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Abstract—Depression is a global burden and one of the most
challenging mental health conditions to control. Using the BDI
questionnaire, experts can detect its severity early, administer
appropriate medication to patients, and impede its progression.
Owing to the fear of potential stigmatization, many patients
turn to social media platforms such as Reddit for advice and
assistance at various stages of their journey. This research
extracts text from Reddit to facilitate the diagnostic process,
employs a proposed labelling approach to categorize the text,
and subsequently fine-tunes the Longformer model. The model’s
performance is compared against the baseline models, including
Naive Bayes, Random Forest, Support Vector Machines, and
Gradient Boosting. Our findings reveal that the Longformer
model outperforms the baseline models in both English (48%)
and Luganda (45%) languages on a custom-made dataset.

Index Terms—Depression Severity, Longformer, BART, fine-
tuning, Luganda, Reddit

I. INTRODUCTION

Mental health disorders are prevalent worldwide and are
predicted to be the leading cause of disease burden by 2030
[1]. Amongst them, major depressive episodes (depression)
is a common psychiatric condition that can be challenging
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to manage due to its various presentations, unpredictable
course and prognosis, and variable response to treatment [2].
Access to professional mental health assessment, care, and
resources is often limited to a general demographic. First,
detecting a patient’s severity level is important to provide
proper medication and prevent its advancement to stages that
can lead to suicide tendencies and death. To this end, when
diagnosing depression, doctors use the Beck Depression Inven-
tory (BDI) questionnaire. This 21-question multiple-choice has
a set of four (4) possible choices for each question, ranging
in severity. It can be self-administered, and the obtained score
will determine a depression severity categorized into either
of the six; normal, mild, moderate, borderline, severe, and
extreme []3|]. This resource-intensive task is hard to administer,
especially in resource-constrained settings and societies where
mental health patients are stigmatized. With this fear, many
patients resort to using social media to anonymously share and
receive global feedback from people with similar conditions,
recovering patients, and experts. One example is Reddi a
platform allowing users to post and exchange ideas freely.
This social media platform has over 57 million daily active
users, with over 100,000 active communities. It also has over
50,000 daily active moderators [4]. The modulation can be
done by moderators, administrators and a modulation tool
(AutoMod), and if the content violates the platform terms of
use, it is removed. In 2022 3.7% of the total content created
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was removed [5]].

Text collected from Reddit for types of depression classifica-
tion purposes is usually labelled by experts, trained personnel
[6], or according to the corresponding category of the mental
illness it is associated with [7]], [8]]. This classified text is then
used to train machine learning or deep learning models, an
approach that is not new. [9]. Razavi et al. [[10] used the BDI-
IT to measure the severity of depression on a wide array of
machine learning classification algorithms. Similarly, BDI-II
was used in a study exploring the diagnostic ability of three
machine learning methods for evaluating the depression status
of Chinese recruits [11].

Transformer based models such as BERT [12], [13] have
been fine-tuned on Reddit text for classification tasks [14]],
[15]. [16] modified BERT for Multiple Choice Question
Answering (MCQA) to predict users’ answers to the BDI-II
questionnaire. Variants such as RoBERTa [17]] have been used
to classify mental health disorders such as depression, anxiety,
bipolar disorder, Attention Deficit Hyperactivity Disorder, and
Post Traumatic Stress Disorder [8]]. Using pre-trained models
can maximize data efficiency, allowing for effective fine-
tuning on smaller task-specific datasets. One of the setbacks
of models that use the original attention mechanism is that
they are limited to handling a maximum of 512 tokens. This
is because the self-attention mechanism scales quadratically.
The Longformer model was invented to solve this limitation.
It uses the local window attention to scale linearly and global
attention to attend to the entire sequence [18]]. It can handle
eight times longer tokens than BERT, an attribute necessary
to process longer texts (e.g., from Reddit) to detect severity
levels more precisely. The Longformer model has been used
in clinical text and outperforms clinical-BERT and clinical-
Big Bird models [19]. It has been used to detect depression in
users from web-based forums [20]], and predicts differential
responses to antidepressant classes using electronic health
records [21].

Most of these models have been trained in English, leaving
low-resource languages like Luganda unattended. Luganda
is one of the morphologically rich Bantu languages spoken
in Uganda by over half of the population and neighboring
East African countries. Funding for mental health services
in Uganda remains low by international standards, with only
1% of GDP allocated for mental health services [22]]. This
lack of resources has limited access to mental health services,
particularly in rural areas [23]]. Furthermore, language and
cultural norms influence communication about mental health
topics experienced by patients receiving mental health
treatment [24]]. Therefore, in such a multilingual society, it is
important to provide various avenues to handle mental health
problems, particularly depression.

In this
aspects;
1) introducing a method for labelling social media text
through a combination of keyword matching, a context-
aware BART model, and an expert, and

research, our objectives encompass two main

2) refining the Longformer model’s performance in classi-
fying depression severity using fine-tuning, while focus-
ing on both English and Luganda languages.

II. METHODS

A. Data collection

Using the PRAW API, we collected a total of 1807 sen-
tences from the r/depression subreddiﬂ The community ranks
805 with 972,203 subscribers [25]]. It was assumed that the
majority of the people who post under this subreddit have had
a long-standing period of depression, as seen in the sample
text below [sic];

“I feel like a complete failure. I can’t hold down a job
and am getting a medical withdrawal from my semester in
university. 1 feel like a waste of time and so much wasted
effort for this school semester plus all the money. I'm having
the hardest time doing basic self care activities like showering
and changing my clothes. I feel so incredibly isolated and yet
I keep ignoring peoples texts. I do not know what to do and I
am sleeping around 12 hrs a night. I feel very very hopeless.
Was just diagnosed with major depressive disorder and c-
ptsd. Don’t know where to go from here but trying to hold on.”

The collected text was pre-processed to input for the
models. First, every paragraph was converted to lowercase
words. Then, stop words, unnecessary punctuations, spaces,
and hyperlinks were removed.

B. Data labelling

1) Keyword extraction and matching.

Using NLTK [26], a list of keywords were extracted
from the 21 questions of the BDI questionnaire, while
retaining the corresponding scores ranging from 0 to 3.
A score of 0 indicates the absence of a symptom, while
a score of 3 indicates the most severe manifestation of
a symptom.

Pattern matching was then conducted on each of the
extracted sentences. A score value was assigned for
every word match and aggregated to calculate a total
score. The label was assigned based on the score range,
as depicted in Figure [I] following the original BDI
scoring standard.

2) Classification with BART. In this approach (Figure
[2), we supplied the extracted text and the BDI severity
labels to a pre-trained transformer-based BART model
[27]. This model includes scientific text and medical
content in its training stage.

3) Domain expert.
This labelling was performed by a Psychiatrist who
assigned the labels considering the BDI questionnaire
and their expertise (Figure [3).
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Fig. 2. BART model for labelling.

4) Selecting the final label.
The final label for the input text was assigned by
weighted majority voting. The labels from 1), 2) and
3) were aggregated; the label was immediately assigned
if the three agreed. If only two agreed, then that was
the resulting label, and if none of them agreed, the final
label was the expert’s (Figure H).

Finally, we obtained a labelled dataset with six classes:
normal, mild, borderline, moderate, severe, and extreme. How-
ever, the “borderline” class was merged with the "mild” class
labels, and the “extreme” class was merged with the “severe”
class due to a low sample count of 17 and 23, respectively.
Table [[] shows the final class distribution.

TABLE I
DATA DISTRIBUTION FOR THE FINAL SYNTHETIC LABELLED DATASET,
FOR VALIDATION (V) AND TESTING (T).

Label Total English(V/T) Luganda(V/T)
Normal 301 12/14 12/11

Mild 255 17/16 12/12
Moderate 372 15/14 21/21
Severe 215 13/14 12/14
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Extreme
Fig. 3. Expert manual labelling.
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Fig. 4. Final label selection using weighted majority voting.

C. Classification models

We used GoogleE| to translate the input text from English
to Luganda. The dataset was shuffled for each language and
divided into training, testing, and validation. The training set
was oversampled with the synthetic minority over-sampling
technique (SMOTE) algorithm to address class imbalances
28]

For the final classification, we fine-tuned the Longformer
model. This model has the ability to handle longer sequences
of more than 512 tokens. It adjusts its attention mechanism for
long sequences by combining strategies to lessen the compu-
tational constraints of processing such sequences. It attends to
key parts of the input sequence using a combination of global
and local attention methods, allowing it to capture long-range
dependencies of the input sequence. It also employs an inter-
attention mechanism that computes a distinct representation
of the input for each output step, allowing the decoder to
effectively “look at” the input’s relevant part(s) for each output
step. As a result, the encoder is relieved of the burden of
encoding all information about the input sequence into a fixed-

3https://translate.google.com/



size rich representation vector. It has performed well in various
tasks such as machine reading comprehension, summarization,
and question answering [29].

We used the Longformerﬂ model provided by the Hugging-
Face library [30]. The model consists of a default configuration
of a hidden size of 768, 12 attention heads, an attention
window size of 512, and 12 layers. The average number
of characters per input varied between both languages, with
English comprising 893 characters and Luganda 1776.

To optimize the model, we performed a hyperparameter
search involving 8, 16, and 32 batch sizes, and learning
rates ranging from le-1 to Se-1. Additionally, early stopping
was implemented. Model performance evaluation on validation
and testing sets was based on precision, recall, Fl-score and
accuracy metrics.

After converting our data using TF-IDF, the following
machine learning models were employed as baseline models:
Naive Bayes (NB) classifier, Random Forest (RF), Support
Vector Machines (SVM), and Gradient Boosting (GB).

III. RESULTS

The models were trained on Luganda and English, sepa-
rately, and validated. Subsequently, they were evaluated using
the test dataset (Table [[). Precision, recall, and F-1 score were
calculated for each severity level. The overall accuracy was
calculated for each of the models employed (Table[[T|and Table
).

Regarding the English dataset in Table[II, the Random For-
est model achieved the highest accuracy among the baseline
models on the testing set (43%). The gradient boosting model
failed as it could not predict any of the samples in the severe
class. SVM had the lowest performance (41%). On the other
hand, the Longformer model outperformed the baseline models
with an accuracy of 48%. The hyperparameters used included
a batch size of 16, a learning rate of 5e-5, and a dropout rate
of 0.1.

For the Luganda dataset, similar to English, the random
forest achieved the highest accuracy (40%), while SVM and
GB performed poorly with failure to predict any of the samples
in Mild and Severe classes respectively. However, unlike
English, Naive Bayes achieved the lowest value (34%). The
fine-tuned Longformer model achieved the highest accuracy of
45%, as shown in Table The hyperparameters used were a
batch size of 16, and a learning rate of 4e-4.The performance
did not require a dropout layer, as its inclusion negatively
impacted the experiments.

IV. CONCLUSION AND FUTURE WORK

With our success in fine-tuning the Longformer model on
Luganda and English text to detect the severity of depression
using a custom-made dataset from Reddit, we have shown
that the longformer model can be finetuned on both languages
outperforming machine learning models, that acted as baseline
models.

“https://huggingface.co/allenai/longformer-base-4096

TABLE 11
PERFORMANCE METRICS FOR DIFFERENT MODELS ON ENGLISH
Model
Class Metric NB RF SVM  GB  Longformer
Precision  1.00 0.69 0.10  0.58 1.00
Recall 0.50 0.79 0.50  0.50 0.57
Normal F-1 0.67 0.73 0.67 0.54 0.73
Precision  0.23 0.45 0.50 0.28 0.37
Recall 0.19 0.31 0.12 044 0.69
Mild F-1 0.21 0.37 0.20 0.34 0.48
Precision  0.15 0.27 0.28 0.24 0.34
Recall 0.14 0.57 0.79  0.36 0.43
Moderate F-1 0.15 0.36 0.21 0.29 0.39
Precision  0.44 0.10 0.57 0.00 1.00
Recall 0.79 0.07 0.29  0.00 0.21
Severe F-1 0.56 0.13 0.38  0.00 0.35
Accuracy 0.40 0.43 0.41 0.33 0.48

Performance Analysis by Severity Level

TABLE I
PERFORMANCE METRICS FOR DIFFERENT MODELS ON LUGANDA
Model
Class Metric NB RF SVM  GB  Longformer
Precision  1.00 0.43 1.00  0.22 1.00
Recall 0.45 0.83 0.67 0.92 0.55
Normal F-1 0.62 0.57 0.80 0.35 0.71
Precision  0.07 0.27 0.00  0.50 0.30
Recall 0.08 0.25 0.00 0.17 0.50
Mild F-1 0.08 0.26 0.00 0.25 0.37
Precision  0.38 0.41 047 033 0.45
Recall 0.29 043 090  0.05 0.43
Moderate F-1 0.32 0.42 0.62  0.08 0.44
Precision  0.35 1.00 0.86  0.00 0.42
Recall 0.57 0.08 0.50  0.00 0.36
Severe F-1 0.43 0.15 0.63  0.00 0.38
Accuracy 0.34 0.38 040 0.24 0.45

Performance Analysis by Severity Level

We have also demonstrated that despite Luganda not being
one of the languages originally trained with the Longformer
model, it was successfully fine-tuned. However, we believe
that training the Longformer model with the Luganda language
and subsequently fine-tuning it could potentially yield better
results.

The dataset used was small, and hence this is presumably
the reason why the baseline machine learning models failed.
A large dataset could improve the overall performance of all
models and provide more samples for the severe and moderate
classes.

The use of Google Translate as a machine translation model
also affected the performance of the Luganda experiments. The
service of a linguistic expert could be employed for a better
translation output.
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