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Abstract—This article presents the results of an investigation
of the application of deep learning techniques to the sleeping cell
problem, in order to achieve greater detection sensitivity than
previously reported.

We use a deep recurrent Neural Network (rNN) to process
simulated RSRP reports in order to detect degradations of cell
radio performance as well as complete outages. Using such a
configuration we are able to achieve improved sensivity in relation
to a traditional Support Vector Machine (SVM) approach, while
eliminating the need for a separate dimensionality reduction stage
at the front end. We study multiple rNN configurations with up
to three hidden layers and conclude that in this scenario we can
achieve the target improvement in sensitivity with a single hidden
layer, leading to highly efficient run time performance.

Index Terms—Cellular networks, self healing, cell outage, cell
degradation, fault detection, deep learning, neural networks

I. INTRODUCTION

THE network architecture for 5G has evolved significantly
in comparison with 4G. The Radio Access Network

(RAN) architecture has become more decentralised, with a
new two tier architecture in which user traffic is now devolved
to groups of small cells under the control of a single macrocell
[1], [2], [3].

In the new RAN architecture, extensive use is made of Multi
User Multiple Input Multiple Output (MU-MIMO) techniques
combined with Coordinated MultiPoint (CoMP) transmission
methods [4]. Three dimensional propagation techniques based
on planar array techniques are being used to maximise signal
strength in built up areas, especially in high rise locations [5].

Deployment of these techniques in 5G will require a dra-
matic increase in the number of configuration parameters
required in comparison with 4G, with a corresponding increase
in the likelihood of misconfiguration.

With the advent of very large numbers of small cells,
new resilience and load balancing techniques will be required
to optimise resilience and energy consumption in situations
where the numbers of users in a given cell may vary from
full capacity to zero over a 24 hour period. It will become
uneconomic to make a site visit to fix a single cell so it will
be necessary for the network to compensate for faults so that
multiple physical faults can be resolved during a single visit.

Such increases in complexity will require additional auto-
mated assistance to network operations centre staff, to allow
them to focus on key issues rather than being overwhelmed by
detail. This has led to considerable interest in how machine
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learning (ML) techniques can be used to detect faults quickly
and even compensate for certain faults until a permanent fix
can be provided.

A key problem which is specific to radio networks is the
so-called sleeping cell issue, where a fault occurs somewhere
in the radio frequency transmission chain leading to users
experiencing an outage which, however, is not visible to the
network management team.

To date, ML approaches have been successfully used to
detect complete outages of a cell from indirect evidence such
as reports from user equipment and neighbouring cells. Key
techniques of choice at the current time include k nearest
neighbour anomaly detection and support vector machines
used as binary classifiers.

At the current state of the art, however, such techniques
typically depend on a hand-engineered data preprocessing
stage to reduce the dimensionality of the data so that it can
be efficiently processed by the ML system, and are capable
of detecting complete outages but are not necessarily able to
identify more subtle radio signal degradations.

Research in other engineering areas with similar issues [6]
has shown that deep learning techniques can process large
numbers of input data features without the need for a hand-
engineered input stage. We therefore decided to apply a deep
learning approach to the cell coverage degradation detection
problem. For this work we have chosen to use a recurrent
neural network (rNN), because of its inherent ability to handle
time based sequences, enabling us to take into account events
leading up to a fault if appropriate.

In this paper we make the following three contributions:
firstly we show that we can use an rNN to build a more
sensitive fault detector than feasible with a support vector
machine (SVM) ; secondly that we can eliminate the hand
coded data dimensionality reduction stage required by the
SVM by exploiting the ability of the rNN to process input
data directly; and thirdly that we can utilise the ability of the
rNN to process large numbers of input channels to allow us to
use a single hidden layer rNN configuration, minimising the
need for run time computing power.

This paper is organised as follows. First we present related
work in this area and discuss the strengths and limitations of
the current state of the art. Next we outline the architecture
of the rNN in the context of current deep learning techniques,
and describe the simulation we used to train and test it. Finally
we present and discuss our results and offer some suggestions
for further work.



II. RELATED WORK

Recent studies have made extensive use of measurement
data reported by the user equipment as a result of the Minimise
Drive Testing (MDT) initiative, designed to reduce the amount
of expensive drive testing needed to verify radio coverage.
Typical KPIs relevant to sleeping cell detection include Refer-
ence Signal Received Power and Quality (RSRP/Q) from the
cell being monitored and the neighbouring cells, as well as the
wideband Channel Quality Indicator (CQI) for the cell being
monitored.

The number of parameters required for effective detection
may be more than the optimal number of inputs to the ML
system, in which case a dimensionality reduction strategy will
have to be used, such as the MultiDimensional Scaling (MDS)
approach used by many of the sleeping cell studies.

Machine learning techniques applied to the sleeping cell
detection problem during the last five years may be split into
two major classes: parametric and non parametric methods.
Both use training data to learn from; the difference is in how
they use it. Parametric methods fit a model to the training data
during a training phase, then use the model to make predictions
from live data during a subsequent operational phase. Non-
parametric methods, on the other hand, do not require a
training phase but instead use the training data directly during
the operational phase when forming a prediction.

In both cases the training data has to be labelled by an
expert as normal or anomalous. To reduce the cost of this, a
front end clustering algorithm [7] can be used to partition the
data into clusters so that the expert only has to confirm the
labels of the clusters rather than label the data in detail.

Studies utilising parametric techniques [8] CLNS2013 and
[9] ZSIIA2015 have made use of the SVM approach, in which
an anomaly boundary is set during the training phase so that
it can be used to classify whether data is normal or anomalous
during the operational phase.

Studies using non-parametric techniques [9] ZSIIA2015,
[10] XPMZ2014, [11] WPP2016, [12] XZLLP2014 [13]
OZMIGID2015 and [14] CCBR2015 [15] typically use either
a variation of the k Nearest Neighbours technique or a similar
approach, in which a measure of the distance, or dissimilarity,
between neighbouring data items is used to compare an
incoming data item with its nearest neighbours in the training
set, which have already been labelled as normal or anomalous.

Quantitative comparisons between methods are hindered
by the lack of a standard reporting approach, but for those
studies using the receiver operating curve (ROC) graph, the
best reported figures for SVMs claim a true positive rate (TPR)
in the region 85%-90% at a false positive rate (FPR) of 10%
[9], and for kNN the best TPR is reported to be in the region
of 80% for a similar FPR [13].

Both the SVM and the kNN techniques have the limitation
that a significant amount of preprocessing of the input data is
required, including dimensionality reduction, requiring dedi-
cated code which can be inflexible as well as expensive to set
up and maintain.

All the above techniques consider each live data point sepa-
rately, without any consideration of any relationships between

successive data items which form a sequence (as do successive
values of the KPIs listed above). Several studies have included
an element of time series prediction [8] CLNS2013 (ARIMA
modelling), [13] OZMIGID2015 (Grey modelling), and [16]
ZLP2014 (adaptive filtering), but these require specialist code
to implement each method rather than making use of a general
purpose ML technique.

III. DEEP LEARNING FOR DEGRADATION DETECTION

A different type of ML approach, neural networks (NNs), is
proving very effective in other domains with similar challenges
to those of mobile networks. NNs consist of a set of nodes,
each of which applies a specific linear weighting to each of
its inputs, followed a non-linear transformation to compress
the result. Nodes are typically organised in layers, providing
input and output and also often including internal or hidden
layers.

In the feedforward NN, each variable at each stage is
weighted with its own individual weight. Once the network
is trained, the output depends only on the current inputs. In
the recurrent NN (rNN), by contrast, the network maintains
an internal state derived from the previous input. This allows
it to operate on a sequence of inputs taking into account any
relationships between the current input and previous ones.

Networks with more than one hidden layer, known as
deep NNs, have proved themselves very effective in detecting
faults and degraded performance in other complex engineering
systems, and have demonstrated the ability to eliminate much
of the hand coded front end processing previously required for
this type of application [17], [18] and [19].

Hence our aim is to apply a deep NN to the sleeping cell
problem with the goal of improving detection sensitivity and
reducing the amount of front end coding required compared
with current methods. For this work, we have used an rNN (see
Fig 1) operating on a series of fixed length sequences taken
from the input data. This method has a number of advantages
for this scenario in comparison with classic ML approaches
and other NN techniques.

Firstly, it is able to take into account dependencies between
features in the current data input set and those in previous
inputs. So if there were a precursor event just before a fault,
for example, the rNN would be able to exploit this.

Secondly, the rNN’s ability to represent time or sequential
dependencies provides the option to learn to filter the input,
perhaps to reduce noise (low pass filtering) or to accentuate
transitions (high pass filtering).

Thirdly, the rNN shares its parameters across all data items
in a sequence. Consider a set of n examples, each representing
a sequence of s values of p features. The rNN requires input
data to be presented as a vector of p features at a time, for
each of the s values in the sequence for each of n examples.
Classic techniques such as the SVM and other neural network
approaches such as the feedforward NN, on the other hand,
would require s x p values to be presented in parallel for each
example, requiring of order s times as many parameters to be
trained.

The classic rNN described in the textbooks [20] derives its
internal state from the previous input only. We have extended
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this architecture to allow processing of up to four previous
inputs with a single hidden layer, and up to two previous
inputs with up to four hidden layers. An example of this
architecture configured for two hidden layers and processing
of two previous inputs is shown in Fig 1. We also introduce
an input filtering layer fully integrated into the rNN, with the
filter parameters learned as part of the rNN training process.
This allows the rNN to filter the input features in whatever
way it learns to be optimal in order to achieve the maximum
accuracy.

Once implemented, the rNN is then trained, validated and
tested against a network simulation as described in the next
section.

IV. SYSTEM SIMULATION

TABLE I
SIMULATOR CONFIGURATION DETAILS

Configuration
Element

Settings

eNodeBs Hexagonal grid
Central eNodeB surrounded by one ring of 6
Inter eNodeB distance 200m
Tx power 41dBm

Radio
Propagation
Model

Pathloss model 3D TR36.873 [21]
Channel model 3D-UMi
Minimum coupling loss 70dB
Street width 20m, building height 20m

Radio Link Frequency 2000MHz, Bandwidth 10MHz
4 x Tx, 4 x Rx
Transmission Mode 4 (Closed Loop Spatial
Multiplexing)

UEs 21 UEs, initial allocation 3 per eNode B
User Walking
Model

Random walk within 100m radius from base
station

The network simulation is based on the LTE system level
simulator built in MATLAB by the Technical University of
Vienna (TUV). The model has been modified to provide a
outer loop representing user movement on a timescale of
minutes, with the radio simulation operating as an inner loop
based on the LTE Transmission Time Interval (TTI) period.
All modifications and extensions to the simulator are also
implemented in MATLAB.

For simulation purposes, we assume a split cellular net-
work architecture with the macrocell operating on a different
frequency from the small cells. We model just the small cells,
assuming that the network is fully planned, so that at present
we do not consider the effect of unplanned femtocells.

In the model, a central cell is surrounded by a ring of six
identical cells. Faults are applied to the central cell only. Users
are assumed to be pedestrians and are each initially allocated
to one of the small cells. User positions are generated by a
range limited random walk model, added to the basic TUV
simulator, where the user position is constrained to remain
within a configurable radius of the starting point.

The simulator is configured to use a 3D propagation model
according to 3GPP TR36.873 [21]. At initialisation time, the

simulator makes a random selection between Line of Sight
(LOS) and Non Line of Sight NLOS propagation per eNodeB
per mobile device, based on UE location. At the same point,
the simulator makes a similar choice between in-building and
external propagation for each location, in this case independent
of UE.

We have added facilities to the TUV simulator to calculate
RSRP and RSRQ levels, produce MDT reports and generate
events such as A3 events and handovers which are derived
from network states.

We present the output from the simulator in the form of
simulated network MDT and RRC Measurement report data.
We normalise the data from these and split it into training,
validation and test data sets before passing it to the deep
learning system.

V. DETECTOR IMPLEMENTATION

Our investigation makes use of 9 simulated RSRP reports
from mobile devices, three attached to the cell under investiga-
tion and one attached to each of the surrounding cells. It should
be noted that this figure was chosen based on a judgement as
to the likely numbers of active users in a typical dense cell
deployment - the number of RSRP inputs is not limited by the
rNN and could be increased if the numbers of available users
permit.

We compare the performance of the following detection
techniques:

1) an rNN with a configurable number of hidden layers,
extended to provide additional input and internal state
filtering as described above.

2) an SVM with a radial basis function (RBF) kernel using
hand coded MDS dimensionality reduction, designed to
be representative of previous work in this field

In each case the sequence length is 20 samples; the system
is trained on 144 examples of one sequence each, validated
on 48 examples and tested on 48 examples.

A. Recurrent Neural Network
The structure of the basic rNN, unfolded over a typical

sequence, is shown in the following figure.
The forward path is defined by the following equations

[20] chapter 10, for step t within a given sequence:

at = b + Wht−1 + UXt
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The back propagation path is defined by the following
gradients (combined using the chain rule) based on the



W
V

U

y(t-1)

L(t-1)

o(t-1)

h(t-1)

x(t-1)

y(t+1)y(t)

L(t) L(t+1)

o(t) o(t+1)

h(t) h(t+1) h(…)h(…)

x(t) x(t+1)

W W W

U U

V V

go(t)

gh(t)

gyhat(t)

ga(t)

yhat(t-1) yhat(t+1)yhat(t)

Fig. 3. Unfolded RNN Structure

principles given in [20] section 10.2.2:
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)
[ ∂
∂x tanh (x) = 1 − tanh2 (x)]
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∂U
∂at = Xt

The basic network is extended to allow processing of earlier
values of the input and internal state, as far back as Xt−4

and ht−4 respectively, with the necessary weighting parameters
fully integrated into the forward and back propagation paths.
Similar code is used to extend the network to provide two or
three hidden layers as required.

During the training phase, a regularisation parameter is used
to select the best tradeoff between overfitting and underfitting

the machine learning parameters in relation to the training
data. We systematically train the detection and diagnosis
system against the training data using a range of values of
lambda, then select the value of lambda which gives the best
prediction accuracy on the validation data set. This value is
then used to test prediction accuracy on the test set.

Prediction accuracy is measured by calculating true and
false positive and negative prediction rates, expressed as a
proportion of the total number of cases. Selection of the most
appropriate value of the regularisation parameter is based on
the sum of the true positive and true negative prediction rates.

The following rNN configurations were implemented (see
Fig 4):

1) a single hidden layer with options for first, second and
fourth order filtering on both the internal states and the
inputs (cases 1a-1c)

2) two hidden layers with second order filtering for the
internal state and the inputs (case 2)

3) three hidden layers with second order filtering for the
internal state and the inputs (case 3)

B. Support Vector Machine
The SVM implementation uses the MATLAB function

fitcsvm with the ’Kernelfunction’ and ’rbf’ options selected,
followed by the fitPosterior function to convert the classifica-
tion score to a probability.

Dimensionality reduction follows the method given in [9],
in which the first step is to find the top m eigenvectors V and
eigenvalues λ of XT X . The required data set now containing
m derived features is then given by the rows of

√
λV T .
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For comparability with [9] we set m to 3. If the MATLAB
eigs function is used to calculate the eigenvalues and vectors,
it should be noted that this assigns a random sign to its
output so code should be included to detect this and adjust the
relevant signs as needed. The SVM uses the same approach
to calculating the prediction accuracy as described above for
the rNN.

VI. RESULTS AND ANALYSIS

We first of all compared the performance of the two
techniques using a fault impact of 65dB reduction in transmit
power relative to normal operation, as per previous work [9],
and then reduced the fault impact to explore where the limit
of reliable detection would occur. We found that the SVM
performance deteriorates significantly beyond the point where
the fault and normal data are no longer clearly separable
(below an impact of about 25dB), but the rNNs continue to
achieve high accuracy down to 20dB and can still achieve
reasonable accuracy at 10dB.

With a fault impact of 65dB, we achieved similar SVM
performance to that previously reported, namely TPR in the
region of 90% at FPR 10%, with comparable or better perfor-
mance by all the rNN configurations.

For a fault impact of 20dB (Fig 5), we can see that
the SVM performance is now down to about 85% at 10%
FPR.. The rNNs, on the other hand, can achieve detection
results in excess of 90% TPR at 10% FPR. If the fault
impact is reduced to 10dB, as shown in Fig 6, the rNNs can
achieve a TPR in the region of 70% - 75% at FPR 10%,
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which is a significant improvement on the equivalent SVM
performance. From this work we found that in this specific
scenario there is insignificant advantage in utilising the more
complex configurations, but the single layer with second order
filtering generally performs better than the simplest single
layer configuration with no additional filtering. Hence we
recommend the use of the single layer second order filtering
approach for this scenario, providing a highly efficient run
time detection capability which could therefore be deployed
in the RAN on a devolved basis with minimal requirements
for additional computing power.
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VII. CONCLUSION

In this work we apply deep learning techniques to the
cell coverage degradation detection problem. We show that
the rNN technique can provide greater detection sensitivity
than the best of current approaches, represented by the SVM
technique, while at the same time eliminating the need for a
separate hand coded data dimensionality reduction stage. We
show that by using nine RSRP input channels this improve-
ment in detection sensitivity can be achieved by using an rNN
with a single hidden layer, minimising the need for run time
computing power.
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