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Abstract—Breast cancer is one of the most common causes of
cancer-related death in women worldwide. Early and accurate
diagnosis of breast cancer may significantly increase the survival
rate of patients. In this study, we aim to develop a fully automatic,
deep learning-based, method using descriptor features extracted
by Deep Convolutional Neural Network (DCNN) models and
pooling operation for the classification of hematoxylin and eosin
stain (H&E) histological breast cancer images provided as a
part of the International Conference on Image Analysis and
Recognition (ICIAR) 2018 Grand Challenge on BreAst Cancer
Histology (BACH) Images. Different data augmentation methods
are applied to optimize the DCNN performance. We also investi-
gated the efficacy of different stain normalization methods as a
pre-processing step. The proposed network architecture using a
pre-trained Xception model yields 92.50% average classification
accuracy.

Index Terms—Deep learning, Breast cancer classification,
Transfer learning, Multi-view feature fusion

I. INTRODUCTION

Breast cancer is the most common form of cancer in women
aged 2059 years worldwide. According to the data provided
by the American Cancer Society [1]], in 2019, about 268,600
new cases of invasive breast cancer and about 62,930 new
cases of in situ breast cancer will be diagnosed in which
nearly 41,760 women will die from breast cancer. Tumors can
be subdivided into malignant (cancerous) and benign (non-
cancerous) types, based on a variety of cell characteristics.
Malignant tumors can be further categorized as being in situ
(remain in place) or invasive. In situ carcinomas can form
in the ducts or lobules of the breast and are not considerate
to be invasive, but if left untreated, could increase the risk
of developing invasive breast cancer [2]. Early detection of
the breast cancer is therefore important for increasing the
survival rates of patients. The high morbidity and considerable
healthcare cost associated with cancer has inspired researchers
to develop more accurate models for cancer detection. Over
the last five years, data mining and machine learning models
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have been used in a variety of research areas to dramatically
improve our ability to discover emergent patterns within
large datasets [3]-[8]. Developing computer-aided diagnosis
(CAD) systems, integrated with medical image computing
and machine learning methods, has become one of the major
research paradigms for life-critical diagnosis [9]. CAD systems
have been widely used in different fields, including mass
detection [10], lung cancer screening [11]], mammography and
breast histopathology image analysis [[12]], medical ultrasound
analysis [13]}, etc. Fig[T]demonstrates some examples of breast
histopathology images from the BACH dataset.

Fig. 1: Examples of H&E stained breast histology microscopy
images of (a) Normal, (b) Benign, (c) In situ, and (d) Invasive
cases from ICIAR 2018 grand challenge on BreAst Cancer
Histology (BACH) dataset



A. Related studies

In [[14]], Rakhlin et al., proposed a deep learning-based
method for classification of H&E stained breast tissue images.
For each image, 20 crops of 400400 pixels and 650650
were extracted. Then, pre-trained ResNet-50, InceptionV3 and
VGG-16 networks were used as feature extractors. Extracted
features were combined through 3-norm pooling into a single
feature vector. A LightGBM classifier with 10-fold cross-
validation was used to classify extracted deep features. That
method achieved an average accuracy 87.2 2.6% across all
folds for classification of the breast cancer histology images.

In another study by Kwok [15]], four DCNN architectures
i.e. VGG19, InceptionV3, InceptionV4 and InceptionResnetV2
were employed for the classification of H&E stained histologi-
cal breast cancer images for both multi-class and binary classi-
fication. In that study, 5600 patches with the size of 14951495
and stride of 99 pixels are extracted from the images. Different
data augmentation methods were also employed to improve the
accuracy of the method. In Kwoks study, InceptionResnetV?2
achieved the highest accuracy of 79% for multi-class and 91%
for binary classification.

Vang et al. [16] proposed an ensemble-based InceptionV3
architecture for multi-class breast cancer image classification.
Their proposed ensemble classifier included; majority voting,
gradient boosting machine (GBM), and logistic regression to
obtain the final image-wise prediction. The Vahadane [17]
stain-normalization method was utilized to normalize the stain
images and with refinement achieved 87.50% accuracy.

Another research study conducted by Sarmiento et al. [18]
proposed a machine learning approach using feature vectors
extracted from different characteristics such as shape, color,
texture and nuclei from each image. A Support Vector Machine
(SVM) classifier with a quadratic kernel with 10-fold cross-
validation was used to classify images but only achieved an
overall accuracy of 79.2%.

Finally, Nawaz et al. [19] employed a fine-tuned AlexNet
architecture for automatic breast cancer classification. The
patches with the size of 512512 pixels from training images
were extracted and achieved an overall accuracy of 75.73% for
the patch-wise dataset and 81.25% for the image-wise dataset.

The rest of the paper is organized as follows. Motivation
and contributions are explained in next subsection. Section II
provides a detailed description of materials and the proposed
approach. Section III presents the experimental results ob-
tained from proposed network architecture. Finally, the paper
concludes in Section IV and provides future directions.

B. Motivations and contributions

Deep Convolution Neural Network (DCNN) models have
achieved promising results in various medical imaging ap-
plications [10]-[13]]. Moreover, it has been shown that data
augmentation and stain normalization pre-processing steps are
useful to get a more robust and accurate performance [20]-
[22]. These studies motivated us to explore the performance of
different well-established DCNNs and also to verify the effec-
tiveness of pre-processing and data augmentation techniques

for breast cancer assessment from histopathological images.
In the following, we list the main contributions of this study:

1) We demonstrate a new strategy for extracting bottleneck
features from breast histological images using modified
well-established DCNN networks. To learn more dis-
criminative feature maps, we combine features extracted
from convolutional layers after max pooling layers into a
single feature vector, then, we used the obtained features
as input to train a multilayer perceptron with 256 hidden
neurons to classify the breast cancer histopathology
images into four classes.

2) For further improvement of the classification per-
formance, pre-processing steps using different stain-
normalization methods are employed. These preprocess-
ing steps help to reduce the color inconsistency and
therefore lead to improved efficiency in learning high-
level features.

3) The dataset provided for this study is very small. To
increase the dataset size and improve the performance
of our model, we utilized different data augmentation
techniques such as horizontal and vertical flips, rotation,
random contrast and random brightness.

II. METHODOLOGY

In this section, the proposed method based on DCNN
architecture for training and predicting of breast cancer is
explained. In the first step, stained histological breast cancer
tissue images are pre-processed using stain normalization
techniques. In the second step, data augmentation procedures
are performed to address the issue of limited size of dataset and
optimize the performance of DCNN models. In the third step,
high-level features are extracted from pre-processed images
using proposed network architecture from well-established
DCNN models. Next, these extracted features are used as an
input to a standard multilayer perceptron classifier. Finally, the
performance of the proposed model is evaluated and reported
on test images.
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Fig. 2: Illustration of our Proposed Classification Architecture.



A. Network architecture

Feature extraction using DCNN models has achieved
promising results in extracting high-level features for differ-
ent classification tasks [23]—[23]. Since fine-tuning of well-
established DCNN architectures has not previously achieved
good performance on this dataset, for this study, we employ
the DCNN descriptor approach [26]—[28]) to extract features in
order to represent the discriminative characteristics of different
classes sufficiently. In the proposed approach, features are
extracted from the convolutional layer immediately after the
max pooling layer and then followed by a global average
pooling layer. Afterwards the extracted features are fused into
a single feature vector. The extracted features, then are fed
into a multilayer perceptron classifier for the prediction. Fig 2]
illustrates the proposed architecture for breast cancer classi-
fication. For example, as demonstrated in Fig 2] we extract
features from layers of 4, 7, 11 and 15 of VGG16 architecture,
then apply a global average pooling to the extracted features,
and next, we fuse them together to produce the final feature
vector.

B. Data pre-processing

Standardization of the H&E stained images is an essential
step before feeding the images to the deep networks. There-
fore, in the first step, we stain normalize all histopathological
images to reduce the color variation and hence have a better
color consistency. We investigate the effectiveness of popular
stain normalization techniques including methods proposed by
Macenko et al. [29], and Reinhard et al. [30]. The original and
stain normalized images are shown in Fig 3]

Fig. 3: Output of stain normalization methods: a) Origi-
nal H&E stained image, b) Macenko-normalized image, c)
Reinhard-normalized image.

Before feeding images into DCNN architectures, we also
need to apply another normalization method by subtracting
the mean RGB value of ImageNet dataset images from all
images of the training and test dataset [31]]. The ImageNet
mean RGB value is a precomputed constant derived from the
ImageNet database [32].

C. Data augmentation

The performance of the DCNN predictive models may de-
grade due to the small size of training dataset. In this regards,
different data augmentation techniques such as horizontal and
vertical flips, rotation, contrast adjustments and brightness
correction are applied to enlarge the dataset and improve the
classification performance. Some examples of in situ cases
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Fig. 4: The result of applying data augmentation techniques (a)
an original image, (b) vertical flip (c) contrast adjustments and
rotation (d) vertical flip, contrast adjustments and brightness
correction (e) vertical flip, contrast adjustments and rotation,
(f) contrast adjustments and brightness correction.

after pre-processing and data augmentation steps are shown in
Fig [
D. Pre-trained DCNN feature extractors

In this study, five DCNN architectures are employed as
feature extractors, namely InceptionV3, InceptionResNetV2,
Xception and two VGGNet models. Transfer learning is a
method widely used in different tasks. In this method a large
dataset from a source task is employed for training of a
target task using the weights trained by the images from
source dataset. The main advantage of transfer learning is the
improvement of classifier accuracy and the acceleration of the
learning process [33]]. Previous studies in the literature have
demonstrated that transfer learning also has the potential to re-
duce the problem of overfitting [35]. Although the dataset
is not the same, low-level features from the source dataset are
generic features e.g. edges, contours and curves which are
similar to the low-level features of target dataset [36].

III. EXPERIMENT AND RESULTS
A. Dataset description

The dataset used for this research is the ICIAR 2018 Grand
Challenge on BreAst Cancer Histology (BACH) Images
publicly available at [38]]. The goal of this challenge is to
develop computer analysis systems that assist pathologists
for accurate breast cancer assessment from histopathological
images. The dataset consists of 400 H&E stained histological
breast tissue images with four categories namely as benign,
normal, in-situ and invasive carcinoma evenly distributed (100
images per class). All images stored in tagged image file
format (TIFF) with a magnification factor of 200 and a pixel
size 0.42 m * 0.42 m. All images have the consistent shape of
2048 1536 pixels. We randomly divide the dataset into two
parts, 300 images are used for training and 100 images for
test data. In order to increase the size of the training dataset,
we applied different data augmentation. The class distributions



of dataset before and after data augmentation is presented in
Table [I

TABLE I: Total number of class distributions before and after
data augmentation.

Number of images for each class
Normal Benign In situ Invasive Total
Original training Data 75 75 75 75 300
Augmented training Data 1155 1155 1155 1155 4620
Original test data 25 25 25 25 100

B. Experimental Setup

We do not extract patches for this experiment, unlike
the majority of previous studies [39] [40]. All images are
downsized into 512512 pixels using bicubic interpolation and
normalized by subtracting the mean image computed from
the training set. A fully connected layer trained with ReLU
activation function and followed by a dropout [41] with a
rate of 0.5 to prevent overfitting. 51, 52 and learning rate for
Adam optimizer were set to 0.6, 0.8 and 0.001 respectively.
Weights are initialized from weights trained on ImageNet,
as suggested by [42] for all DCNNs. The batch size is set
to 32, and we set 1000 epochs to train all models. Our
experiment is implemented in Python using Keras package
with Tensorflow as deep learning framework backend and run
on Nvidia GeForce GTX 1080 Ti GPU with 11 GB RAM.
For the proposed network architectures, descriptor features are
extracted from blocks presented in Table [[I) for each pre-trained
DCNN model.

TABLE II: Features are extracted from specific blocks for each
pre-trained DCNN model.

Method Blocks

Blocks (11, 18, 28, 51, 74, 101, 120,
152, 184, 216, 249, 263, 294)

InceptionV3

InceptionResNetV2 Blocks (11, 18, 275, 618)

Xception Blocks (26, 36, 126)
VGG16 Blocks (4, 11, 15)
VGG19 Blocks (4, 7, 17)

C. Results and discussion

The proposed framework is trained on five DCNN ar-
chitectures, i.e. InceptionV3, InceptionResNetV2, Xception
and two VGGNet models. The obtained results are com-
pared with different existing stain-normalization techniques.
We started our experiments by examining the effect of the
stain normalization on performance. The performance of all
architectures are evaluated based on the overall prediction
accuracy. The obtained results of the plain architectures are
summarized in Table As shown in this Table, the Xception
and InceptionV3 architecture individually give better average
classification accuracy of 88.50%, and 84.50%, respectively.

TABLE III: Comparative analysis of the DCNN architectures
on different stain normalization techniques. Bold value indi-
cate the best result; underlined value represent the second-best
result of the respective category.

Macenko | Reinhard | Average Accuracy
Plain-InceptionV3 84.00% 85.00% 84.50%
Plain-InceptionResNetV2 | 85.00% 83.00% 84.00%
Plain-Xception 87.00% 90.00% 88.50%
Plain-VGG16 80.00% 81.00% 80.50%
Plain-VGG19 77.00% 78.00% 77.50%

TABLE IV: Evaluation results obtained from proposed net-
work architectures. An asterisk beside the model name indi-
cates a modified DCNN architecture. The best result is shown
boldface. Underlined value represent the second-best result of
the respective category.

Macenko | Reinhard | Average Accuracy
InceptionV3* 90.00% 90.00% 90.00%
InceptionResNetV2* | 90.00% 88.00% 89.00%
Xception* 91.00% 94.00% 92.50%
VGG16* 83.00% 87.00% 85.00%
VGG19* 80.00% 84.00% 82.00%

Table [[V|shows the obtained results of the proposed network
architectures as well as average classification accuracies. The
asterisk (*) indicates that the DCNN models are modified
based on the proposed network architecture. As the results
shown in Tables and of our preliminary analysis
suggest, the Reinhard stain-normalization technique could
achieve better classification accuracy than Macenko stain-
normalization technique in most of the architectures. As shown
in Table the Xception* and InceptionV3* architectures
individually gives better average classification accuracy of
92.50%, and 90.00%, respectively. Xception* architecture has
92.50% average accuracy while VGG19* and VGG16* have
average accuracies of 82.00% and 85.00%, respectively. This
means the gap in accuracy is 10.50% and 7.50%, respectively
in favor of Xception*. The gap of Xception* compared to
InceptionResNetV2* and InceptionV3*, is 3.50% and 2.50%,
respectively. So, Xception* has the best average accuracy and
the VGG19* has the worst accuracy among all counterparts.
Similar conclusions can be drawn for other models. It is
also inferred from Table that employing the Reinhard
stain-normalization method tends to give an improvement of
overall accuracy by high margin of 3.00% compared to the
Macenko stain-normalization method. The Xception* archi-
tecture proved to be most effective at classifying examples
belonging to the Normal and Invasive classes using Macenko
stain-normalization method and Benign and Invasive classes
using Reinhard stain-normalization method as illustrated in
the form of confusion matrices in Fig [3
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Fig. 5: (a) Confusion matrix of breast cancer classification us-
ing Xception* model and Reinhard et al. stain-normalization.
(b) Confusion matrix of breast cancer classification using
Xception* model and Macenko et al. stain-normalization.
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D. Comparative analysis of accuracy with other methods

For evaluating the effectiveness of the proposed method, a
comparative analysis with the results of some of the previously
published work from the same dataset is presented in Table [V}
It can be observed from Table[V]that the methods in [16]], [14],
[19], [18] and [15] give an accuracy of 87.50%, 87.20%,
81.25%,79.20%, and 79.00% respectively, whereas, the results
obtained using the network architecture used here, give an
accuracy of 92.50%. These results confirm the superiority of
our learner in terms of accuracy compared to other similar
methods.

TABLE V: Comparative analysis with other methods

Methods Accuracy
Kwok [15] 79.00%
Sarmiento et al [[18] 79.20%
Nawaz et al [19] 81.25%
Rakhlin et al [14] 87.20%
Vang et al [16] 87.50%
Proposed architecture 92.50%

IV. CONCLUSION

In this paper, we proposed an effective deep learning-based
method using a DCNN descriptor and pooling operation for
the classification of breast cancer. We also employed different
data augmentation techniques to boost the performance of
classification. The effect of different stain normalization meth-
ods are also investigated. Experimental results demonstrate
the proposed network architecture using pre-trained Xception
model outperforms all other DCNN architectures with 92.50%
in terms of average classification accuracy. For future work,
we aim to further improve the classification accuracy by
utilizing deep learning-based ensemble models and better stain
normalization techniques.
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