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Abstract—Fog and edge computing paradigms were adopted to
enable Internet of Things (IoT) applications, improving response
time and reducing network load. Task allocation algorithms are
used on IoT-enabled networks to determine the optimal software
placement. However, managing such a network is considerably
more complex than allocating the tasks. To simplify management,
we propose a general Monitor - Analyze - Plan - Execute over a
Knowledge base (MAPE-K) framework in which all requirements
for task allocation are fulfilled, and where components can easily
be adapted to the use case at hand. This research identifies
several pitfalls and proposes solutions. Additionally, we apply
this approach to a distributed testbed, comparing it to traditional
cloud approaches.
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I. INTRODUCTION

The continuous increase of Internet of Things (IoT) de-

vices allows us to better monitor, process and act on our

environment. Due to the low computational capabilities of

IoT devices, cloud servers are typically used for the actual

data processing. However, as the number of IoT devices

rises, the data load becomes a burden to the network. This

can create considerable congestion, causing IoT applications

to compete over the available bandwidth, while trying to

maintain their stability when encountering potentially large

network latencies. Wireless networks are a staple of the IoT

concept, but can further complicate things when it comes

to application reliability, with jitter and connection issues

becoming commonplace. This can cause severe complexities

for more demanding software that requires reliable and soft

real-time connections.

Fog computing has been proposed to aid in reducing these

issues [1]. This paradigm attempts to shift the software running

on the cloud closer towards the end devices, decreasing the

network load and improving application performance. The

concept is based on making use of unused general compute

resources close to the end user. A similar paradigm is edge

computing, which moves the cloud computing to edge servers

that are installed closer to the end users [2].

The perspective proposed in this study can be applied to

both fog and edge computing, since in our case, as there

is little difference in domain-specific requirements, objectives

and constraints. However, allocating the tasks to devices is

a considerable challenge, taking into account the available

hardware and network resources and the required objectives.

As the number of possible placements rises exponentially

as tasks or devices are added, it becomes infeasible for a

human user to find the best placement. Dynamic networks

with devices joining and leaving the network further push

the need for an automatic placement calculation. We propose

a methodology for tackling the problem of placing tasks

across the fog in a fully autonomous fashion. We do this by

implementing a Monitor - Analyze - Plan - Execute over a

Knowledge base (MAPE-K) control loop, and define issues

that arise when looking at a practical implementation.

II. PROBLEM STATEMENT

The core difficulty in task allocation is finding the opti-

mal placement. Large search spaces, multiple objectives and

time constraints greatly influences this. However, the actual

practical deployment can be considered an equally complex

problem. The next section will look into the complexity of

both, and defines how they fit together.

A. Task Allocation

The task allocation problem concerns the optimal placement

calculation of each task across the device network according

to one or multiple objectives while adhering to one or multiple

constraints. These objectives can include latency minimisation,

bandwidth usage minimisation, and also reducing the total

Worst-Case Execution Time (WCET) across the devices, and

minimising the energy footprint. The solution has to adhere

to several constraints, such as available bandwidth, available

device memory and maximally allowed WCET. There is exten-

sive research on optimal placement calculation, each covering

different metrics, objectives and constraints, and often working

towards a specific use-case [3]–[5].

There is a large set of design choices when solving this

problem, as defined in previous research [5], [6]. Examples



include the choice of centralised versus distributed coordi-

nation, local versus global optimization, which objectives,

which constraints, etc., all of which make defining a general

methodology complex. This task allocation problem depends

on several models, defined below.

1) Network: The network is considered a directed multi-

graph where every link is split into an up- and down-link.

This allows independent modeling, as link directions can

get throttled by network providers. The nodes represent the

devices with their corresponding capabilities.

2) Application: The application is a directed multigraph

as well, with tasks as nodes and their communication links

as edges. This application is placed over the network. If a

single monolithic application were to be deployed, little gain

would be obtained due to the lack of degrees of freedom. In

an optimal scenario, the application is a graph that contains

tasks small enough that they can be run almost everywhere.

3) Constraints: There is a multitude of constraints when

placing tasks, which are problem specific. We chose for

the subset considering Central Processing Unit (CPU) usage,

memory usage, Network Interface Card (NIC) usage, band-

width usage and application deadlines, both communication

and execution time, as defined in [6]. All these constraints

must be met, otherwise the placement is considered invalid.

4) Objectives: Once the constraints are adhered, the ob-

jectives are minimised, which are also chosen depending on

the problem at hand. These are often conflicting objectives,

as minimizing WCET pushes tasks towards the cloud whereas

minimizing latency pushes towards the end user. The trade-

off made when selecting the most important objective creates

a set of optimal solutions, called the Pareto Front, where no

objective can be further optimized without degrading another

objective. Out of this Pareto front, one solution must be

selected to use as an actual placement. We will dive into

solving approaches in Section III.

B. Task Management

The task placement problem has been shown to be quite

complex. There is, however, a considerable gap between

finding the optimal placement and the actual deployment.

One often overlooked complexity is obtaining the network

and application information for the algorithm. Fog devices are

generally a heterogeneous set of devices. Thus, the monitoring

of these devices should generate comparable metrics across

different devices with potentially different architectures. This

is, however, still open research, as the current methodologies

either examine software for very specific architectures without

resource competition, or try to estimate a bound by monitoring

the resource usage of the application [7]. Due to resource

constraints, the monitoring should use as little resources as

possible, to make room for other processes and to keep energy

usage at a minimum. Similarly, the application metrics need

to be known per device. The accuracy of all metrics must be

considered as well, as measuring detailed, yet costly, device

info might have little added value if the application metrics

lack precision. To support all approaches, we propose a general

framework to obtain these metrics.

III. METHODOLOGY

To support dynamic environments, where devices can con-

tinuously join and leave the network, the placement and mon-

itoring are required to work without any user interaction. To

achieve this, we defined a Monitor - Analyze - Plan - Execute

over a Knowledge base (MAPE-K) control loop framework

[8]. This control loop divides the problem into several steps,

each with their own challenges, as shown in Fig. 1. A central

coordination mechanism provides the computational services

required to determine optimal placements (Analysis), and con-

figures the tasks to adhere to this placement (Plan). Monitoring

and software execution are done by on-device agents, which

register themselves at the coordination mechanism. In the case

of distributed coordination mechanisms, the Analysis and Plan

phases become part of the device-specific agents. We will now

discuss the several phases of the control loop.

A. Monitoring

Monitoring the fog capabilities is in itself a considerable

challenge. The monitor should be able to determine the device

and network capabilities, which is not an easy task when

considering devices running without an Operating System

(OS). Moreover, the monitor should be able to determine the

running process load on the device and network. All this

has to happen with a minimal resource footprint, to prevent

overloading the device and to ensure other processes can still

run on-device. Recent state of the art is attempting to develop

efficient monitoring tools, with for example Fogmon, provided

by Brogi et al. [9]. We chose to develop a monitoring tool

which runs on Linux devices capable of running the Java

Virtual Machine (JVM). We used the Operating System and

Hardware Information (OSHI) library to monitor the device

capabilities and the device load [10]. This software library

enables access to the device resource metrics, such as CPU

load, memory availability and NIC usage. As we are working

with a set of heterogeneous CPU, we have to keep in mind

that tasks might use more CPU power and take longer on

different devices. We tackle this issue a priori by creating a

look-up table, which is provided to the coordinator. The table

contains a dynamically estimated CPU load, memory load and

WCET per task per device. This WCET can be measured

using research such as that of Huybrechts et al., who provide

a hybrid WCET measurement methodology [11].

Different techniques are used to measure the network capa-

bilities. First we read the Linux forwarding table and routing

table. Based on the forwarding table, each agent knows its

directly connected neighbours. Using this information, the

agent measures those links. Both the routing and forward-

ing tables are shared with the coordinator. Link latency is

measured using the ping Linux command [12]. NIC packet

measuring is used to determine the available bandwidth. An

alternative, more intrusive methodology is iperf [13]. Other

approaches exist, such as the In-band Network Telemetry



Fig. 1. MAPE-K Control Loop

(INT)-enabled architecture proposed by Haxhibeqiri et al [14].

They measure the overhead of WiFi communication, and

provide this information to the applications interested. The

agent monitors the running tasks as well. We will go into

this in more detail in the Execution stage. All information

determined by the monitoring tools is consequently sent to

the analyzer for processing and logging.

B. Analysis

The analysis stage receives all monitoring information and

stores it in its knowledge store for future reference. This stored

information allows future research in regards with predictive

maintenance and control. From the routing and forwarding

table, the analyzer infers the network graph, and then uses this

information to determine an optimal placement. The placement

is then transferred to the planning stage. Multi-Tenancy is

inherently supported, as one or more analyzers can be used,

which can support multiple applications.

1) Network Reconnection: Using the resource information

shared by the monitor stage, the analyzer first tries to create

a network graph. It determines the connections between the

vertices using their routing tables. For this we work on the

network layer implementing the Internet Layer and the Internet

Protocol. This choice reduces complexity of handling multiple

addressing protocols and multiple routing types. Using the

forwarding table, the analyzer creates links between directly

connected devices. The routing table allows the analyzer

to determine which path the data takes when crossing the

network, allowing for more accurate transfer estimates. This

is done by determining a path matrix, which contains the

shortest paths between a source device and a target IP. If

a device is not running an agent, and thus not sharing its

network information, the analyzer might no longer see how all

devices are connected. This results in an incomplete network

view, creating small islands of agents which are connected.

This is seen on the left of Fig. 2. To ensure isolated agents

can communicate, we provide Alg. 1, where N represents

the set of devices and E the set of network links. This

algorithm uses the routing table to determine which devices

have network interfaces towards other networks. All those

network interfaces then create a fully connected graph, linking

the islands together, as shown on the right in Fig. 2. Notable

here is that multiple links can be created between two devices,

depending on the number of NICs connected to the edge of

the network. Targeting a different NIC on the same device

can cause the packets to follow a different route with different

resources, which can be exploited by the analyzer.

Fig. 2. Reconnection graphs when devices are not sharing information

2) Search Space Reduction: Due to the potentially large

search spaces, reduction methodologies can be applied to facil-

itate search algorithms. One possibility is using the constraints

to remove invalid solutions in the search space, reducing the

constraint-checking load in the placement algorithm. Another

possibility is using graph matching to reduce the application

graph, as proposed in previous research [6]. This reduces the

number of possibilities while maintaining a decent solution.

3) Feature Normalization: As previously mentioned, there

are often multiple objectives. These objectives tend to have

different magnitudes, making it difficult to compare them and

weigh them together using a weighted sum approach. This

can be solved using weight-induced normalisation, where the

weights are chosen so that they scale up / scale down the



Algorithm 1: Network Reconnection

links = E;

potential links = {};

for src ∈ N do

for dest ∈ N\{src} do
out nics = queryRoutingTable(src, dest)
if out nics = {} then

out nics = {srcdefaultgateway}
end

for nic ∈ out nics do

if {src, dest, nic} /∈ links then
potential links ∪ {src, dest, nic}

end

end

end

end

for link ∈ potential links do

for back link ∈ potential links do
if linkdest = back linksrc and

linksrc = back linkdest then
E ∪ {linknic, back linknic}
E ∪ {back linknic, linknic}

end

end

end

objective. This approach, however, requires in-depth knowl-

edge about the specific problem at hand, something that is

often unavailable. Another approach exploits the Pareto front’s

edge values to determine the minima and maxima of each

objective on this front, as defined in [6]. These can then

be used to normalize the objective space. These minima and

maxima are found by running a modified NSGA-II in advance,

which estimates the border solutions of the Pareto front. These

solutions estimate the best and worst values for all objectives

on the Pareto front, giving a good range for minimization.

This approach is especially useful in scenarios where the

normalization has to happen inside of the algorithm (e.g.

Single Objective Algorithms).

4) Placement Calculation: In previous research, we fo-

cused on generalizing this problem, allowing for placements

which are problem-independent for greater flexibility, with the

disadvantage of generally having a larger search space [6].

This larger search space can be attributed to the inability of

adding problem-dependent knowledge to the search algorithm

which could reduce the search space. Multiple methodolo-

gies exist to solve multi-objective problems. One common

approach is using (Multi-Objective) Evolutionary Algorithms,

where Single Objective Genetic Algorithm and the Multi

Objective NSGA-II are key techniques [15]. Decentralized

approaches exist as well, such as Distributed Reconnaissance

Ant Colony Optimization (DRACO) [5], with a growing focus

on Multi-Objective Reinforcement Learning (RL) as well

[16]. Using such algorithms, which can be fine-tuned to the

problem, we select an optimal placement based on a single-

objective function. Several approaches exist for this, as defined

in [17], including weighted sum and lexicographic ordering.

As the network changes continuously, so do the objective

and constraint values. The analyzer has to consider this

separately to keep placements optimal, by determining if the

current task allocation still adheres to the constraints. If it

does not, a redistribution is determined and executed. In the

case that the constraints are still adhered, the analyzer still

determines a new placement, which is then compared with

the original placement and checked to see if it better adheres

to the objectives, while considering migration cost. Note that

migration is not taken into account during placement search.

This is due to the difference between task allocation and

task migration problems, as defined in [18]. Task migration

problems try to minimise the effect of migration for existing

placements, whereas task allocation problems try to optimize

the location of the tasks over the network. The short term

perspective of task migration maps poorly onto the longer

term perspective of task allocation. Although this research

uses task allocation, this can easily be swapped out by a

related task migration analyzer. We assume a minimal impact

of application migration, as solely the application state will be

migrated. The new task can be loaded early, requiring recon-

figuration of the connected tasks once the state is reloaded. All

this, however, depends on the specific application at hand. An

additional complexity is software failure detection, prevention

and recovery, and is left out of scope.

C. Plan

After analyzing the situation, the software execution is

planned. Increasing the number of configurable parameters

available for the tasks at hand improves the gain which can

be used by an advanced planner. For example, Distributed

Uniform Streaming (DUST) is designed with this high con-

figurability in mind [19]. DUST is a middleware intended to

simplify the creation and maintenance of distributed software.

It allows the dynamic manipulation of the communication

stack through configuration files, using a modular approach

of message transformers and transport protocols.

Using the placement defined by the analysis phase, the

planner maps the tasks to the agents and configures the com-

munication channels between the tasks. For channels between

tasks on the same device, the planner can configure the DUST-

oriented tasks to use IPC sockets, reducing the overhead. For

channels between tasks hosted on different devices, the planner

writes configurations for the tasks, configuring the target IP

addresses using the ZeroMQ protocol. Different protocols

are supported by DUST as well, but we leave research into

scenario-specific protocol selection depending on scenario for

future research. Given models of the communication links,

this can be further enhanced by adding compression onto

communication links which benefit from compression and

where the network is close to being congested. This concept is

further elaborated in [20]. Finally, the planner communicates

this configuration to the executing agents.



D. Execute

Depending on the information received by the planner, the

executing agent loads the tasks it has to run from storage and

launches these with the configuration imposed by the planner.

Storage can be both local or remote. To reduce complexity,

we use Docker containers for task deployment. We assume

every agent has enough storage. Upon launch, the agent starts

monitoring the deployed tasks by checking the return codes.

We assume to work with tasks which keep listening for input.

If such tasks finish, we assume a crash and re-launch the

process. Repeated crashes are alerted to the analyzer, which

then looks for a new executing agent to run the task.

E. Application Testbench

Although not a part of the MAPE-K control loop, an

application testbench can provide a considerable benefit in

controlled environments. Used before deployment, such a

testbench measures the task resource consumption, enabling

accurate placements. This does, however, require that access

to the devices in the network be obtained in advance, which is

unrealistic in highly dynamic environments, such as fog envi-

ronments with e.g. smartphones. In controlled environments,

however, we can determine the resource consumption and

WCET in advance. Moreover, the application testbench can

provide application bandwidth requirements. Using each appli-

cation’s communication configuration provided by the DUST

framework [19], the testbench can discover and connect to

these communication channels and measure the amount of data

generated to determine the worst case bandwidth consumption.

All this information is provided to the coordinator, to provide

more accurate and optimal placements.

IV. USE CASES

We will describe the use-case and subsequently the testbed.

A. Distributed AI

With rapid advancements in Artificial Intelligence (AI), in-

terest is gathering in applying it to everyday life. One example

is smart traffic lights, where multi-agent RL is used to optimize

traffic throughput. Another is predictive maintenance, where

hardware monitoring is combined with pre-trained neural

networks. It allows predicting when a certain component will

fail, which enables the preventive replacement of the defective

component, avoiding any potential downtime. We find our

distributed AI use case within Industrial IoT. Let us consider a

container terminal where cranes are continuously moving con-

tainers around and people are simultaneously walking around

to monitor the placements and items. Multiple cameras are

placed around the terminal, monitoring the employees. Using

facial recognition, activity logging and behaviour prediction,

unregistered people and unusual behaviour is reported to

the system. Moreover, using object tracking and movement

prediction, alerts are sent to alarm employees when they walk

in the path of a moving crane. We optimized for the subset

of minimising bandwidth usage, latency, WCET and energy

consumption. We will assign objective preference by weighted

sum using the ranking method.

Fig. 3. Industrial centre example

B. Testbed

The use case will be validated using custom load generators.

Stress-ng allows configurable CPU and memory loads to

generate the devices [21]. Network load was generated by

sending the determined amount of random data towards the

target task. WCET is simulated data. These load generators

were built upon the DUST Framework, and wrapped with

Docker containers [22]. This DUST framework is currently

available under an open-source license, and enabled our Ex-

ecution stage to reconfigure the software depending on the

position of the devices. To test this software, we designed

a distributed testbed where multiple devices provide Virtual

Machines (VMs). Using multiple devices has the benefit of

upscaling the network while ensuring all devices have their

own resources. The testbed makes use of IP-over-IP tunnels

to ensure communication between VMs on different devices

but on the same virtual network.

V. EXPERIMENT

We will compare the continuously running placement

methodology to a centralised cloud methodology. In the Cloud

Placement scenario, an application chain consisting of 14 tasks

is placed on the cloud server, with sensors and actuators send-

ing and receiving data, respectively. In a MAPE-K scenario,

this same application chain is distributed across the devices.

In our use-case, Fig. 3, the application is constrained in that it

cannot run in the cloud, due to latency demands. The NSGA-

II algorithm is used with a ranking-based weighting where

latency has the highest priority followed by bandwidth, WCET

and energy in descending order.

We can see some preliminary results in Fig. 4. Here,

the vertical axis represents the objectives of the algorithm,

normalized and summed together, using the ranking defined

above. This allows directly comparing placements. We can see

that the NSGA-II algorithm does slightly better than the cloud

placement. Although this result might seem not impressive,

one does have to take into account that it tends to achieve

at least the same performance as the cloud placement, while

being able to adhere to the constraints.

Do note that with domain knowledge, one might use more

efficient algorithms which work better on the scenario at hand.
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Fig. 4. Cloud Placement vs MAPE-K Approach

We chose NSGA-II as it is a stable baseline.

Also note the instability of the cloud placement solution.

Although one would suspect this to be a straight curve, with

the solution staying optimal, this is not the case, even in a

relatively static network. This is due to the dynamic behaviour

of the devices themselves and measurement precision errors.

This line fluctuates depending on the measurement quality

and the amount of other services running in the network. In

multi-tenant scenarios, this line might fluctuate intensely due

to the impact of other applications on the measurements. Using

more accurate methods to measure bandwidth, such as the

previously mentioned INT, will further stabilise this line [14].

VI. DISCUSSION

In this paper, we defined a general architecture for MAPE-K

control loops for task allocation problems. We defined the

requirements and complexities of the task allocation problem

in a practical context, and proposed several methodologies for

providing these requirements in an autonomous fashion. There

is still considerable room for improvements on every part of

the MAPE-K loop, but these are left for future research as

they are problem-specific. Although task allocation will benefit

from more accurate metrics, one should consider if finding

these metrics is worth the benefit, as determining these can be

costly. Determining the throughput of a link can be determined

using iperf, but this congests the entire link and uses precious

hardware resources to generate the packets. Our approach has

been validated against a virtual testbed, showing the strength

of autonomous task allocation.

VII. FUTURE WORK

Every step of the control loop can be further optimized

to satisfy multiple aspects of varying application domains.

Monitoring can be optimized by using network controllers to

measure the link capabilities for the coordinator. This removes

the overhead generated while measuring the link capabilities.

Additional research can be done into comparing device

capabilities. Using the processor load is a rough estimate, and

using the task-set generator to estimate WCET improves the

results. However, better results and placements can be achieved

by comparing several different devices on additional metrics,

such as on processor speed, number of cores and architecture.

The analysis can be improved with further research into

placement algorithms, such as automatic determination of the

problem type to do search space reductions. Improving the

Planning phase is dependent on the middleware used. The

higher the configurability of the middleware, the more options

the planner has to improve application performance [20].

REFERENCES

[1] M. Aazam et al., “Fog Computing Architecture, Evaluation, and Future
Research Directions,” IEEE Communications Magazine, vol. 56, no. 5,
pp. 46–52, 2018.

[2] T. Taleb et al., “On Multi-Access Edge Computing: A Survey of the
Emerging 5G Network Edge Cloud Architecture and Orchestration,”
IEEE Communications Surveys and Tutorials, vol. 19, no. 3, pp. 1657–
1681, 2017.

[3] R. Mahmud et al., “Context-aware Placement of Industry 4.0 Applica-
tions in Fog Computing Environments,” IEEE Transactions on Industrial

Informatics, vol. 3203, no. c, pp. 1–1, 2019.
[4] S. Wang et al., “Dynamic Service Migration in Mobile Edge Comput-

ing Based on Markov Decision Process,” IEEE/ACM Transactions on

Networking, vol. 27, no. 3, pp. 1272–1288, 2019.
[5] R. Eyckerman et al., “Requirements for distributed task placement in

the fog,” Internet of Things, vol. 12, p. 100237, dec 2020.
[6] R. Eyckerman et al., “Evaluation of objective function descriptions

and optimization methodologies for task allocation in a dynamic fog
environment,” in 2020 7th International Conference on Internet of

Things: Systems, Management and Security (IOTSMS), 2020, pp. 1–8.
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