
This item is the archived peer-reviewed author-version of:

FCFS tree algorithms with interference cancellation and single signal memory
requirements

Reference:
Peeters Gino, van Houdt Benny.- FCFS tree algorithms with interference cancellation and single signal
memory requirements
International Workshop on Multiple Access Communications (MACOM), Saint-Petersburg, Russia - 2008, p. 468-473
Handle: http://hdl.handle.net/10067/712750151162165141

Institutional repository IRUA

http://hdl.handle.net/10067/712750151162165141
http://anet.uantwerpen.be/irua

FCFS Tree Algorithms with Interference Cancellation
and Single Signal Memory Requirements

B. Van Houdt and G.T. Peeters
University of Antwerp - IBBT, Middelheimlaan 1, B-2020 Antwerp, Belgium

Abstract

Tree algorithms are a well studied class of collision res-
olution algorithms for solving multiple access control prob-
lems. Signal interference cancellation, which allows one to
recover additional information from otherwise lost collision
signals, has recently been combined with tree algorithms,
providing substantially higher maximum stable throughputs
(MST). We propose two novel First-Come-First-Served tree
algorithms, the operation of which is similar to the well-
known 0.4871 FCFS tree algorithm, that exploit interfer-
ence cancellation and derive their MST. Both these algo-
rithms are also designed such that, at all times, at most one
signal must be stored.

Keywords: Random-access, Maximum stable through-
put, Interference cancellation

1. Introduction

Multiple access channels have been used as key compo-
nents in the design of various access network technologies.
For instance, random access schemes are used to share the
available bandwidth in 802.11 networks as well as in 10
and 100Mbit Ethernet systems (in combination with carrier-
sense and/or collision-detection mechanisms). In point-
to-multipoint access networks, such as hybrid-fiber-coaxial
(HFC) networks (i.e., DOCSIS networks) and DVB-RCS
satellite networks, random access channels are supported
such that end-users can specify their uplink bandwidth re-
quirements to the network via fixed length control messages
in a multiple access manner. Although all these random ac-
cess channels rely on the well known binary exponential
backoff (BEB) algorithm (or a simple ALOHA scheme),
tree algorithms have been recognized as important (if not,
superior) contenders during the development of the 802.14
standard [6, 5] for HFC networks (however, the 802.14 stan-
dardization process was prematurely terminated by the in-
troduction of the DOCSIS standard).

Tree algorithms also strongly outperform the class of
backoff algorithms (including the BEB) in terms of their

maximum stable throughput (MST) [1]. In the standard
information theoretical setting, the MST is defined as the
highest possible (Poisson) input rate for which a packet
has a finite delay with probability one. The first tree al-
gorithms were independently developed in the late 1970s
by Capetanakis [3] and Tsybakov, Mikhailov and Vveden-
skaya [11]. These algorithms were the first to have a prov-
able MST above zero. Afterwards new tree algorithms were
developed with MSTs as high as 0.4878 using the standard
information theoretical multiple access model [1, 4, 10].

A random access protocol consists of two components:
the channel access protocol (CAP) and the collision reso-
lution algorithm (CRA). The CAP specifies the rules that
users need to follow when transmitting a new packet for the
first time. The CRA informs the users about the algorithm
used to resolve collisions (i.e., simultaneous transmissions).
The easiest CAP is free access, meaning new packets may
be transmitted without further delay. Other important CAPs
include blocked (or gated) and windowed (or grouped) ac-
cess.

When blocked (or gated) access is used, an initial colli-
sion of n stations causes all new arrivals to postpone their
first transmission attempt until the n initial stations have re-
solved their collision. The time elapsed from the initial col-
lision until the point where the n stations have transmitted
successfully is called the collision resolution period (CRP).
Suppose that m new packets are generated during the CRP.
Then, a new CRP starts (with m participants) when the pre-
vious CRP (with n stations involved) ends. In short, when
the blocked access mode is used new arrivals are blocked
until the CRP during which they arrived has ended. They
will participate in the next CRP.

Finally, windowed (or gated) access works as follows.
Suppose that the random access scheme is activated at time
k = 0. The unit of time is defined as the length of a slot, so
that the i-th transmission slot is the time interval (i, i + 1].
A second time increment α0 is chosen and the i-th arrival
window is defined as the time interval (iα0, iα0 + α0] (α0

is not necessarily an integer value). The first transmission
rule used by this algorithm is as follows: transmit a new
packet that arrived during the i-th arrival window in the first

“utilizable” slot following the CRP that resolves the pack-
ets belonging to the (i−1)-th arrival window. The modifier
“utilizable” reflects the fact that the CRP of the (i−1)-th ar-
rival window might end before the i-th arrival window itself
has ended. If so, a number of transmission slots is skipped
until the i-th arrival window ends. One could improve the
algorithm by shortening the i-th arrival window. This com-
plicates the analysis and has no influence on the maximum
stable throughput.

When a binary tree algorithm is used in combination
with windowed access, a collision of n packets belonging
to the same window of length α0 will cause them to split
into 2 groups. Packets that arrived during the first, resp. sec-
ond, half of the window join the first, resp. second, group.
Stations joining the first group retransmit in the next slot
(which therefore corresponds to a size α0/2 window) and
resolve a possible collision recursively, while the packets
of the second group must wait until the first group is com-
pletely resolved before applying the same algorithm. No-
tice, using this CRA algorithm with windowed access guar-
antees that the packets are received in a First-Come-First-
Serve (FCFS) order. Two important improvements have
been made to this scheme. First, if a first group is empty
(and thus resolved in one slot), we can immediately split
the second group as it is certain to hold a collision. Second,
if the first group, corresponding to some length 2−iα0 win-
dow, holds a collision, we know nothing about the size of
the second group, as such the window of the second group
is postponed to the next CRP and all the subsequent initial
size α0 windows are shifted forward by 2−iα0.

The 0.4878 MST realized under the standard informa-
tion theoretical model, has been exceeded in various man-
ners by introducing additional mechanisms not available
under the standard model, such as energy measurement
techniques to determine the collision multiplicity [8] and
an additional control field/bit with separate feedback [7].
Recently, the SICTA algorithm which uses successive inter-
ference cancellation (SIC) mechanisms, was designed and
shown to achieve an MST as high as 0.693 [12]. SICTA
uses a blocked access CAP and requires a (theoretically)
unbounded amount of memory for storing signals (actu-
ally, SICTA with windowed access performs optimal when
α0 = ∞, which corresponds to blocked access). The inter-
ference cancellation mechanism works as follows. Consider
two signals a and b, where b contains the combination of
signals B1, . . . , Bn. We denote a−b as the interference can-
cellation operation, which only results in a valid signal if a
consists of B1, . . . , Bn, A1, . . . , Am, and has A1, . . . , Am

as a result. Thus, when combined with a tree algorithm,
interference cancellation offers the possibility to obtain the
signal of the second group by cancelling the signal of the
first group from the joint signal, removing the need to assign
a slot to the second group, thereby significantly improving

the channel throughput.
In [9] we introduced a novel tree algorithm using SIC for

the free access CAP that requires the storage of at most one
signal at a time, achieving minimal memory requirements.
The MST of this algorithm was proven to be 0.5698, us-
ing tree-like processes [2]. In this paper we propose and
analyze two novel tree algorithms that both have the same
memory limitations as in [9], i.e., only a single (collision)
signal can be stored at any given time. Both use a win-
dowed access mechanism and the packets are received in a
FCFS order. If the single memory location contains a sig-
nal at time k and the slot (k, k + 1] corresponds to some
arrival window (T (k), T (k)+2−iα0], the stored signal will
correspond to the collision signal of the arrival window
(T (k), T (k) + 2−(i−1)]. The first algorithm only cancels
successful transmissions from the stored signal (if any) to
gather information about the second group and achieves an
MST of 0.6048. The second algorithm also cancels the col-
lision signals and uses part of the information revealed by
these cancellations to further increase the MST to 0.6173.
It is not hard to further improve this MST by dropping the
FCFS requirement.

The paper is structured as follows. In Section 2 we start
by briefly discussing the well known FCFS tree algorithm
with an MST of 0.4871 [1] (the 0.4878 algorithm is ob-
tained from this algorithm by allowing a minor difference
between the window length of the first and second group).
Section 3 discusses and analyzes the FCFS tree algorithm
with success cancellation, while in Section 4 the improved
scheme that also cancels collisions is introduced and ana-
lyzed.

2. The 0.4871 FCFS splitting algorithm

The celebrated 0.4871 FCFS splitting algorithm [1] de-
termines the users who are allowed to transmit next based
on the arrival time of their packet ready for transmission.
At any time k, three values are used: T (k), α(k) and σ(k).
T (k) indicates the start of the current allocation interval,
users who generated their packet during this interval are al-
lowed to transmit at time k. All packets generated before
time T (k) have been transmitted successfully. The length
of the allocation interval is α(k). For all initial windows it
is set equal to the minimum of α0, a protocol parameter, and
k − T (k) (such that the allocation window does not exceed
time k). The last value σ(k) indicates whether the alloca-
tion window is a left (L) or a right (R) branch in the splitting
tree, where for an initial window we set σ(k) equal to R.

When σ(k) = R, the packets generated in the time in-
terval (T (k) + α(k), k], which we call the waiting window,
must wait for the next initial window. If there is no colli-
sion in an R window, a new initial window is started, other-
wise the R window w is split into an L and R window both

2

having half the size of w and the L window becomes the
allocation window. When σ(k) = L, the interval (T (k), k]
consists of the allocation window (T (k), T (k) + α(k)], its
corresponding R window (T (k)+α(k), T (k)+2α(k)] and
the waiting window (T (k)+2α(k), k], holding arrivals that
must wait for the next initial window. Thus, at all times,
there is at most one R window. When an L window holds a
collision it will split in a smaller L and R window, while the
corresponding larger R window becomes part of the wait-
ing window. The logic behind this approach is that when
an L window holds a collision, we have no information at
all about its corresponding R window (which was part of
the same collision), therefore there is no use in treating it
separately.

The operation of this algorithm, which is illustrated in
Figure 1, can be summarized as follows. If the current slot
at time k − 1 holds a collision, we have

T (k) = T (k − 1),

α(k) =
α(k − 1)

2
,

σ(k) = L. (1)

If it holds a success and σ(k − 1) = L, we continue with
the R window

T (k) = T (k − 1) + α(k − 1),
α(k) = α(k − 1),
σ(k) = R. (2)

When it is empty and σ(k − 1) = L, we know that the R
window must hold a collision, so this window is split im-
mediately

T (k) = T (k − 1) + α(k − 1),

α(k) =
α(k − 1)

2
,

σ(k) = L. (3)

While if there was a success (or empty slot) with σ(k−1) =
R, we initiate a new initial window:

T (k) = T (k − 1) + α(k − 1),
α(k) = min(α0, k − T (k)),
σ(k) = R. (4)

This algorithm can be adapted such that all initial windows
have a length of α0, by leaving the channel idle during
the interval (k, T (k) + α0] in case T (k) + α0 > k, i.e.,
k − T (k) < α0. The maximum stable throughput is not af-
fected by this modification and simplifies its analysis. The
same simplifications will be used for the analysis of the new
FCFS algorithms.

ABCDE ABC BC B C DEFG DE D E ...

ABCDE

ABC

BC

B C

DE

DEFG

DE

ED

A B C D E F G

CRP CRP ...

A

A

Arrivals:

Splitting Tree:

Resolution:

Initial Window

Initial Window

Figure 1. Illustration of the FCFS algorithm

3. A 0.6048 FCFS tree algorithm with success
cancellation

The first of the two proposed algorithms will exploit the
interference cancellation mechanism by retrieving the con-
tent of the R window, whenever its corresponding L win-
dows holds a success. Thus, the single memory location al-
ways stores the signal of the last unsuccessful transmission.
If the content of the R window does not hold a collision, we
can immediately skip the R window as well, meaning (2)
changes to

T (k) = T (k − 1) + 2α(k − 1),
α(k) = min(α0, k − T (k)),
σ(k) = R, (5)

when the interference cancellation operation reveals either
an empty of successful slot in the R window. Otherwise, the
R window holds a collision, meaning we can immediately
split it

T (k) = T (k − 1) + α(k − 1),

α(k) =
α(k − 1)

2
,

σ(k) = L. (6)

As showed by Figure 2, the only R windows that correspond
to an actual transmission on the channel in this adapted al-
gorithm are the initial windows, all other allocation win-
dows correspond to an L window. This property makes it
very easy to determine the maximum stable throughput as
we shall see below.

We denote the system state at time k as i, if the slot at
time k is the i-th slot following the last initial window, for
i ≥ 0. Thus, for i = 0, the current allocation window is an
R window, while for all other i values, it is an L window.
Denote pi,j as the probability that the system state makes
a transition from state i at time k to state j at time k + 1.
Assuming Poisson arrivals with rate λ and defining Gi =
2−iλα0, we have

p0,0 = (1 + G0)e−G0 ,

3

ABCDE ABC SKIP B SKIP DEFG DE D SKIP ...

ABCDE

ABC

BC

B C

DE

DEFG

DE

ED

A B C D E F G

Initial Window

CRP CRP ...

A

A

Arrivals:

Splitting Tree:

Resolution:

Initial Window

Figure 2. Illustration of the 0.6048 FCFS tree
algorithm with success cancellation

as 0 or 1 arrivals in the initial R window results in a new ini-
tial window (see (4)). Otherwise, an initial slot is followed
by an L slot, thus p0,1 = 1− p0,0. For i > 0, we have

pi,0 =
(Gie

−Gi)(Gie
−Gi)

(1− (1 + Gi−1)e−Gi−1)
=

G2
i

e2Gi − (1 + 2Gi)
,

as the stored signal of the size 2−(i−1)α0 slot must hold two
packets and one of them is located in the current L window
(see (5)). In all other cases, the system state i will change
to state i + 1, meaning pi,i+1 = 1− pi,0.

Define a conflict resolution period (CRP) initialized by
an (initial) R window as the R window itself followed by all
the L windows until the start of the next (initial) R window.
Let E{k} denote the mean time needed to resolve a CRP
(in slots), then due to the possible probabilities presented
above, we have

E{k} = 1 +
∞∑

i=1

pi,

where pi denotes the probability that the CRP lasts more
than i slots, i.e., that state i is visited before the CRP ends,
meaning pi = p0,1

(∏i−1
j=1 pj,j+1

)
= pi−1(1− pi−1,0), for

i > 0. Thus, E{k} can be evaluated very easily as the terms
of this summation rapidly decrease to zero.

Let E{f} be the fraction of the initial size α0 window
that is shifted to the waiting window during the CRP due to
possible collisions in the L windows of the CRP. The frac-
tion lost for a collision in the i-th L window is 2−i, yielding

E{f} =
∞∑

i=1

2−ipi
1− (1 + Gi)e−Gi

1− (1 + Gi−1)e−Gi−1
,

where the fraction gives the probability that the i-th L win-
dow holds a collision given that the i− 1-th L window held
a collision.

In order to have a stable system, the average length E{k}
of a CRP must be less than the average distance that the

starting point of the allocation window advances between
two (initial) R windows, which equals α0(1 − E{f}). We
can rewrite this as

λ <
(λα0)(1− E{f})

E{k}
,

where the right hand side of this equation is a function f
of λα0. By numerically maximizing this function, denot-
ing xmax as the point in which the maximum is reached
and f(xmax) as the maximum value, we obtain the high-
est possible maximum stable throughput λmax by setting
α0 = xmax/f(xmax). For the function above, the maxi-
mum is reached in λα0 = 1.613, resulting in α0 = 2.666
and λmax = 0.6048 (with E{f} = 0.1355 and E{k} =
2.3053). These values have also been confirmed using sim-
ulation experiments.

Remark: The following approach is very effective when
verifying the stability of this algorithm by simulation. As-
sume that the start of the current allocation window equals
T , meaning all packets generated in (0, T] have been re-
ceived correctly. Let S be the number of slots used to re-
solve the interval (0, T], without taking into account the idle
periods inserted whenever T (k) exceeded k. Then, stability
implies that S − T will decrease to minus infinity (due to
the recurrent presence of the idle periods), otherwise S−T
will increase to plus infinity.

4. A 0.6173 FCFS tree algorithm with success
and partial collision cancellation

In the previous section we indicated how to benefit from
a successful transmission that follows a collision. When
a collision is followed by an empty slot, there is nothing
to cancel and we use the standard approach given by (3).
However, when a collision c is followed by another colli-
sion cL (in an L window), we can retrieve information about
the R window that becomes part of the waiting window due
to the cL collision. That is, we know whether this R win-
dow holds zero, one or more packets. Notice, whenever the
R window holds a single packet, it can be retrieved from
the cancellation operation, however as this would cause the
packet to be out-of-order, such packets will be retransmit-
ted as explained below. When the R window holds one or
more packets, we cannot store the signal obtained from the
cancellation as we use the single memory location to store
the cL signal.

In order to keep the operation of the algorithm simple,
we will only exploit the information about the last, if any,
R window that became part of the waiting window during
a CRP. Thus, during a CRP, we keep track of the size αR

of the last postponed R window and whether this window

4

ABCDE ABC SKIP B SKIP DE D E FG ...

ABCDE

ABC

BC

B C

DE

FG

A B C D E F G

Initial Window

Initial Window

CRP CRP ...

A

A

Arrivals:

Splitting Tree:

Resolution:

Initial Window

DE

D E

Figure 3. Illustration of the 0.6173 FCFS tree
algorithm with success and partial collision
cancellation

held one or more packets. When a CRP ends at time k, the
algorithm works as follows (see Figure 3):

• If the last postponed R window was nonempty, the
next initial window is no longer of length min(α0, k−
T (k)), but has length αR < min(α0, k − T (k)).
Hence, the new CRP will start with either a success-
ful transmission or a collision (in order to retrieve the
collision signal of the last postponed R window).

• If the last postponed R window was empty, we can
immediately advance the start T (k) of the allocation
window by another αR as the possible success in this
R window was already obtained from the cancellation
operation.

• Otherwise, the operation is identical to the algorithm
presented in Section 3.

When analyzing the maximum stable throughput of this al-
gorithm, we refer to a CRP that starts with an allocation
interval of size 2−jα0 as a type j CRP. To simplify the anal-
ysis we will also include the concept of a length zero CRP.
More specifically, when the last postponed R window in a
CRP was located at level j of the splitting tree, we state
that the next CRP will be of type j, irrespective of whether
this window held a packet. Hence, the length (that is, the
number of slots devoted to this CRP) of a type j CRP, with
j > 0, equals zero whenever the interference cancellation
indicates that the last postponed R window was empty. In
this case, the type j CRP will subsequently be followed by
a type 0 CRP.

We start by determining the probabilities qi,j that a type
i CRP is followed by a type j CRP. Clearly, qi,j = 0 if
i ≥ j 6= 0, as a CRP starting with a length 2−iα0 allocation
window either postpones a smaller R window or none at
all. A type j = 0 CRP will only follow a type i CRP if
none of the L windows holds a collision. All the L windows
of a CRP with an initial allocation window of size α(k)

that starts at T (k) will be collision free if and only if the
intervals (T (k)+(1−2−(s−1))α(k), T (k)+(1−2−s)α(k)]
hold either zero or one packet for all s ≥ 1, which occurs
with probability (1+λα(k)/2s)e−λα(k)/2s

. In other words,

qi,0 =

[∞∏
s=1

(1 +
Gi

2s
)

]
e−Gi ,

as α(k) = 2−iα0 and
∏

s≥1 eGi/2s

= e−Gi . For numerical
stability further on, we rewrite this as

qi,0 =

[
1 +

∞∑
s=1

Gs
i∏s

t=1(2t − 1)

]
e−Gi .

We also note that

qi,0 = qi+1,0(1 + Gi+1)e−Gi+1 ,

as Gi/2 = Gi+1. In order to express the remaining qi,i+s

values, for s > 0, we introduce some additional variables.
Let bi be the probability of having a collision in a length

2−(i−1)α0 interval, that is,

bi = 1− (1 + Gi−1)e−Gi−1 .

Let ci be the probability of having a collision in an interval
of the form (T (k), T (k) + 2−iα0] given that there was a
collision in the (T (k), T (k) + 2−(i−1)α0] interval and such
that none of the L windows part of (T (k), T (k) + 2−iα0]
holds a collision. We can compute ci as

ci =
qi,0 − (1 + Gi)e−Gi

1− (1 + Gi−1)e−Gi−1
.

To avoid numerical bit cancellation, we will compute ci as

ci =

(∑∞
s=2

Gs
iQs

t=1(2
t−1)

)
e−Gi(∑∞

s=2

Gs
i−1
s!

)
e−Gi−1

.

Finally, recall that pi,i+1, as defined in the previous section,
equals the probability that a length 2−iα0 L window is fol-
lowed by another L window of size 2−(i+1)α0.

We are now in a position to express qi,i+s for s > 0. In
order for a type i CRP to be followed by a type i + s, there
has to be a collision in the initial size 2−iα0 window, which
occurs with probability bi+1 and leads to a size 2−(i+1)α0

L window. This L window should be followed by a series
of s− 1 L windows of size 2−(i+2)α0 to 2−(i+s)α0, which
occurs with probability

∏s−1
k=1 pi+k,i+k+1. Finally, the size

2−(i+s)α0 L window must hold a collision, while none of
the subsequent L windows of this CRP holds a collision, an
event that takes place with probability ci+s. This yields

qi,i+s = bi+1

(
s−1∏
k=1

pi+k,i+k+1

)
ci+s, (7)

5

for s > 0. Next, we determine the probability π(i)
that an arbitrary CRP (including the length zero CRPs)
is of type i, by computing the invariant vector of the in-
finite matrix Q with entry (i, j) equal to qi−1,j−1. Let
(π(0), π(1), π(2), . . .) be the stochastic invariant vector of
Q (its existence and uniqueness is immediate from the
Lemma of Pakes [1] as qi,0 increases to one). Then, due
to the structure of Q, we have

π(i) =
i−1∑
j=0

π(j)qj,i,

for i > 0, while π(0) is found using the normalization con-
dition

∑
i≥0 π(i) = 1.

Having found π(i), for i ≥ 0, we continue by computing
E{k|i} and E{f |i}, which denote the mean duration of a
type i CRP (in slots) and the mean fraction of the initial size
2−iα0 allocation window that is postponed due to possible
collisions in any of the L windows, respectively. Note, even
the last postponed R window is counted by this fraction,
irrespective of whether or not it holds a collision. Analogue
to the previous algorithm, we find that for i = 0

E{k|0} =
∞∑

j=0

Pr[CRP length > j slots] = 1 +
∞∑

j=1

pj ,

with pi as defined in the previous section. For i > 0, the
CRP has a length larger than zero with probability 1−e−Gi ,
meaning

E{k|i} =
∞∑

j=0

Pr[CRP length > j slots]

= (1− e−Gi) +
∞∑

j=i

bi+1

(
j−i∏
k=1

pi+k,i+k+1

)
.

To compute E{f |i}, we note that every collision in an L
window of size 2−jα0 causes the loss of a 2−jα0 R window,
that is, a fraction of 2i−j of the initial 2−iα0 window is lost.
Hence,

E{f |i} =
∞∑

j=i+1

bi+1

(
j−i−1∏
k=1

pi+k,i+k+1

)
bj+12i−j .

Using π(i), we obtain E{k} and E{s}, the mean CRP
length (in slots) and the mean distance that the starting point
of the allocation window advances, respectively:

E{k} =
∑
i≥0

π(i)E{k|i},

E{s} =
∑
i≥0

π(i)2−i(1− E{f |i})α0.

Stability is reached if and only if E{k} < E{s}, which can
be written as

λ < (λα0)

(∑
i≥0 π(i)2−i(1− E{f |i})

)
E{k}

,

where the right hand side is again a function of λα0. By
numerically maximizing this function, denoting xmax as the
point in which the maximum is reached and f(xmax) as the
maximum value, we obtain the highest possible maximum
stable throughput λmax by setting α0 = xmax/f(xmax).
For the function above, the maximum is reached in λα0 =
1.691, resulting in α0 = 2.7392 and λmax = 0.6173 (with
E{k} = 1.9835). These values have also been confirmed
using simulation experiments.

References

[1] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall
Int., Inc., 1992.

[2] D. Bini, G. Latouche, and B. Meini. Solving nonlinear ma-
trix equations arising in tree-like stochastic processes. Lin-
ear Algebra Appl., 366:39–64, 2003.

[3] J. Capetanakis. Tree algorithms for packet broadcast chan-
nels. IEEE Trans. Inform. Theory, 25(5):319–329, 1979.

[4] A. Ephremides and B. Hajek. Information theory and com-
munication networks: an unconsummated union. IEEE
Transactions on Information Theory, 44(6):2416–2434, Oc-
tober 1998.

[5] N. Golmie, F. Mouveaux, and D. Su. A comparison of mac
protocols for hybric fiber/coax networks: Ieee 802.14 vs.
mcns. In Proc. of the 16th Int. Conf. on Comm., pages 266–
272, Vancouver, Canada, June 1999.

[6] N. Golmie, Y. Saintillan, and D. Su. A review of contention
resolution algorithms for IEEE 802.14 networks. IEEE
Communication Surveys, 2(1), 1999.

[7] D. Kazakos, L. Merakos, and H. Deliç. Random multiple
access algorithms using a control mini-slot. IEEE Trans.
Computers, 46(4):473–476, 1997.

[8] S. Khanna, S. Sarkar, and I. Shin. An energy measurement
based collision resolution protocol. In Proc. of the 18-th ITC
conference, Berlin Germany, 2003.

[9] G. T. Peeters, B. Van Houdt, and C. Blondia. A multiac-
cess tree algorithm with free access, interference cancella-
tion and single signal memory requirements. Performance
Evaluation, 64:1041–1052, 2007.

[10] G. Polyzos and M. Molle. Performance analysis of finite
nonhomogeneous population tree conflict resolution algo-
rithms using constant size window access. IEEE Transac-
tions on Communications, 35(11):1124–1138, 1987.

[11] B. S. Tsybakov and V. Mikhailov. Free synchronous packet
access in a broadcast channel with feedback. Problemy
Peredachi Inform, 14(4):32–59, 1978.

[12] Y. Yu and G. B. Giannakis. SICTA: a 0.693 contention tree
algorithm using successive interference cancellation. In IN-
FOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, Miami (USA),
pages 1908–1916, March 2005.

6

