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Abstract—Multi-agent reinforcement learning was performed
in this study for indoor path planning of two unmanned aerial
vehicles (UAVs). Each UAV performed the task of moving as fast
as possible from a randomly paired initial position to a goal
position in an environment with obstacles. To minimize training
time and prevent the damage of UAVs, learning was performed
by simulation. Considering the non-stationary characteristics
of the multi-agent environment wherein the optimal behavior
varies based on the actions of other agents, the action of the
other UAV was also included in the state space of each UAV.
Curriculum learning was performed in two stages to increase
learning efficiency. A goal rate of 89.0% was obtained compared
with other learning strategies that obtained goal rates of 73.6%
and 79.9%.

Index Terms—indoor path planning, multi-agent reinforcement
learning, curriculum learning, unmanned aerial vehicle (UAV)

I. INTRODUCTION

The usage of unmanned aerial vehicles (UAVs) is
widespread [1]–[4]. Among them, the quadcopter [5]–[8]
is one of the most commonly used UAVs, and it has the
advantage of being able to hover and rotate as required. There
are various methods for estimating the location of a UAV,
such as techniques utilizing global navigation satellite systems
(GNSS) [9]–[17], long-term evolution (LTE) signals [18]–[27],
enhanced long-range navigation (eLoran) system [28]–[36],
and various other techniques [37]–[41]. Additionally, depth
cameras, RGB cameras, lidar, and radar can be installed on
UAVs for collision avoidance. UAVs can be used in search
missions, aerial photography, delivery, airspace management,
and communications relays [42]–[45].

Owing to the wide use-cases of UAVs, controlling them
autonomously using artificial intelligence (AI) techniques has
been studied extensively [46]–[49]. Among them, reinforce-
ment learning is used to learn the optimal behavior in each
situation through a reward. It is mainly used in the fields of
robotics and game AI and has been widely used owing to
recent developments in deep learning.

In this study, we used reinforcement learning on two quad-
copters to find the fastest route to a target location while
avoiding obstacles. To reduce learning time and cost, and elim-
inate the risk of damage to the real quadcopter, learning was
conducted through simulation in a virtual environment. The in-
door virtual environment was implemented using Gazebo [50],

which is an open-source 3D robotics simulator. Additionally,
to improve learning performance, curriculum learning [51] was
conducted in two stages.

A curriculum learning method teaches an easier task first
before teaching a more difficult and complex activity. This
approach has benefit in terms of generalization and conver-
gence time. In the first stage of our study, a simple path to
fly to a target location in the shortest time in an obstacle-free
environment was learned. Thereafter, in the second stage, a
relatively complex task of flying to the target location in an
obstacle-added environment was learned. Curriculum learning
enables more efficient learning compared to learning complex
tasks from the beginning.

When other agents are considered as part of the multi-agent
environment, there are non-stationary characteristics of the
multi-agent environment wherein the optimal behavior varies
based on the action of other agents [52]. Thus, we added the
action of the other agent to the state space, which is a common
practice to consider the non-stationary characteristics [53].

II. VIRTUAL SIMULATION

Our simulation of multiple UAVs in an indoor virtual
environment was implemented using Robot Operating System
(ROS) [54], Gazebo [50], OpenAI Gym [55], and RLlib.
ROS is an open source meta-operating system for robotics
applications [54]. It was used in this study because it is
widely used in the robotics field and can be easily combined
with various robot software frameworks. By using the topic
communication, which is a message-passing method within
ROS, sensor and location information obtained by each UAV
were introduced into the learning environment of itself or of
the other UAV.

To implement an indoor virtual environment, a single-floor
structure of 30 m × 30 m was created using Gazebo’s internal
tool, the building editor. Figs. 1(a) and 1(b) show the obstacle-
free environment used in the first curriculum learning stage and
the obstacle-added environment used in the second curriculum
learning stage, respectively. Figs. 1(c) and 1(d) illustrate the
start and goal position candidates for the UAVs, which are
indicated by red squares.

OpenAI Gym is an open-source Python library that contains
reinforcement learning algorithms [55]. In OpenAI Gym, vari-
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Fig. 1. Indoor virtual environment

ous standard learning environments are provided as references.
A new learning environment was implemented in this study
according to the learning environment format of OpenAI Gym.
OpenAI Gym can be easily linked with PyTorch, TensorFlow,
or RLlib [56] which is a reinforcement learning algorithm
library.

III. LEARNING ENVIRONMENT

The learning time was divided into step, episode, and
iteration. A step is defined as the time to choose an action and
obtain a reward and it is the minimum time unit. An episode
refers to the time required for the task to succeed or fail, and
an iteration updates the model parameters when the episodes
have sufficiently progressed.

The size of one iteration is determined by the train batch
size parameter, which was selected as 20,000 steps in this
study. The first stage of the curriculum learning was progressed
for 150 iterations, and thereafter the second stage was contin-
uously learned for 310 iterations.

Proximal policy optimization (PPO) [57], which is a re-
inforcement learning algorithm based on the policy-gradient
method, was used in this study because it is more suitable
than reinforcement learning algorithms based on Q-learning
such as deep Q-networks [58] for situations with a continuous
state space [52], [59]. The RLlib provides the PPO algorithm
under the name of PPOTrainer. We used the RLlib and hyper-
parameter settings of [60].

A. State space

The state space was divided into two parts and the heading,
distance, and lidar data were used to determine the environ-
ment. The heading to the other UAV, distance to the other UAV,

relative heading of the other UAV, and current action of the
other UAV were used to determine its situation. In this study,
heading means the counterclockwise rotation angle required
for the UAV to look at the goal position (in radians). Distance
means the distance that the UAV needs to move when it is
looking at the goal position (in meters).

Considering the non-stationary characteristics in a multi-
agent environment, the information and actions of the other
UAV were provided, and to determine the differences in
learning performance, two models with different state spaces
were trained and compared. One included only heading,
distance, and lidar data of each UAV in the state space of
the corresponding UAV, and the other included additional
information and actions of the other UAV in the state space
of each UAV.

B. Action space

The action space consisted of forward speeds and yaw rates.
The basic forward speed and yaw rates were set to 0.5 m/s,
and π

12 rad/s, respectively. The three forward speeds were 0,
1, and 2 times the default forward speed, and the five yaw
rates were −2, −1, 0, 1, and 2 times the default yaw rate.
A negative yaw rate means counterclockwise rotation, and a
positive yaw rate means clockwise rotation. Because this study
assumed a 2D situation, the vertical velocity was set to 0.

C. Reward model

Among the two reward models used in a previous study [60],
the one that showed good learning performance was applied to
the current study. At the end of each episode, a large positive
reward is given if the task succeeds; a large negative reward
is given if the task fails. To implement movement towards
the goal position as quickly as possible, a negative reward is
given to each step. In addition, there are rewards regarding the
distance and heading to the goal position. The detailed reward
model is given in [60].

IV. SIMULATION RESULTS

In this study, three learning models were trained. Model 1
did not proceed with curriculum learning but learned directly
in the obstacle-added environment. Model 2 performed cur-
riculum learning but did not include information and actions
of the other agent in the state space. Model 3 included
information and actions of the other agent in the state space,
and performed curriculum learning.

Fig. 2 shows the goal rate of each iteration for Model 1
as a moving average value. Model 1 was trained for 460
iterations in an environment with obstacles. The goal rates
of the previous ten iterations were used to calculate a moving
average value. A maximum goal rate of 73.6% was attained
by Model 1.

Figs. 3 and 4 show the goal rate of each iteration for Models
2 and 3, respectively, as a moving average value. Models 2
and 3 were trained for 150 iterations in the first curriculum
learning stage and additionally trained for 310 iterations in the
second stage. Maximum goal rates of 79.9% and 87.0% were



Fig. 2. Goal rate for Model 1 as a moving average value

Fig. 3. Goal rate for Model 2 as a moving average value

attained by Models 2 and 3, respectively, in an environment
with obstacles.

Model 1, which did not use curriculum learning, directly
learned in the obstacle-added environment, and achieved the
lowest goal rate. In contrast, Models 2 and 3, which used
curriculum learning, achieved relatively high goal rates. Model
2 showed unstable learning progress, which is indicated by
the fluctuations of the goal rates in Fig. 3, because of the
non-stationary characteristics in a multi-agent environment.
Whereas, Model 3, which added information and actions of
the other UAV to the state space to consider the non-stationary
characteristics, showed stable learning progress compared with
Model 2. The maximum goal rates achieved by Models 1, 2,
and 3 were 73.6%, 79.9%, and 87.0%, respectively. Therefore,
Model 3 performed significantly better than the other two.

Fig. 4. Goal rate for Model 3 as a moving average value

V. CONCLUSION

In this study, we performed reinforcement learning for
multi-UAV indoor path planning. Curriculum learning was
performed in two stages to increase learning efficiency. We
showed that the cases with the curriculum learning demon-
strated higher goal rates than the other case after the same
number of iterations. It was also shown that it is important
to include the other agent’s information in the state space
when a multi-agent environment is considered. When the other
agent’s information was included in the state space, more
stable learning progress and higher goal rates were achievable.
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[45] F. Ho, R. Geraldes, A. Gonçalves, M. Cavazza, and H. Prendinger,
“Improved conflict detection and resolution for service UAVs in shared
airspace,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1231–1242,
2019.

[46] S. Kouroshnezhad, A. Peiravi, M. S. Haghighi, and A. Jolfaei, “Energy-
efficient drone trajectory planning for the localization of 6G-enabled IoT
devices,” IEEE Internet Things J., vol. 8, no. 7, pp. 5202–5210, 2021.

[47] P. Chhikara, R. Tekchandani, N. Kumar, V. Chamola, and M. Guizani,
“DCNN-GA: A deep neural net architecture for navigation of UAV in
indoor environment,” IEEE Internet Things J., vol. 8, no. 6, pp. 4448–
4460, 2021.

[48] S. Kim, J. Park, J.-K. Yun, and J. Seo, “Motion planning by reinforce-
ment learning for an unmanned aerial vehicle in virtual open space with
static obstacles,” in Proc. ICCAS, 2020, pp. 784–787.

[49] J. Lai, K. Cai, Z. Liu, and Y. Yang, “A multi-agent reinforcement
learning approach for conflict resolution in dense traffic scenarios,” in
IEEE/AIAA DASC, 2021, pp. 1–9.

[50] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proc. IEEE/RSJ IROS, vol. 3,
2004, pp. 2149–2154.

[51] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. ICPS, 2009, p. 41–48.

[52] S. Y. Jang, H. J. Yoon, N. S. Park, J. K. Yun, and Y. S. Son, “Research
trends on deep reinforcement learning,” Electronics and Telecommuni-
cations Trends, vol. 34, no. 4, pp. 1–14, Aug. 2019.

[53] G. Papoudakis, F. Christianos, A. Rahman, and S. V. Albrecht, “Dealing
with non-stationarity in multi-agent deep reinforcement learning,” 2019,
arXiv:1906.04737.

[54] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: An open-source robot operating system,”
in Proc. ICRA Workshop on Open Source Software, vol. 3, Jan. 2009.

[55] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” Jun. 2016, arXiv:1606.01540.

[56] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gon-
zalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for distributed
reinforcement learning,” in Proc. ICML, vol. 80, Jul. 2018, pp. 3053–
3062.

[57] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” Jul. 2017, arXiv:1707.06347.

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” 2013, arXiv:1312.5602.

[59] M. Klissarov, P.-L. Bacon, J. Harb, and D. Precup, “Learnings options
end-to-end for continuous action tasks,” Nov. 2017, arXiv:1712.00004.

[60] J. Park, S. Jang, and Y. Shin, “Indoor path planning for an unmanned
aerial vehicle via curriculum learning,” in Proc. ICCAS, 2021, pp. 529–
533.


	I Introduction
	II Virtual simulation
	III Learning environment
	III-A State space
	III-B Action space
	III-C Reward model

	IV Simulation results
	V Conclusion
	References

