-modal heterogeneous data
via separate encoding streams. This paper is organized as
follows. Section II reviews the current state-of-the-art methods
around persona-based conversational AI and their limitations.
In Section III, we define the problem and give an overview of
single-stream pre-fusion and multi-stream post-fusion frame-
works. Section IV presents our method PCPE that effectively
utilizes persona data via a multi-stream post-fusion framework,
followed by an experimental comparison against two state-
of-the-art methods in Section V and VI. We also highlight
the advantages of PCPE and observe challenges with existing
datasets and evaluation of personalization in Section VII,
followed by conclusions in Section VIII.
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II. RELATED WORK

A. Neural Conversational AI

Neural approaches, particularly deep learning approaches,
have attracted a lot of interest in conversational AI applications
due to their wide success in many fields of natural language
processing. Depending on how the responses are generated,
there are two main categories of neural conversational meth-
ods: generation-based and retrieval-based methods.

Generation-based methods [5], [9], [10] typically sample a
novel sequence of words with a decoder from a probabilistic
distribution of all possible word tokens conditioned on the
inputs. These novel responses are not limited by the existing
data and can be used in certain situations where creativity or
novelty is desired. Zhang et al. [9] developed a generative
adversarial network to promote response diversity. Zhang et
al. trained DialoGPT [10] that encodes long-term dialogue
history in the context with GPT-2 [3]. In practice, generative
methods often suffer from unstable quality of the responses,
such as poor language flow, broken logic, and ignorance of
facts. Large language models (LLMs) like ChatGPT [11] have
achieved great success in various chat scenarios. However,
the exponentially growing sizes and hardware requirements
of such LLMs made training very expensive.

Retrieval-based (or ranking-based) methods [6], [12], [13]
select a response from an existing set of prescribed candidates,
typically by learning the similarities between the context and
candidates through deep encoders and then scoring the candi-
dates. Humeau et al. [13] proposed the PolyEncoder that is
able to leverage high-level interactions between the input query
and candidates, and maintain computational efficiency through
pre-calculation and caching. Although incapable of providing
novel responses, retrieval models ensure the quality of the
responses because the candidates are careful crafted. They
can also be easily extended to other applications by simply
replacing the candidate pool without changing the model,
especially when certain responsive strategies are desired.

Many document retrieval methods [14], [15] can also be
easily engineered as retrieval-based solutions to dialogue sys-
tems. Khattab et al. [15] proposed the ColBERT method
for effective passage retrieval by using contextualized late
interaction that leverages token-level similarity between the
query and the candidate document. However, these methods do
not always fit conversation tasks due to the natural differences
between dialogues and long text documents (e.g., the lengths
of the utterances/documents, the location of the key ideas, the
unique contexts for different tasks, etc).

B. Persona-based Conversational AI

In many real-world applications, personalization is desired
or required for the dialogue system. For example, precision
nudging [16] applications provide communications that drive
patients to adopt certain healthy behaviors, which require
personalization to be effective across a diverse population.
Efforts have been made towards leveraging personas into
various applications including chit chat [5], [6] and empathetic

chat [17]. Personas have been shown to help gain user con-
fidence and significantly improve the quality of conversations
in recent research [18], [19]. Liu et al. [20] experimentally
showed that personas are critical to improve the dialogue
performance with two benchmark methods on the ConvAI2
Dataset [21]. In this paper, we follow the definition of persona
in [20] as any type or format of data that contains personal
information about a conversational partner that could help the
model to understand the conversational context and provide
better responses to the recipient.

One goal of personalized conversation is to address the
speaker-consistency issue when a model responds differently
to the same query at two inferences because both query-
response pairs were seen during training, which confuses the
model. Li et al. [5] and Gu et al. [22] leverage trainable
speaker identity embeddings in existing Seq2Seq and BERT
architectures, respectively, to tackle this issue. However, these
methods fail to account for new speakers who never appeared
in the data because they rely only on the speaker ID during
training. Moreover, they are still unable to effectively provide
personalized responses, partially due to the lack of actual
persona data in existing benchmark dialogue datasets, such
as Reddit [23] or Twitter [24] dataset.

Zhang et al. [6] created the Persona-Chat dataset and made
it possible to leverage actual persona information in dialogue
systems. They encoded the textual persona entries of the
speakers with profile memory networks into the dialogue
context for generation and retrieval tasks. This dataset was
further extended and used in the NeurIPS ConvAI2 chal-
lenge [21]. The winning method, TransferTransfo [12], and
the later PolyEncoder method [13] concatenate the persona
and query before modeling in pre-fusion-based ways. These
methods presented effective and innovative ways to explicitly
encode the speaker profiles with long-term dialogue history to
supplement the conversation context. However, these datasets
and methods did not address how to handle auxiliary data that
might come in different formats or modalities.

Wang et al. [25] developed the PersuasionForGood dataset
that consists of dialogues with persona data in the form
of key-value (KV) attribute-based demographic features and
psychological survey assessment scores. These KV attributes
contain both categorical and numerical values. Wang et al.
focused on a text classification problem to identify the persua-
sion strategy used in the conversations. Although they didn’t
propose solutions for conversation tasks, KV attributes are
a common form of persona data and present challenges to
existing pre-fusion methods since these personas cannot be
directly concatenated with the textual inputs.

III. PROBLEM DEFINITION

In this paper, we consider a retrieval-based responses se-
lection problem formulated as follows: given an input triplet
x = (q, P,H) as the multi-input conversation context, where
q is the text input query or utterance, P = {p1, · · · , pj}
is the set of persona entries (text- or attribute-based) and
H = [h1, · · · , hk] is the list of dialogue histories, we want
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Fig. 1: Network Architecture of PCPE

to train a model f : (x, ci) → R to assign a score si to a
candidate ci from a set of candidate responses C, then select a
best response c∗ = argmaxci∈Cf(x, ci). Here, we consider a
scoring system that learns an embedder g(x), which represents
the conversation context into a d-dimension latent space such
that h = g(x) ∈ Rd, and calculates the similarity with the
candidate embedding ci ∈ Rd. Examples of the dataset will
be provided in Section V-A.

Pre-fusion-based methods [13], [26] typically concate-
nate the multi-inputs before encoding (e.g., h = g([P ;H; q])
in [13]) and implicitly assume an ordering among the in-
puts, which is not always true (e.g., the persona and query
are independent). Moreover, these methods only work with
homogeneous data (e.g., all inputs are textual) and would
fail when inputs are heterogeneous, in terms of both the
modality and the information they carry. Muti-stream em-
bedding networks (MSEN) [27] encodes different inputs
in separate streams before fusion. Under MSEN, a model is
able to embed multi-modal heterogeneous inputs with custom-
engineered embedders, each of which is specialized to learn
the signals particular to the corresponding input. The MSEN
is also easily extendable to new inputs without losing the
learning from existing streams. In this paper, we focus on
MSEN approaches that could better embed context for a
persona-based dialogue system, therefore they can also be
easily extended to generation tasks.

IV. METHOD

Our method PCPE, shown in Fig. 1, embeds the conver-
sation context under the MSEN scheme by leveraging two
separate processing streams: the persona-encoded context em-
bedding stream (SPC) and the poly-encoded context embedding
stream (SPE). Three transformer encoders, T1, T2 and T3, are
created to embed persona, query and candidates, respectively,
that is, pj = T1(persona), q = T2(query), ci = R(T3(cand)),
where R(·) is a word-to-sentence reduction (e.g., mean),
pj ∈ Rlp×d, q ∈ Rlq×d, ci ∈ Rd, lp is the length of the persona
entry, lq is the length of the query, and d is the embedding size.
Note that one could share the encoders, i.e., T1 = T2 = T3.

The query embedding q and the persona embeddings pj’s
interact with the candidate embeddings in a similar way as
PolyEncoder [13] in the SPE and SPC streams, respectively.

The output of the two streams are later fused together as
the global context embedding, which is used to generate the
similarity scores with the candidates for ranking. Note that the
baseline PolyEncoder method uses only the output of the
single SPE stream as the global context embedding.

A. Persona-Coded Context Stream

The persona-coded context stream (SPC) learns an embed-
ding of the persona entries and the query jointly.

1) Persona Embeddings: The transformer T1 outputs low-
level embeddings of a persona entry pj ∈ Rlp×d, which is first
aggregated into embedding pj ∈ Rd. For text-based personas,
the aggregation means word-to-sentence reduction for each
person entry (i.e., j=10 for two speakers), and for attribute-
based personas, it is for all KV pairs of each speaker (i.e.,
j=2). Instead of simply using the mean vector of all low-level
embeddings, here we consider a self-attention layer (S-Attn)
for the aggregation, inspired by [2]. The S-Attn layer learns
self-attention weights of the low-level elements and aggregates
according to the weights, i.e.,

pj =
∑
i

αipj,i, (1)

where pj,i ∈ Rd is the embedding of the i-th element (e.g., i-th
word or KV) in a persona entry pj , weights vector α ∈ Rlp is
learned as (α1, · · · , αlp) = softmax(qj,1 ·wp, · · · , qj,lq ·wp),
and wp ∈ Rd×1 is a trainable projection matrix.

2) Query Embeddings: We use encoder T2 to generate
word-level embeddings of the query. Here we do not reduce
the query embeddings to sentence level.

3) Persona-Coded Query Embeddings: For each persona
embedding pj , we generate a persona-coded context embed-
ding qPC1 , · · · , qPCj by attending q over each of the pj’s as

qPCj =

lq∑
i=1

wPC
i qi (2)

where qPCj ∈ Rd, the weights wPC
i ’s are the interaction between

q and pj as (wPC
1 , · · · , wPC

lq
) = softmax(pj ·q1, · · · , pj ·qlq ).



4) Candidate-Aware Persona Context Embeddings: Then
ci is attended over the j persona-coded context embeddings.
This layer further explores the relevance between the candidate
and the context, particularly the persona entries. The output
candidate-aware context embedding with persona, qPC, is used
as the output of the SPC stream, and is calculated as

qPC =

m∑
i

wiq
PC
i , (3)

where qPC ∈ Rd and the attention weights are calculated as
(w1, · · · , wj) = softmax(ci · qPC1 , · · · , ci · qPCj ).

B. Poly-Encoded Context Stream

The poly-encoded context embedding stream (SPE) inherits
the architecture from the baseline PolyEncoder. It embeds
context in a similar way to SPC and uses the same query
embeddings from T2 as in SPC. The poly-encoded query
embeddings qPE1 , · · · , qPEm and the output qPE of the stream are
generated similarly as Equation 2 and 3. The difference is that
in SPE, the query embedding q is attended over m trainable
codes K = [k1; · · · ; km] ∈ Rm×d, instead of the j persona
entry embeddings in SPC. Each of qPEi ’s corresponds to one of
the m codes. The rest of the SPE stream is similar to qPC.

The m coded-context embeddings qPEm can be viewed as
m different points of views (POVs) to understand the input
query, which are controlled by the m codes. As the model is
trained, the m codes will also adjust their way of viewing the
query. Whereas in SPC stream, it uses j POVs which are more
specific than the m trainable directions as they explicitly seek
the high-level relevance between the persona entries and the
query. Note that, PCPE allows m = 0 (the SPE stream is not
effective), while the baseline PolyEncoder requires m > 0.

C. Post-Fusion

We fuse the outputs of the SPE and SPC (qPE and qPC) to
create a global context embedding qctxt w.r.t the candidate.
We consider two options based on attention mechanisms: self-
attention (S-Attn) and multi-level attention (M-Attn), as in
Fig. 1a. S-Attn works the same as Equation 1. M-Attn
attends again over the candidate embedding ci similar to
Equation 3. That is, qctxt = w1 · qPC + w2 · qPE, where

(w1, w2) =

{
softmax(wf · qPC, wf · qPE), with “S-Attn”,
softmax(ci · qPC, ci · qPE), with “M-Attn”,

wf is a fully trainable weight matrix to the S-Attn layer and
ci is the candidate embedding to the M-Attn layer.

Instead of fusing the high-level final outputs of SPE and
SPC, we consider a third fusion (denoted as Col-Fuse, as
in Fig. 1b), inspired by ColBERT’s low-level contextualized
late interaction [15]. With Col-Fuse, we concatenate the
intermediate outputs from two streams into q̃ = [qPC1...j ; q

PE
1...m],

and calculate an interaction score matrix Scol = q̃ · ci(Scol ∈
R(j+m)×lc) between the low-level signals in q̃ and ci (word
embeddings prior to aggregation). Then we follow standard
ColBERT score calculation, that is, take the maximum score

in Scol along the dimension corresponding to words in ci, then
sum along the remaining dimension of (j+m) scores. The final
sum represents the similarity score between the context and
candidate ci and will be used later directly for ranking.

D. Ranking

For attention-based post-fusion methods (S-Attn and
M-Attn), the ranking score si ∈ R of the candidate ci
is calculated as the dot product with the post-fused global
context embedding qctxt, i.e., si = σ(qctxt · ci), where
σ(·) is the Sigmoid function. For the ColBERT-style post-
fusion (Col-Fuse), the ColBERT-score is used directly as the
ranking score si. A response is sampled based on scores si’s
of all candidates in C. The PCPE model is trained to minimize
cross-entropy loss over the scores/logits of the candidates.

V. EXPERIMENTS

A. Dataset

We compare our methods with the baseline methods (intro-
duced in Section V-B) on two benchmark persona-based con-
versational datasets: PersuasionForGood (PFG) dataset [25]
and the NeurIPS ConvAI2 dataset [21]. Both datasets contain
conversations consisting of the persona entries of the two
speakers, a sequence of chat history and a query.

PFG: The PFG dataset consists of 1017 conversations, along
with persona attributes of demographic features and psycho-
logical assessment scores from user surveys. We randomly
split 80%/20% (813/204 conversations) for training/validation
purposes. The two speakers are randomly paired up and
assigned “persuader” and “persuadee” roles, respectively. The
persuader is asked to persuade the persuadee to donate to a
charity through psychological strategies. The dialogue reflects
the assigned personas of the speakers and the persuasion
strategies used by the persuader. For example, a persuadee
with persona “age: 35, rational: 4, ...” (pi) asked “... where
does that money go towards?” (q), the persuader with persona
“age: 30, rational: 5, ...” (pj) responded “The money goes
towards providing meals and clean water.” (c∗).

ConvAI2: The ConvAI2 dataset consists of 19,893 dia-
logues, among which 17,878 are for training and 1,000 are
for validation. Each speaker is assigned 4∼5 persona entries
from a total of 1,155 unique person entries. Each persona entry
is a short sentence description of the speaker. Then they are
randomly paired and asked to get to know each other through
dialogue. The dialogue reflects the assigned personas of the
speakers. For example, if a speaker is assigned a persona entry
“I am a fan of Michael Jordan” (pi), when he was asked “What
do you do at leisure time?” (q), he might respond “I watch a
lot of basketball games.” (c∗).

B. Baseline Methods

We consider two strong retrieval-based methods with pre-
fusion approaches as our baselines: PolyEncoder [13] and
ColBERT [15]. Neither of the methods is designed to specifi-
cally handle persona data. The persona data are pre-fused with
the queries as longer text inputs to these two methods. For the



ConvAI2 dataset, the text descriptions of persona entries can
be directly pre-fused with the query. For PFG, we convert the
KVs as a long string delimited by colons and commas (e.g.,
“k1 : v1 , k2 : v2 , ...”) then pre-fuse it with the query.

C. Experimental Setup
Our experiments are conducted using ParlAI frame-

work (https://parl.ai) with existing PolyEncoder method
and ConvAI2 task1 implementation. We implemented the
ColBERT method, our PCPE method and PFG task sepa-
rately2. We use a separate GPT-2 encoder for personas (T1) and
share another GPT-2 encoder for queries/candidates (T2=T3).
For ConvAI2, the inputs to T1 are trainable word embeddings
and segment embeddings in the persona entries. For PFG, the
inputs to T1 are the trainable key embeddings, value embed-
dings, and speaker embeddings. All encoders are initialized
with pre-trained poly-encoder weights with the Reddit dataset,
except T1 is randomly initialized for the PFG task.

All experiments are trained on NVIDIA Titan and 2080-Ti
RTX GPUs with 24GB memory for 10 epochs (ConvAI2) and
100 epochs (PFG). The models are evaluated on a validation
set every 15 minutes. For training, we use all the true responses
from the batch as the shared candidate set for better efficiency.
For validation, each input query is assigned a separate set of 20
candidates, among which there is only one true response. We
follow all setups in [13] except a smaller training batch size of
32 to avoid running out of memory. However, the batch size is
fixed for all experiments for fair comparison. We tune different
hidden embedding sizes dh for ColBERT, different m values
for PolyEncoder, and different m values and multi-stream
post-fusion strategies for PCPE.

D. Evaluation Metrics
We evaluate our method with common ranking/retrieval

metrics that are widely used in information retrieval appli-
cations. We follow the work of Liu et al. [20] and measure
the hit rate at top-K (HR@k), mean reciprocal rank (MRR),
F-1 score (F1), and BiLingual Evaluation Understudy score
(BLEU4 based on 4-gram). All four metrics range between 0
and 1, and the larger the values are, the better the model is able
to prioritize the true response among all candidate responses.
Note that HR@1 is equivalent to the prediction accuracy.

VI. EXPERIMENTAL RESULTS

Our experimental results showed that PCPE is able to
effectively utilize persona information in response selection.
On the PFG task with multi-modal persona data, multi-stream-
based PCPE is able to significantly improve the conversation
quality over the state-of-the-art single-stream pre-fusion-based
methods. On the ConvAI2 task with text-based persona data,
PCPE is able to maintain similar performance as both of the
baseline methods. Table I compares the performance of PCPE
with the baseline PolyEncoder and ColBERT models. We
will discuss in Section VI-D other sub-optimal setups we
eliminated from the report.

1We use “task” and “dataset” interchangeably following ParlAI terminology
2https://github.com/jliu-v/persona-chat

A. Overall Performance

On the PFG task, the best performance of PCPE is able to
surpass that of the best baseline (ColBERT) by 2.94% (0.666
vs. 0.647) in terms of accuracy/HR@1, 2.61% (0.707 vs. 0.689)
in terms of F1, 0.91% (0.777 vs. 0.770) in terms of MRR, and
3.32% (0.623 vs. 0.603) in terms of BLEU4. With different
attention-based post-fusion aggregation methods, PCPE is able
to outperform PolyEncoder in most cases. PCPE achieved
HR@1 = 0.666 when using S-Attn/M-Attn, while the same
best metric for the baselines is 0.647. These results validate
our primary hypothesis that embeddings over simple concate-
nated multi-modal data inputs do not fully capture the rich
information and relationships among the attributes. Whereas
our PCPE method, by employing attribute-specific streams to
capture specialized information, and post-fusion to learn multi-
modal relationships overcomes the limitations of existing pre-
concatenated single-stream embeddings.

On the ConvAI2 task, our model is able to maintain
similar performance with the best baseline. The difference
between the PCPE and the best ColBERT model is only
0.35% (HR@1 0.852 vs. 0.855), 0.23% (F1 0.869 vs. 0.871),
0.33% (MRR 0.909 vs. 0.912), and 0.35% (BLEU4 0.852 vs.
0.855). We anticipated this result since the persona data in
the ConvAI2 task is still text-based, and PCPE is expected to
work better with multi-modal inputs. We also inspected the
query-response pairs where the best PCPE made mistakes and
the best baseline ColBERT was correct. Many of the PCPE’s
“mistakes” surprisingly made sense, such as in greeting types
of conversations where “I am good” and “I am doing alright”
are both acceptable when the speaking partner asks “how are
you?”. In these cases, PCPE made good selections although
another candidate was labeled true by the dataset. Therefore,
we anticipate that the actual performance of PCPE should
be higher than ColBERT after this adjustment. We will
also discuss this challenge in Section VII-C.

B. Effectiveness of m

With the PCPE framework, we seek effective ways to
encode persona information. Recall in Section IV-B, m and
j can be viewed as different POVs to understand the query.
j is the POVs directed by the persona, which is fixed by the
input data. In this part, we study how m affects the way that
the PCPE model encodes the persona entries.

On the PFG task, PCPE achieved its best performance
when m = 0 and only the SPC stream is effective. The POVs
are fully dictated by the personas (ref. Section IV-C). This
indicates that replacing the m randomly trainable codes from
PolyEncoder with actual persona information is helpful for
the model to learn better. In addition, this empirically proved
our claim in Section IV-B that the persona-coded directions are
more specific than the m random directions for the model to
understand the relevance between the context and response and
guide the response selection. When m ≥ 0 the performance
of all methods decreases in general when m increases, but
the PCPE is still able to outperform the baselines in most
cases. This is mainly due to the fact that the PFG dataset is

https://parl.ai
https://github.com/jliu-v/persona-chat


TABLE I: Performance Comparison

Method Post-Fusion PFG Dataset ConvAI2 Dataset
HR@1 HR@5 F1 MRR BLEU4 HR@1 HR@5 F1 MRR BLEU4

PCPE

S-Attn

m = 0 0.849 0.982 0.866 0.907 0.849 0.666 0.932 0.707 0.777 0.623
m = 5 0.852 0.983 0.869 0.909 0.852 0.652 0.931 0.694 0.771 0.605

m = 16 0.851 0.983 0.868 0.909 0.851 0.646 0.931 0.690 0.770 0.603
m = 64 0.851 0.984 0.868 0.909 0.851 0.648 0.926 0.692 0.768 0.606

M-Attn

m = 0 0.848 0.981 0.866 0.907 0.848 0.666 0.941 0.706 0.782 0.621
m = 5 0.845 0.982 0.862 0.905 0.844 0.655 0.930 0.696 0.774 0.612

m = 16 0.844 0.982 0.862 0.904 0.844 0.627 0.914 0.673 0.753 0.586
m = 64 0.851 0.981 0.867 0.908 0.851 0.653 0.926 0.695 0.773 0.610

Col-Fuse

m = 0 0.852 0.982 0.869 0.910 0.852 0.628 0.916 0.671 0.751 0.585
m = 5 0.847 0.982 0.864 0.906 0.847 0.621 0.921 0.666 0.750 0.579

m = 16 0.846 0.982 0.863 0.905 0.846 0.616 0.915 0.662 0.741 0.570
m = 64 0.705 0.944 0.739 0.807 0.705 0.401 0.780 0.467 0.567 0.370

ColBERT -
hd = 64 0.850 0.986 0.866 0.909 0.850 0.603 0.921 0.650 0.738 0.562

hd = 128 0.855 0.985 0.871 0.912 0.855 0.574 0.929 0.633 0.725 0.529
hd = 256 0.852 0.986 0.868 0.911 0.852 0.647 0.933 0.689 0.770 0.603

PolyEncoder -
m = 5 0.837 0.981 0.856 0.900 0.837 0.644 0.929 0.689 0.768 0.599

m = 16 0.849 0.983 0.866 0.907 0.849 0.615 0.929 0.662 0.749 0.572
m = 64 0.853 0.984 0.869 0.911 0.853 0.647 0.923 0.689 0.765 0.599

Values in bold represent the best performance of the corresponding metric among all methods.

goal-specific (for persuasion purpose) and the conversations
have higher correlation with the persona data, especially the
psychological and behavioral attributes. The randomly trained
POVs (when m > 0) might bring in extra noise in the model,
which could be confusing and detrimental to the learning.

On the ConvAI2 task, PCPE achieved the best performance
with small m values (m = 0 for M-Attn/Col-Fuse and
m = 5 for S-Attn fusion). This is in general consistent with
the conclusion with the PFG task. However, as m increases,
the performance doesn’t necessarily decrease. This is probably
because the ConvAI2 dataset is a chit chat dataset without a
specific purpose, and the correlation between the persona and
conversation is not as strong as in the PFG dataset. Therefore,
a non-zero m is able to supplement information in case the
persona entries are not able to provide sufficient context (e.g.,
not all utterances are about persona, for example, some generic
greeting conversations), but excessively large m values could
still be detrimental and add complexity to the model.

C. Effectiveness of Post-Fusion Methods

In our experiments, we compare two attention-based post-
fusion methods (S-Attn and M-Attn) and the ColBERT-
style fusion (Col-Fuse). From Table I, S-Attn and
M-Attn post-fusions achieved similar and the best overall
performance. This is attributed to the non-linearity introduced
by the attention mechanism. The performance of S-Attn is
only marginally better than M-Attn. This is probably because
the SPC stream has already sufficiently extracted information
from the candidate, and exploiting it twice during post-fusion
is not able to generated additional useful signal to improve the
performance.

Our experiments also showed that Col-Fuse doesn’t have
as good performance as the attention-based post fusions.
Unlike attention-based post-fusions where the stream outputs
were aggregated, the Col-Fuse scoring considers all low-
level inputs (qPC1 , · · · , qPEm ) equally with the final sum. Thus,
irrelevant inputs (that are not contributing to the conversation)
could dominate the scoring function and thus yield sub-optimal
results. This can also be confirmed by the fact that larger m

leads to lower performance when using Col-Fuse fusion as
more irrelevant inputs can be introduced.

D. Other Sub-optimal Setups

We now briefly present a few sub-optimal choices we
explored, and hope they offer additional insights and may
provide paths for further studies.

a) Persona/Candidate Aggregation: Linear aggregation
methods (mean and sum) didn’t outperform S-Attn because
linearly combing word/KV embeddings might dilute the sig-
nals carried by certain key words/attributes, especially the ones
that are relevant to the conversation.

b) Post-Fusion Methods: We consider linear post-fusion
options (e.g., sum and concatenation). These fusion methods
treat all streams (or all inputs) as equally important to the task,
which is not often true in many different application domains.

c) Loss Functions: We also tried margin ranking loss 3

to train the model by arranging the ranking list into true-
false response pairs and optimize the score margin. This
ranking loss didn’t result in better performance, probably
because, with only one candidate is correct, the candidates set
lacks necessary preference ordering among all or most of the
candidates, which is required by many other ranking problems.

VII. DISCUSSIONS

A. Multi-Modal Processing Stream

As stated earlier, the main purpose of this paper is to explore
ways to better utilize heterogeneous auxiliary information in
different modalities to improve agent conversations. Although
PolyEncoder and ColBERT are strong retrieval models,
they are unable to effectively utilize multi-modal data as it
has only one stream that processes a single text input.

We conducted additional experiments of PCPE on the PFG
task where the personas are treated as long text inputs (denoted
as PCPE-TEXT) in a similar way as the ConvAI2 task with T1

for text, instead of KV attributes (the regular PCPE, denoted as
PCPE-KV) with a different T1 for KV. The text-based personas

3https://pytorch.org/docs/stable/nn.html#loss-functions

https://pytorch.org/docs/stable/nn.html#loss-functions


resulted in the best HR@1 of 0.654, compared to the best HR@1
of 0.647/0.666 of ColBERT/PCPE-KV. This not only demon-
strated superiority of the post-fusion over the single-stream
pre-fusion (PCPE-TEXT outperforms ColBERT), but it also
showed the necessity of using multi-modal processing streams
(PCPE-KV outperforms PCPE-TEXT), especially when the
auxiliary inputs are naturally heterogeneous.

Moreover, the multi-modal stream framework provides new
opportunities to effectively utilize various auxiliary informa-
tion that might be specific to a domain or an application. For
example, for Precision Nudging, one could easily incorporate
the patients’ health records, behavior patterns, etc. in new
streams without re-training the entire conversation model.

B. Computational Efficiency

At inference time, PCPE has several computational advan-
tages. Like PolyEncoder and ColBERT, the candidate em-
beddings can be pre-computed and cached. This is especially
beneficial when the number of candidate responses is large. In
addition, the persona embeddings can also be cached offline
with PCPE, while it is not achievable with baseline single-
stream pre-fusion-based methods as the queries are unknown
prior to inference time. The storage cost for the persona
embeddings is linear with the number of speakers O(N), given
that the number of persona entries j is fixed for each speaker.

At training time, we note that PCPE introduced more
training parameters and therefore may require longer training.
But this could be remedied by using pre-trained encoders
and fine-tuning, sharing the transformer encoders in different
streams, etc. Empirically from our experiments, PCPE needs
a smaller m value to get the best performance (m = 0 or 5).
This made PCPE more efficient than PolyEncoder at both
training and inference time. ColBERT calculates the word-
level interaction between the context and candidates, and thus
is much more inefficient than PCPE and PolyEncoder.

C. Challenges and opportunities

1) Lack of a Realistic Persona Dataset: One major chal-
lenge for personalizing conversation is that there is no publicly
available dataset that provides easily accessible persona data
for large-scale applications. The cost and privacy issues with
text-based personas, like in ConvAI2, remain a concern for
real-world applications. Although the PFG dataset provides
feature-based personas, it is still not ideal for exploring other
forms of personas that are helpful for personalization in
various applications, such as user health histories. As far as
we know, other public datasets, such as Reddit [23] and Twit-
ter [24], are not ideal for personalization since they contain
only the user identifiers without actual persona information.

2) Lack of a Behavior-Driven Dataset: Another challenge
in personalization for conversational AI is the lack of strong
behavior-driven strategies in available datasets that allow one
to navigate the speakers’ barriers or motivations, which is
needed to provide the assistance the users truly need. The
PFG dataset is a great example that incorporates persuasion
strategies into chats and influences others’ behaviors. However,

the persuaders have no visibility to the persuadees’ personas.
In addition, the persuaders, as crowd-source workers, are
not professionally trained behavioral scientists. It is hard to
guarantee that effective behavioral strategies are used in the
conversations and personalized to the persuadees. Additional
collaboration and guidance from domain experts in behavioral
science is necessary for the process of generating a rich
behavior-driven and persona-based conversational dataset.

3) Lack of Evaluation on Personalization: The lack of eval-
uation metrics for personalization is another main challenge
of persona-based conversations. Common evaluation metrics
for retrieval methods, such as HR, do not really consider the
actual contents and only treat the responses atomically as a
binary result (true or false responses). For generation-based
methods, evaluations (e.g., BLEU [28] and Perplexity [29])
usually focus only on the word overlap with a reference
response. They fail to address the relevance of the response
to the speakers’ persona information. Currently, human expert
evaluation is still the dominant way to evaluate personalization.
Such extensive human efforts and domain expertise make it
hard to scale in real applications. Further research efforts
are needed to explore computational methods that efficiently
evaluate the personalization of dialogue systems.

4) Legal and Ethical Challenges: Other challenges in
persona-based conversational AI research are related to legal
and ethical issues. Persona information can potentially include
PHI and PII, which legally require certain standards be ob-
served in their use. Other concerns center around ensuring
that a conversational agent is not discriminatory or offensive.
These concerns not only affect the legality but also the
reasonableness of a fair, inclusive, justifiable and effective
conversational agent. We encourage the reader to refer to
studies that focus on AI ethics for personalization [30], [31].

VIII. CONCLUSION

In this paper, we presented a novel multi-stream Persona-
Coded Poly-Encoder network that admits heterogeneous aux-
iliary information and uses various post-fusion strategies to
obtain a latent representation. We evaluated the PCPE and
compared its performance against the SOTA methods on two
benchmark persona-based conversation datasets. In addition
to providing a review of the SOTA in conversational AI for
personalization, we identified several limitations and provided
insights for future research.

We note that the experimental results demonstrated that
our method PCPE outperforms the baseline PolyEncoder
and ColBERT for response selection tasks with multi-modal
inputs. Our method also illustrates opportunities for leveraging
auxiliary multi-modal data in conversational models to further
improve the quality of conversations. However, we have also
observed several limitations of current datasets and evaluation
metrics. We suggested future research directions to address
several key limitations of existing research on persona-based
conversations, including the lack of realistic persona and
behavior-driven conversational data and the lack of evaluation
metrics on personalization.
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