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Abstract—App reviews from app stores are crucial for improv-
ing software requirements. A large number of valuable reviews
are continually being posted, describing software problems and
expected features. Effectively utilizing user reviews necessitates
the extraction of relevant information, as well as their subsequent
summarization. Due to the substantial volume of user reviews,
manual analysis is arduous. Various approaches based on natural
language processing (NLP) have been proposed for automatic
user review mining. However, the majority of them requires a
manually crafted dataset to train their models, which limits their
usage in real-world scenarios.

In this work, we propose Mini-BAR, a tool that integrates
large language models (LLMs) to perform zero-shot mining of
user reviews in both English and French. Specifically, Mini-BAR
is designed to (i) classify the user reviews, (ii) cluster similar
reviews together, (iii) generate an abstractive summary for each
cluster and (iv) rank the user review clusters. To evaluate the
performance of Mini-BAR, we created a dataset containing 6,000
English and 6,000 French annotated user reviews and conducted
extensive experiments. Preliminary results demonstrate the effec-
tiveness and efficiency of Mini-BAR in requirement engineering
by analyzing bilingual app reviews.

I. INTRODUCTION

App stores, such as Google Play and Apple App Store,
allow users to express their feedback on downloaded apps.
This feedback is in form of rating scores and text reviews. The
latter contains praise and dispraise, user experience, problem
reports, and feature requests [1]. App reviews are important
for app success. As evidenced in prior literature, high-user
rating scores have positive effects on apps’ sustainability [2].
Consequently, the design and development teams should take
the users’ feedback into consideration during the evolution of
their application.

Due to the large amount and the redundancy of app reviews,
manual analysis is laborious. Various approaches based on nat-
ural language processing (NLP) have been proposed to reduce
the efforts in analyzing user feedback, including the classi-
fication, clustering and summarization. Classification models
are commonly employed in the first approach to categorize
app reviews into predefined groups, such as feature requests
and problem reports [3], [4], [5], [6], [7]. However, even after
classification, the volume of reviews within each category
remains substantial, making direct analysis impractical. To
tackle this issue, some researchers have proposed grouping

reviews that pertain to the same topic [8], [9], [10], [11]. As
the obtained clusters still contain a relatively large number of
user reviews, the manual analysis of each cluster continues to
be time-consuming. Certain techniques attempt to overcome
this challenge by selecting the most representative phrases or
sentences as summaries for groups of app reviews [9], [10],
[12], [13], [14]. Nevertheless, this extractive summarization
approach may not capture all the crucial information present
within a given group. Moreover, existing approaches in user
review analysis mainly focus on the English language, with
few works on analyzing reviews in other languages [15],
[16]. Furthermore, most existing approaches requires manually
crafted dataset for training their classification models. The
creation of dataset is costly and time consuming, which limits
their usage in real-word scenarios. The objective of this article
is therefore to address these gaps with large language models.

Pre-trained language models (PTMs) are deep neural net-
works previously trained on a vast corpus. Researchers have
observed that large-sized PTMs display different behaviors
from smaller PTMs and show surprising abilities (called
emergent abilities) in solving a series of complex tasks. Thus,
the research community coins the term “large language models
(LLMs)” for these large-sized PTMs [17]. A remarkable ap-
plication of LLMs is ChatGPT1, it is fine-tuned from the GPT-
3.5 [18] using Reinforcement Learning from Human Feedback
(RLHF), which optimizes the model by interacting with human
and learning from human preference. The Guanaco model
is an open-source, finely-tuned LLM, derived through the
application of QLoRa’s 4-bit tuning approach [19] on LLaMA
base models [20]. QLoRA is an efficient fine-tuning approach
that reduces memory usage. Guanaco is available in various
parameter sizes, including 7B, 13B, 33B and 65B.

In this paper, we propose Mini-BAR, a bilingual approach
based on LLMs to: (i) classify the user reviews into three
categories: feature request, problem report and irrelevant; (ii)
cluster similar reviews for feature request and problem report;
(iii) generate a summary for each cluster of user reviews; and
(iv) rank the user review clusters. Figure 1 depicts an overview
of the workflow of Mini-BAR. We use the same pipeline to
process the bilingual app reviews, eliminating the necessity of

1https://openai.com/blog/chatgpt/
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deploying separate models for each language. By combining
these functionalities, Mini-BAR provides a comprehensive
approach for analyzing bilingual app reviews, which can
yield valuable insights for app developers and marketers. We
validate the key steps of Mini-BAR by conducting an extensive
set of experiments on 12000 annotated user reviews from
three Health & Fitness apps. The results indicate that Mini-
BAR has a satisfactory performance in both classification and
clustering tasks, and produced high-quality summaries. We
provide a replication package2 containing the code, dataset,
and experiment setups.

II. APPROACH

Mini-BAR provides support to developers for the analysis
of mobile app user reviews through a four-step process. First,
it applies a pre-trained classifier to categorize the user reviews
(Section II-A). The second step clusters the user reviews based
on their semantic similarity (Section II-B). The third step
summarizes the user reviews belonging to the same cluster
(Section II-C). The last step is to determine the importance
of user review clusters and rank them accordingly (Section
II-D). In the following subsections, we will detail each step
of Mini-BAR.
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Fig. 1. Overview of Mini-BAR

A. Classification

The objective of this step is to automatically classify English
and French user reviews into three categories: (F) feature
request, (B) problem report, and (I) irrelevant. A user review
may belong to either one of the three categories or both feature
request and problem report. A user review is considered
as problem report if it mentions the issues the users have
experienced while using the app (e.g., “Can’t sync sleep data
since last update”). Feature requests reflect users’ needs for
new functions, new content, or improvements (e.g., “Please
bring a feature to add some custom watch faces . . . ”). All the
other user reviews are irrelevant (e.g., “Best app ever!”). Clas-
sifying the reviews can aid to redirect them to the appropriate
software project members. For instance, feature requests can
be delivered to requirements analysts, while problem reports
can be directed to developers and testers [4].

2https://github.com/Jl-wei/mini-bar

The classifier of Mini-BAR is based on ChatGPT, the model
we use is gpt-3.5-turbo3. We use the following prompt to
classify the app reviews.

Classify the following {lang} app review
into problem report, feature request or
irrelevant. Be concise.
‘‘‘
{review}
‘‘‘

Given a user review, its language is detected automatically
with Lingua4, which is an accurate language detector. The
detected language, which could be English, French among
others, replaces the {lang} variable in the prompt. And the
{review} in the prompt is replaced by the user review. The
response of ChatGPT contains a single-phrase label name. We
parse the response with regular expressions to automatically
obtain the predicted labels.

B. Clustering

The objective of this step is to group English and French
user reviews based on their semantic similarity, ensuring that
reviews within a group are related to the same topic. Through
clustering analysis, texts are divided into clusters such that
those within a cluster exhibit semantic similarity. Currently,
the RE community predominantly focuses on clustering En-
glish user reviews, leaving little attention to non-English user
reviews. To address this gap, we propose a bilingual cluster-
ing approach that allows the creation of clusters comprising
reviews from different languages that share common topics.
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Fig. 2. Overview of clustering

In this step, we perform bilingual clustering analysis on
user reviews that belong to the same category, namely fea-
ture request or problem report, which were identified in
the previous step. It is worth noting that in the clustering
process, the categories of feature requests and problem reports
are processed separately, in order to obtain distinct clusters
for each. Conversely, user reviews labeled as irrelevant are
excluded from the clustering analysis.

The user reviews cannot be directly used as input for the
clustering algorithm, as they are in a textual format. Therefore,

3https://platform.openai.com/docs/models/gpt-3-5
4https://github.com/pemistahl/lingua-py
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it is necessary to convert them into embeddings — numerical
vectors in a high-dimensional space — to enable effective
processing. In this space, similar inputs in different languages
are mapped close together. For example, the embeddings of
“Problème de serveur récurrent” and “Connection issues to the
main server” are in proximity to each other. We used Instruc-
tor [21] to embed English and French app reviews due to its
high performance proven in Section III-B3. Instructor is an
instruction-finetuned text embedding model that can generate
text embeddings tailored to any task (e.g. clustering) by simply
providing the task instruction, without any finetuning. In our
case, we have utilized the instruction ”Represent the app user
review for clustering”. This model generates 768-dimensional
embeddings for each app review.

The high dimension of embeddings causes high computation
costs. Dimension reduction techniques can transforms data
from a high-dimensional space into a low-dimensional space
and keeps meaningful information of the original data. As in
Stanik et al. [9], we reduced the embeddings’ dimension with
Uniform Manifold Approximation and Projection (UMAP).
The implementation of Mini-BAR utilizes the UMAP Python
package5, the UMAP parameters are as follows: output dimen-
sionality of 20, number of neighbors set to 100, and minimum
distance of 0.

The reduced embeddings of the feature requests and prob-
lem reports are then clustered by HDBSCAN [22], which has
been proven efficient by Devine et al. [10] and Stanik et al. [9].
We use the HDBCAN6 Python package for the implementation
of Mini-BAR. The HDBSCAN parameters include a minimum
cluster size of 5. The minimum cluster size is the smallest
grouping size considered as a cluster. In our study, we chose a
minimum cluster size of 5, as we were interested in identifying
problems or features that were reported by at least 5 users.

C. Summarization

Given the potential magnitude of reviews within clusters,
the process of summarization becomes imperative, enabling
developers to efficiently grasp the cluster’s contents without
the need to peruse every individual review. Large language
models (LLMs), such as ChatGPT, has achieved a state-of-
the-art performance in cross-lingual summarization [23]. In
this step, we utilized ChatGPT (gpt-3.5-turbo) to generate
abstractive English summaries for clusters containing bilingual
user reviews. Our evaluation in Section III-C proves that
ChatGPT outperforms extractive summarization method, and
is able to generate high-quality summaries.

To generate the summaries, we utilized the following
prompt within ChatGPT. The {reviews list} is replace by a
list of user reviews separated by new line break. The response
generated by ChatGPT represents the summary for that list of
user reviews. Table I presents an example of a manual created
cluster and its generated summary.

5https://github.com/lmcinnes/umap
6https://github.com/scikit-learn-contrib/hdbscan

Please summarize all following app
reviews into one English sentence:
‘‘‘
{reviews list}
‘‘‘

Review(en)

Summary(en)

Sub-summary(en)

Review(fr)
Review(en)
Review(en)

Review(fr)
Review(en)Review(en)

Review(fr)
Review(en)

Sub-summary(en)
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Fig. 3. Overview of summarization for large clusters

However, in case the user review clusters contain a large
number of reviews and exceed the input length limitation
of ChatGPT, it will issue a warning message indicating that
“The message you submitted was too long, please reload the
conversation and submit something shorter”. To address this
issue, as illustrated in Figure 3, we adopted a hierarchical
summarization approach consisting of the following steps: (i)
dividing the reviews belonging to one cluster into multiple
groups, each with a maximum of 4000 tokens7, (ii) generating
a sub-summary for each group of user reviews, and (iii) ob-
taining the final summary by summarizing the sub-summaries.
Since the length of all sub-summaries may also exceed the
input limit of ChatGPT, we used a recursive procedure for
steps (i) and (ii) by replacing the user reviews with sub-
summaries.

TABLE I
EXAMPLE OF A USER REVIEW CLUSTER AND ITS GENERATED SUMMARY

User reviews:
- Dommage que la connexion 4g soit indispensable pour fonctionner.
- Please for god sake make it to work offline also.
- Is not work offline
- It used to work offline. Now I have to log in just to see my old data.
- Useless without internet.

Summary:
Users are disappointed that the app requires an internet connection to
function and wish it could work offline like it used to.

D. Ranking

Given the clusters with summaries, the next step is to rank
them by their importance. The goal of this step is to aid in
the release planning of app developers. The importance of a
cluster (ClusterScore) is determined based on the following
characters:

• The number of reviews present within the cluster
(|reviews|). problems or feature requests reported by

7https://platform.openai.com/docs/guides/gpt/chat-completions-vs-
completions
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more users should be given higher priority compared to
those reported by fewer users.

• The average rating of the cluster (rating). Clusters with
lower average ratings should be given higher priority,
as they may indicate users’ greater dissatisfaction with
specific aspects of the app.

• The number of “thumbs up” inside the cluster
(|thumbsup|). Users on Google Play have the option to
click the “thumbs up” button on reviews that they find
helpful. We posit that the number of “thumbs up” and
the importance of a cluster are positively correlated as the
review liked by more users should have a higher priority.

Given the weight of wrev , wth and wra, which are assigned
default values of 1, 0.1, and 1, respectively, the calculation of
ClusterScore is defined as follows:

ClusterScore =
wrev · |reviews|+ wth · |thumbsup|

wra · rating
(1)

The clusters are ranked in decreasing order of ClusterScore.

III. EMPIRICAL EVALUATION

The objective of this study is to assess the performance
of Mini-BAR with respect to three criteria: (i) its accuracy
in classifying user reviews into one of three predefined cate-
gories, namely feature request, problem report, and irrelevant;
(ii) its ability to cluster related user reviews that fall into the
same topic; (iii) its ability to provide high-quality summaries
of user reviews clusters. To achieve this goal, we evaluated
Mini-BAR’s performance on a dataset of 6000 English and
6000 French reviews from three health-related mobile apps.

A. Evaluation of Classification

In this section, we aim to answer the following research
question (RQ1): How accurate is Mini-BAR in classifying
bilingual user reviews ?

1) Dataset: The training and evaluation of the classifier
require a large number of labeled user reviews. We rela-
belled the 6000 French reviews of three applications (Garmin
Connect, Huawei Health and Samsung Health) on Google
Play from our previous work [16]. Besides, we collected
365, 967 English user reviews from these three applications.
For each application, 2000 English are randomly sampled for
annotation. In this work, we have labeled 6000 English reviews
and 6000 French reviews.

We used Prodigy8 from spaCy to annotate the user reviews.
We created an annotation guide to clarify the definition of
feature request, problem report, and irrelevant. Four authors
of this paper annotated the sampled user reviews and they
are finally reviewed by the first author of this paper. Table II
shows the details of the annotated dataset. The sum of each
category does not equal the total of reviews, as some reviews
have been assigned to more than one label.

2) Evaluation Metrics: The performance of the classifiers
is evaluated by precision, recall, and F1 as presented in related
work [15], [4].

8https://prodi.gy/

TABLE II
OVERVIEW OF THE DATASET FOR CLASSIFICATION

App Language Total Feature
request

problem
report Irrelevant

en 2000 223 579 1231Garmin Connect fr 2000 217 772 1051
en 2000 415 876 764Huawei Health fr 2000 387 842 817
en 2000 528 500 990Samsung Health fr 2000 496 492 1047

3) Experiments: In this experiment, we compared the per-
formance of ChatGPT and Guanaco-33B with ML models
(Random Forest, Support Vector Machine), as well as various
PTMs (BERT [24], CamemBERT[25], XLM-R [26]), on the
classification of app reviews.

The ML models are trained using batch gradient descent,
while PTMs employed mini-batch gradient descent, with a
batch size of 12 and AdamW optimizer with a learning rate
of 2e−5. They are trained on 3 epochs on a machine with a
NVIDIA Tesla T4 GPU with 16 GB VRAM. The user reviews
from the three apps of both languages were split using an 80:20
(training and test sets) ratio in a stratified manner, as illustrated
in Figure 4. We trained the classifiers using a combination
of en train and fr train. Subsequently, the classifiers were
individually tested on the en test and fr test. We performed
ten-fold cross-validation by randomly splitting the training and
test sets ten times, and computed the average performance
across these runs.

en_train

tr_en_train

fr_train

tr_fr_train

en_test

tr_en_test

fr_test

tr_fr_test

Train (80% of user reviews)
Test (20% of 
user reviews)

en_train

fr_train

en_test

fr_test

Train (80% of user reviews)
Test (20% of 
user reviews)

Fig. 4. Overview of dataset split for training and testing

We conduct classifications utilizing LLMs, specifically
ChatGPT and Guanaco-33B, on all 12,000 user reviews. This
is executed under zero-shot setting, implying that no prior
training is involved. We have also assessed the performance
of Guanaco-13B and Guanaco-65B. However, the responses
generated by Guanaco-13B are disorganized, thereby hinder-
ing the extraction of predicted labels using regular expressions.
The inference of Guanaco-65B is intolerably slow, even on
advanced hardware such as the NVIDIA A100, making its
usage impractical.

4) Results: The experiment results presented in Table III
demonstrate that the ChatGPT exhibited good overall perfor-
mance, which is comparable to that of ML models. Its compar-
atively lower performance in classifying feature requests can
be attributed to the inherent complexity associated with such
requests. In certain instances, users may express their desire
for new features by criticizing existing ones or complaining
about missing functionalities, rather than straightforwardly
stating ”I need...”. Among all the models, XLM-R archived
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TABLE III
CLASSIFICATION ACCURACY ON USER REVIEWS OF THREE APPS

Feature Request Problem Report Irrelevant Average Weight
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Random Forest 0.75 0.453 0.564 0.797 0.82 0.808 0.898 0.885 0.891 0.837 0.782 0.802
SVM 0.86 0.438 0.58 0.86 0.806 0.832 0.931 0.893 0.912 0.895 0.778 0.823
BERT 0.814 0.782 0.797 0.897 0.914 0.905 0.972 0.954 0.963 0.918 0.909 0.913
CamemBERT 0.811 0.743 0.775 0.883 0.894 0.888 0.966 0.951 0.958 0.91 0.893 0.901
XLM-R 0.823 0.811 0.816 0.902 0.917 0.909 0.979 0.958 0.968 0.925 0.917 0.92
ChatGPT 0.768 0.5 0.606 0.762 0.972 0.854 0.983 0.911 0.945 0.871 0.853 0.852

En

Guanaco-33B 0.361 0.62 0.456 0.662 0.951 0.781 0.983 0.817 0.893 0.763 0.823 0.774
Random Forest 0.8 0.528 0.635 0.798 0.834 0.816 0.902 0.869 0.885 0.848 0.796 0.817
SVM 0.895 0.459 0.606 0.86 0.828 0.844 0.956 0.89 0.922 0.912 0.791 0.838
BERT 0.766 0.725 0.744 0.871 0.866 0.869 0.947 0.931 0.939 0.888 0.872 0.88
CamemBERT 0.852 0.823 0.837 0.922 0.925 0.923 0.977 0.96 0.968 0.936 0.924 0.929
XLM-R 0.819 0.833 0.825 0.917 0.921 0.919 0.982 0.949 0.965 0.93 0.919 0.924
ChatGPT 0.853 0.473 0.608 0.782 0.973 0.868 0.978 0.935 0.956 0.888 0.866 0.863

Fr

Guanaco-33B 0.296 0.576 0.391 0.624 0.97 0.759 0.985 0.756 0.856 0.737 0.797 0.739

the best performance in bilingual classification. Although the
performance of ChatGPT does not match up to PTMs, it is
noteworthy that these LLMs have achieved such performance
without the utilization of any reviews during their training
phase. This suggests that ChatGPT can achieve satisfactory
performance in user reviews of other application categories.

B. Evaluation of Clustering

In this section, our objectives are to address the RQ2: How
semantically meaningful are the clusters generated by Mini-
BAR?

1) Dataset: In order to evaluate the performance of cluster-
ing algorithms, we created a dataset with 1200 user reviews.
We randomly selected 100 problem reports and 100 feature
requests from each of the three apps in each of the two lan-
guages present in the dataset created in Section III-A1. Then
the authors employed manual clustering for each collection of
200 bilingual reviews, all of which pertained to an identical
category. Reviews sharing the same topic were subsequently
grouped into a single cluster. In instances where a user’s
review mentioned multiple topics, the assignment of the cluster
was determined by the initial topic that was reported. Two
authors independently performed the clustering of the 1200
reviews, and their individual results were later merged through
discussion. The resulting clusters were then considered as the
ground truth for subsequent evaluation.

Table IV shows the number of manually created clusters
and the number of clusters whose size is greater than or
equal to 5 in each category and app. The feature requests
encompass enhancements such as the modification of a Graph-
ical User Interface (GUI), support for additional languages,
increased activity options, integration with other applications,
customization of permissions, and improvement of sleep track-
ing function. The problem reports predominantly center on a
series of issues, notably the application’s unexpected crashes,
errors encountered during the login process, difficulties in pair-
ing with smartwatches, challenges with data synchronization,
inconsistencies in the notification system, and complications
related to Bluetooth connectivity, among others.

TABLE IV
OVERVIEW OF MANUALLY CREATED CLUSTERS

Bilingual Garmin
Connect

Huawei
Health

Samsung
Health

#clusters in feature request 89 74 69
#clusters(size ≥ 5) in feature request 7 9 11
#clusters in problem report 45 44 41
#clusters(size ≥ 5) in problem report 10 13 12

2) Evaluation Metrics: Following previous work [11], we
use two commonly used indices, Normalized Mutual Infor-
mation (NMI) [27] and Adjusted Rand Index (ARI) [28], to
quantify the similarity between the automatic clustering and
the ground truth. NMI ranges from 0 to 1, while ARI ranges
from -1 to 1. A higher NMI or ARI indicates that the clustering
method is more effective in producing clusters that align with
the ground truth. Note that the NMI and ARI are computed
for clusters with a size of 5 or greater, as the minimum cluster
size of HDBSCAN is set to 5.

3) Experiments and Results: In this section, we evaluate the
performance of different text representation methods (includ-
ing traditional frequency-based methods, bag of words (BOW),
and TF-IDF, as well as PTM-based methods, Universal Sen-
tence Encoder [29], MiniLM [30], MPNet [31], E5 [32] and
Instructor [21]) on the dataset created in Section III-B1. We
performed three distinct experiments on English-only, French-
only and bilingual user reviews. In each experiment, clustering
is executed separately for the two categories (feature requests
and problem reports) within each of the three applications.

4) Results: The average NMI and ARI of the three distinct
experiments are shown in Table V. Results show that PTM-
based methods outperformed traditional methods. Among all
text representation methods, Instructor demonstrated the high-
est level of performance in clustering. The results from the
English user reviews clustering were superior to those derived
from the bilingual and French user reviews clustering. We
attribute this variation to the relatively small French corpus
employed for training the PTMs.

While the proposed approach appears to have some degree
of validity, the results do not appear to be particularly en-
couraging at this stage. The primary reason for this is that
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TABLE V
EVALUATION ON USER REVIEWS CLUSTERING

Embedding NMI ARI
Methods en fr bi en fr bi

BOW 0.450 0.405 0.417 0.191 0.155 0.103
TF-IDF 0.452 0.449 0.460 0.253 0.216 0.149
USE 0.575 0.501 0.552 0.337 0.330 0.236
MiniLM 0.548 0.567 0.541 0.323 0.380 0.219
MPNet 0.616 0.575 0.593 0.400 0.346 0.278
E5 0.465 0.401 0.436 0.248 0.190 0.139
Instructor 0.713 0.587 0.603 0.597 0.357 0.308

our evaluation dataset is relatively small. Clustering algorithms
require a sufficient amount of data to discover underlying pat-
terns and structures. With a limited amount of data, it becomes
difficult to identify meaningful groupings of text. Moreover,
text clustering is a challenging task, particularly given the
informal nature of the terminology employed in user reviews
and the prevalence of spelling errors. Additionally, based on
our empirical analysis, it appears that longer user reviews
tend to result in less accurate clustering. This presents an
opportunity for potential improvement by applying sentence-
level clustering to user reviews.

C. Evaluation of Summarization

In this section, we aim to investigate the RQ3: : How
effectively does ChatGPT perform in summarizing bilingual
user reviews?

1) Dataset: In Section III-B1, we carried out manual
clustering for a total of 1200 user reviews. Among these,
we utilized clusters with a size of 5 or greater to assess the
performance of ChatGPT on summarization.

2) Evaluation Metrics: As outlined in Fabbri et al. [33],
human evaluators rate the generated summaries based on four
dimensions: relevance (the degree to which crucial information
from the source has been included), consistency (how well
the summary aligns with the factual details of the source),
fluency (the quality of individual sentences), and coherence
(the overall quality and coherence of all the sentences in
the summary). Each dimension is scored on a Likert scale
ranging from 1 to 5, with higher scores indicating superior
performance.

3) Experiments: To evaluate the proficiency of ChatGPT
in producing succinct English summaries of bilingual app
reviews, we compare it with baseline approaches: Extractive
summarization of Devine et al. [10], which selects the most
representative sentence from a cluster of app reviews as the
summary, the sentence is chosen by calculating the similarity
with all other sentences of that cluster. Abstractive summa-
rization with Guanaco models (13B, 33B and 65B version
of Guanaco are used in our experiments) [19]. ChatGPT
and Guanaco were instructed to synthesize clusters of user
reviews into a single English sentence with the same prompt,
as presented in Section II-C. Subsequently, human evaluators
assessed the generated summaries. Given the pairs of user
reviews and corresponding summaries, two authors of this
paper were asked to evaluate the summaries on the Likert
scale in the four dimensions that were previously mentioned.

TABLE VI
HUMAN EVALUATION ON GENERATED SUMMARIES

Relevance Consistency Fluency Coherence
Devine et al. [10] 4.23 4.83 4.62 4.71
Guanaco-13B 3.67 3.68 4.92 4.91
Guanaco-33B 4.65 4.58 4.91 4.88
Guanaco-65B 4.79 4.77 4.95 4.94
ChatGPT 4.81 4.84 4.95 4.94

4) Results: Table VI presents the average results of hand-
made evaluations. Results show that abstractive approaches
(ChatGPT, Guanaco-33B, and Guanaco-65B) generate very
high quality sentences, and they are highly coherent when
viewed in conjunction with one another. On the other hand,
the extractive approach excels at extracting the most significant
information from a cluster; however, it falls short in captur-
ing all the essential details. During our manual evaluation,
we found that Guanaco-13B tends to retrieve all available
information available in the cluster without selectively focus-
ing on crucial elements. In contrast, Guanaco-33B performs
significantly better in this regard by effectively filtering out
non-essential information. The results highlight the impressive
performance of ChatGPT and Guanaco-65B in generating
highly satisfactory summaries of user reviews.

IV. THREATS TO VALIDITY

This section aims to identify potential threats to the validity
of our study.

1) App reviews from one category: All reviews studied
in this paper are collected from three Health & Fitness
apps (Garmin Connect, Huawei Health, and Samsung Health),
mainly due to the context of health activity monitoring project.
Instead of analyzing small number of reviews in many apps,
we choose to annotate 12,000 reviews on three apps to create
a larger dataset to evaluate clustering and summarization.
However, these three apps may not be representative of apps
in other categories. In the future, we will alleviate this threat
by investigating user reviews of apps in various categories.

2) Subjectivity in manual annotation: The annotation of
user reviews is a straightforward task, people without specific
training can well classify or cluster the reviews. However,
subjectivity can still arise during manual annotation, leading to
variations in how different annotators interpret and label the
reviews. To mitigate this threat, we (i) created a annotation
guideline to detail the definition of each label following with
examples, (ii) reviewed the final label through discussion and
consensus.

3) Issues of using ChatGPT: ChatGPT has been selected as
the classification and summarization component of Mini-BAR,
owing to its superior capabilities. However, it is noteworthy to
mention that certain countries have imposed prohibitions on
the use of ChatGPT. Some users may refrain from utilizing
ChatGPT owing to concerns pertaining to data privacy. And
the cost of analyzing user reviews using ChatGPT cannot be
overlooked, particularly in light of the large volume of user
reviews. To mitigate these challenges, we have implemented
alternative strategies. For classification, Mini-BAR users can
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utilize our XLM-R checkpoint, which has been trained on
12,000 reviews, or they can opt for Guanaco-33B. For summa-
rization tasks, users have the option to use other large language
models, specifically Guanaco-33B or Guanaco-65B.

V. CONCLUSION

This paper introduces Mini-BAR, a mobile app review
mining tool designed to assist app developers in extracting
and summarizing user-reported issues and requests from a
huge number of app reviews. This tool is based on LLMs
and operates under zero-shot setting. Our empirical evaluation
on the key steps of Mini-BAR resulted in numerous positive
outcomes: (i) it accurately classified bilingual user reviews
with an F1 score of 0.85; (ii) it created meaningful clusters
of bilingual user reviews with a NMI greater than 0.6; (iii)
it produced highly satisfactory summaries of bilingual user
reviews.

In our future research, we intend to: (i) conduct a compara-
tive analysis of various prompts utilized for classification and
summarization, (ii) implement alternative large-scale language
models for classification and summarization, (iii) execute
classification and clustering at the sentence level as opposed to
the review level, (iv) undertake evaluations using user reviews
sourced from applications across a diverse range of categories.
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