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Abstract—This paper deals with channel estimation over a
flat fading Rayleigh channel with Jakes’ Doppler Spectrum.
Many estimation algorithms exploit the time-domain correlation
of the channel by employing a Kalman filter based on a first-
order (or sometimes second-order) approximation of the time-
varying channel. In the low-variation channel scenario, generally
speaking, a well-chosen higher order estimator can perform
better than a lower order one (Ros et al., [1] [2]). Based on this
fact, we propose a third-order tracking loop estimator inspired
by the principle of the phase-locked loop (PLL). The proposed
estimator has a less complex structure compared to the Kalman-
based estimators. In addition, the mean-squared-error (MSE)
of the proposed estimator is studied, as well as the parameter
optimization with the aim of minimizing the MSE. The closed
form expression of the optimal MSE is given and validates the
interest of our approach.

Index Terms—Channel estimation, Rayleigh fading, Jakes’
spectrum, Phase-locked loop (PLL), Kalman filter (KF).

I. INTRODUCTION

Channel estimation is a fundamental task for a wireless
communication receiver. This paper deals with channel path
Complex Amplitude (CA) estimators. Many channel path CA
tracking algorithms use a Kalman Filter (KF) based on a
linear recursive approximation model of the widely accepted
Rayleigh fading channel with Jakes’ Doppler spectrum ( [2]–
[8]). However, KF based algorithms exhibit a certain com-
plexity, without ensuring optimal performance if the approxi-
mation model is not well suited, or if the model coefficients
are slightly out of tune, as we will develop hereafter. A
widely used channel approximation model results from a
first-order Auto-Regressive model (AR1) as recommended by
[9], combined with a Correlation Matching (CM) criterion
to fix the AR1-coefficient (equal then to the standard Bessel
AR1-coefficient, J0(2πfdT ), for a given normalized Doppler
frequency fdT ). The KF channel estimator resulting from this
choice, called AR1CM -KF in this paper, was used in various
systems such as in Multiple-Input-Multiple-Output systems
[3], [4], or in Orthogonal Frequency Division Multiplexing
(OFDM) systems [5], [6], [10], [11].

The AR1CM -KF seems to be convenient for the very high
mobility case, leading to quasi-optimal channel estimation
performance compared to lower bounds, as seen, for example,
in [10]–[12] (in these works the AR1CM -KF is actually used
to track the Basis Extension Model coefficients of the high

speed channel). But for most conventional Doppler speeds
such as the channel variation within one symbol duration
can be neglected (i.e. fdT ≤ 10−2, as in [1]–[8]), the
MSE performance of the widely used AR1CM -KF estimator
is somewhat disappointing, as we have recently pointed out
in [1] (see Fig.2). It was observed that the asymptotic MSE
performance of the AR1CM -KF is largely poorer than that
of less complex algorithms in [1] based on simple second-
order Complex Amplitude Tracking Loops (CATL) inspired
by Phase-Locked Loops (PLL), and is, above all, very far from
the Bayesian Cramer Rao lower Bound (BCRB) ( [13]). This
poor performance has just been explained analytically in [8],
mainly because the CM criterion is shown to be inappropriate
to tune the AR1-coefficient in slowly fading scenario (since
the choice of J0(2πfdT ) ≈ 1 − 1

4 (2πfdT )2 for the AR1-
coefficient is too close to the value 1 to ensure a good trade-
off between tracking ability and noise mitigation). A better
tuning of the AR1-coefficient can focus on minimizing the
estimation variance in output of the KF as proposed in [7]
(with analytic MSE performance for a given Doppler and SNR
scenario in [8]), i.e. using a minimum asymptotic variance
(MAV) criterion without imposing the CM constraint. The
resulting KF is called here AR1MAV -KF. On the other hand,
[2] shows analytically that, the MSE performance of a KF
can still be improved by switching from the AR1 model to an
integrated random walk model for the approximation model
(called here Or2-KF), exploiting the strong trend behaviour of
the CA variation, since the CA continues in some direction
during several symbols for low fdT .

To sum up, second-order channel tracking algorithms seem
to be more appropriate than first-order algorithms for slow
fading scenario, in the KF version ( [2]) as well as in the CATL
version ( [1]), but without reaching the lower bound BCRB.
The multi-fold contributions of this paper is to give positive
answers to the questions that arise: can a well-chosen third-
order CATL have the ability to outperform the asymptotic
MSE performance of the more complex KF based only on
first- or second-order models (i.e. AR1CM -KF, AR1MAV -KF,
or Or2-KF)? How to tune properly and in a simple way the
coefficients of such a third-order CATL, assuming Rayleigh-
Jakes channel and a given scenario of fdT and SNR? What is
then the closed form expression of the MSE of such a channel
estimator?



Section II gives the system model. In section III, we propose
and analyze a third-order Complex-Amplitude-Tracking Loop,
called Or3-CATL, for the estimation of the slowly time-
varying channel. Section IV describes a proposed method to
correctly tune the loop coefficients, and section V validates
our model and assumptions by means of simulations.

II. MODEL AND ESTIMATION OBJECTIVE

We consider the estimation of a flat Rayleigh fading chan-
nel. The discrete-time observation is1 :

y(n) = α(n) +N(n) (1)

where n is the symbol time index, N(n) is a zero-mean additive
white circular complex Gaussian noise with variance σ2

N ,
and α(n) is a zero-mean circular Gaussian channel Complex
Amplitude with variance σ2

α = 1. The normalized Doppler
frequency of this channel is fdT , where T is the symbol
period. A Jakes’ Doppler spectrum is assumed for this channel:

Γα(f) =


σ2
α

πfd

√
1−
(
f
fd

)2
, if |f | < fd

0, if |f | ≥ fd.
(2)

The autocorrelation matrix Rα[m] of the stationary CA α is
then defined for lag m by:

Rα[m] = E
{
α(n) · α(n−m)

∗} = σ2
αJ0(2πfdT ·m) (3)

where J0 is the zeroth-order Bessel function of the first kind.
Given the observation model (1) and the Doppler spectrum
statistical constraint (2) for the dynamic evolution of the CA,
we look for an on-line unbiased estimation α̂(n) of α(n). The
variance σ2

ε
def
= E

{∣∣ε(n)∣∣2} of the estimation error ε(n)
def
=

α(n) − α̂(n) will be investigated.

III. COMPLEX AMPLITUDE TRACKING LOOP

A. Structure

Inspired first by the principle of a PLL [14] (intended for the
phase estimation), we propose for our CA estimation a third-
order PLL-like structure, called CATL (Complex Amplitude
Tracking Loop). Similarly to a classical digital PLL, the CATL
is composed of an error detector, a loop filter and a numerically
controlled generator. The error detector compares firstly the
received signal with a reference signal equal to the previous
prediction of the parameter, α̂(n|n−1). It delivers the error
signal vε(n) to the Lead-Lag filter (or Proportional-Integral
filter) which is controlled by three parameters µ1, µ2 and
µ3. The output vc(n) is then used by the numerically con-
trolled generator to generate the next prediction of parameter
α̂(n+1|n) = α̂(n|n−1) + vc(n). The structure is shown in Fig.1.
It is similar to a third-order PLL [15]. However, unlike the
conventional PLL, the final output of the CATL is not directly
the prediction α̂(n|n−1) but the final estimate of the complex

1Model (1) assumes that symbols are normalized and known (or decided),
additionally to flat fading assumption. Although this model is admittedly
simplistic, it can be applied to different (more involved) contexts, such as
pilot-aided multi-carrier systems in frequency-selective wireless channels.

Fig. 1: Equivalent structure of the Or3-CATL, inspired by the
third-order digital PLL

amplitude α̂(n|n), as in the KF principle. Thus an additional
branch of correction is required. As for a KF [16], the CATL
can be described by two-stage recursive equations:
Measurement Update Equations

vε(n) = y(n) − α̂(n|n−1) (4)
α̂(n|n) = α̂(n|n−1) + µ1vε(n) (5)

Time Update Equations

vLag1(n) = vLag1(n−1) + vε(n) (6)
vLag2(n) = vLag2(n−1) + vLag1(n) (7)

α̂(n+1|n) = α̂(n|n) + µ2vLag1(n) + µ3vLag2(n) (8)

where µ1, µ2, µ3 are the filter coefficients (real positive).

The Measurement Update Equations are responsible for
the feedback, i.e., for incorporating a new measurement y(n)
into the a priori estimate α̂(n|n−1) to obtain an improved a
posteriori estimate α̂(n|n). The Time Update Equations are
responsible for projecting forward in time the current state
α̂(n|n) to obtain the next a priori estimate α̂(n+1|n), by adding
a component proportional to vLag1(n) and vLag2(n). The signals
vLag1(n), vLag2(n) defined in (6) and (7) are respectively the first-
order and the second-order digital integrations (or accumula-
tions) of the error signal vε(n). Note that, thanks to the second
integration in vLag2(n), this digital third-order loop does not
exhibit acceleration-dependent steady-state error in the case of
second-order variations of the CAs. In other words, the Or3-
CATL characterizes the variation of the channel parameter by
taking into account its slope and its curvature, while second-
order loops only consider the slope.

B. General properties and theoretical MSE analysis

1) Third-order CATL close loop transfer function: by com-
bining (1) and (4), we have :

vε(n) = (α(n) − α̂(n|n−1)) +N(n) (9)



so that the error signal is a combination of the prediction error
(α(n) − α̂(n|n−1)) and the channel noise. By combining (5)
and (9), we obtain the error signal - estimation error relation:

vε(n) =
1

1− µ1
· (α(n) − α̂(n|n)) +

1

1− µ1
·N(n) (10)

Then by combining (5) and (8), we obtain the estimation
update equation:

α̂(n|n) = α̂(n−1|n−1) + µ1vε(n) + µ2vLag1(n−1) + µ3vLag2(n−1)
(11)

And with (6) and (7), the Z-domain expression of (11) is
obtained:

α̂(z)[1− z−1] = [µ1 +
µ2 · z−1

1− z−1
+

µ3 · z−1

(1− z−1)2
] · vε(z) (12)

Then using (9) leads to

α̂(z) = L(z) · α(z) + L(z) ·N(z) (13)

where L(z) is the Z-domain transfer function of the 3rd-order
CATL defined by (14) with F (z) = µ1 + µ2·z−1

1−z−1 + µ3·z−1

(1−z−1)2

the transfer function of the loop filter. It can be rewritten in a
more interpretable form as a function of the natural pulsation
ωn, the damping factor ζ and the capacitance ratio m as (15),
where:

mζ · (ωnT )3 =
µ3

1− µ1
(16)

(1 + 2mζ2) · (ωnT )2 =
µ2 − µ3

1− µ1
(17)

(m+ 2) · ζωnT =
µ1 − µ2

1− µ1
(18)

The capacitance ratio m is an additional factor for third-
order PLL used to adjust the step response character [17].
By comparing (14) and (15), (µ1, µ2, µ3) can be expressed by
(ωn, ζ,m) as:

µ1 =
(m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
(19)

µ2 =
(1 + 2mζ2)(ωnT )2 +mζ(ωnT )3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
(20)

µ3 =
mζ(ωnT )3

1 + (m+ 2)ζωnT + (1 + 2mζ2)(ωnT )2 +mζ(ωnT )3
(21)

If we impose the constraint that ωn > 0, ζ > 0 and
m > 0 to preserve a physical meaning, we deduce from
(16), (17) and (18) that 0 < µ3 < µ2 < µ1 < 1. We can
rewrite L(z) in the frequency-domain, by making z = epT ,
with p = jω = j2πf . Assuming slow reaction of the loop
during one symbol time T (i.e. fnT � 1), the digital loop
transfer function is close (approximation z−1 ≈ 1 − pT ) to
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Fig. 2: Comparison of Transfer functions L of the the Or3-
CATL (15) (continuous curves) and of 3rd-order analog PLL
(22) (dashed curves) with different set (m, ζ, fn) versus fT

the usual third-order low-pass transfer function in analog PLL:

L(epT ) ≈ (m+ 2)ζωn · p2 + (1 + 2mζ2)ω2
n · p+mζω3

n

p3 + (m+ 2)ζωn · p2 + (1 + 2mζ2)ω2
n · p+mζω3

n

(22)

Fig. 2 shows the magnitude-frequency graph of the digital
third-order CATL transfer function and the analog third-order
PLL transfer function, respectively given by (15) and (22)
with different natural frequencies. We can see that in the
low-frequency domain (fnT � 1), the two transfer functions
match very well, and then the analog version gives a good
approximation of the true CATL transfer function.

2) Mean squared error analysis: from (13) we know that
the estimation error is zero-mean, thus the third-order CATL is
an unbiased estimator. By using the definition ε(z) = α(z)−
α̂(z), (13) can be re-written as:

ε(z) = (1− L(z)) · α(z)− L(z) ·N(z) (23)

The variance of estimation error is therefore divided into
two parts. One comes from the variation of the parameter α
and the other comes from the loop noise N :

σ2
ε = E{ε(n) · ε∗(n)} = σ2

εα + σ2
εN (24)

The component σ2
εα (dynamic error variance) results from the

high-pass filtering (1 − L(z)) of the input CAs α(n), so we

L(z) =
F (z)

(1− µ1)(1− z−1) + F (z)
=

[
(µ1 − µ2)(1− z−1)2 + (µ2 − µ3)(1− z−1) + µ3

]
(1− µ1)(1− z−1)3 + [(µ1 − µ2)(1− z−1)2 + (µ2 − µ3)(1− z−1) + µ3]

(14)

L(z) =
(m+ 2)ζωn · (1− z−1)2 + (1 + 2mζ2)ω2

n · (1− z−1) +mζω3
n

(1− z−1)3 + (m+ 2)ζωn · (1− z−1)2 + (1 + 2mζ2)ω2
n · (1− z−1) +mζω3

n

(15)



have

σ2
εα =

∫ + 1
2T

− 1
2T

Γα(f) · |1− L(ej2πfT )|2df (25)

where Γα(f) is the PSD of α given by (2). And the component
σ2
εN (static error variance) results from the low-pass filtering
L(z) of the input loop noise N(n):

σ2
εN =

∫ + 1
2T

− 1
2T

ΓN (f) · |L(ej2πfT )|2df (26)

a) Static error variance σ2
εN : since the noise is assumed

white, the PSD of noise ΓN (f) = σ2
NT is constant all over

the system bandwidth. Thus (26) can be re-written by

σ2
εN = σ2

N · T
∫ + 1

2T

− 1
2T

|L(ej2πfT )|2df︸ ︷︷ ︸
BL

(27)

where BL is the so-called equivalent noise bandwidth (double-
sided normalized). BL can be derived (i.e. to evaluate the
two-sided complex integral) by using the method presented in
[18]. For a third-order system, BL is a sixth-degree algebraic
expression of ωnT . But with the condition fnT � 1 in our
case, the high-order terms of ωnT are negligible, so that BL
can be finally approximated as:

BL ≈ 2πfnT · (2m
3ζ4 + 12m2ζ4 + 8mζ4 + 6mζ2 + 4ζ2 + 1)

4m2ζ3 + 8mζ3 + 4ζ︸ ︷︷ ︸
B

(28)

b) Dynamic error variance σ2
εα: for the Rayleigh-Jakes

model, the Doppler spectrum has a bounded support f ∈] −
fd,+fd[ (see (2)). Therefore, a good tracking of α requires
that the natural frequency of the Or3-CATL fn be greater than
the Doppler frequency fd. On the other hand, assuming fn �
1/T , we can use the approximation (22) which yields:

|1− L(ej2πfT )|2 (for |f | ≤ fd)

≈

{
f6

(mζ)2f6
n
, if fn � fd

f6

(mζ)2f6
n+[m2(4ζ2−1)+4]f4

nf
2 , if fn ≈ fd.

(29)

Indeed, if fn � fd, then fn � f since f < fd. Hence,
the denominator can be simplified to (mζ)2f6n. If fn ≈ fd,
the previous simplification does not hold any more, yielding a
second term (see (29)). In order to be able to still neglect this
second term in the perspective to obtain an analytical formula
of the integral (25), we suggest choosing (m, ζ) such that:

m2(4ζ2 − 1) + 4 = 0 (30)

The consequences of such a constraint will be discussed later.
With this constraint, |1−L(ej2πfT )|2 can be considered as a
linear function of

(
f

fn

)6

for |f | ≤ fd (for any fn such that
fd ≤ fn � 1/T ), and thus the dynamic error variance σ2

εα

becomes:

σ2
εα ≈

1

(mζ)2

∫ +fd

−fd
Γα(f) ·

(
f

fn

)6

· df (31)

For the Rayleigh-Jakes model, a variable change
cos(θ) = (f/fd) permits us to compute an exact analytical
solution of the integral (31) as:

σ2
εα ≈

5

16
· 1

(mζ)2
·
(
fd
fn

)6

· σ2
α (32)

IV. COMPUTATION OF THE OR3-CATL PARAMETERS

The MSE σ2
ε (24) is minimized for an optimal parameters

set (m, ζ, fn) obtained through a three dimensional optimiza-
tion. A closed-form analytical expression for this problem can
be obtained if we impose the constraint (30), leading to a sub-
optimal solution. We present in this section a method to obtain
the sub-optimal parameters, and we show that the result is very
close to the optimal solution.

A. Computation of (m, ζ)

Let C be the set of couples (m, ζ) which satisfy the
constraint (30). There is an infinite number of couples in
C and the one that will be selected minimizes the MSE.
Fig. 3 shows the MSE as a function of (m, ζ) for SNR
= 0 dB and fdT = 10−3. The MSE (24) is obtained by
numerical integration of (25) and (26). For each MSE value
of the figure, the best fnT has been selected (such that the
MSE is minimum) by carrying out a numerical optimization.
It is noteworthy that there exists a “valley-belt” in which the
minimum MSE is located. The set C has also been plotted
(dashed line), yielding a second-degree curve in the m-ζ plane.
The sub-optimal parameters (m, ζ) are those which belong to
both C and the bottom of the valley (triangle point in Fig.
3). A more intuitive 3D view of the MSE valley is illustrated
in Fig. 4. The results given by numerical minimization are
as follows: for SNR = 0 dB, m = 3.196, ζ = 0.39; for
SNR = 20 dB, m = 2.974, ζ = 0.37 and for SNR = 40
dB, m = 3.078, ζ = 0.38. We can see that, for different
SNRs, the sub-optimal m is always around 3 and does not
vary strongly. Hence, m is fixed to 3. Then from (30), we get
ζ =

√
5
6 . To sum up, we have selected a sub-optimal couple

(m, ζ) satisfying (30) with a corresponding MSE very close
to the global minimum MSE. It remains for us now to provide
an analytical formula for fn.

B. Optimal natural frequency fn
Now that the couple (m, ζ) is set, we can calculate the

natural frequency fn (for fd < fn � 1/T ) that permits us to
minimize the MSE σ2

ε in (24) (assuming (28) and (32)) as:

(
fn
fd

)(Jakes) =

[
15

16
· 1

πB
· 1

(mζ)2
· 1

fdT
· σ

2
α

σ2
N

] 1
7

(33)

yielding the sub-optimal MSE:

σ2
ε (Jakes) = λ · (σ2

α)
1
7 · (σ2

N · fdT )
6
7 (34)

where:

λ =
35

16
·
(

B · 16π

15

) 6
7

·
[

1

(mζ)2

] 1
7

(35)

with B defined in (28). Note that the above equations hold
for any (m, ζ) satisfying the constraint (30).



Fig. 3: MSE (24) versus (m, ζ) computed by numerical
integration of (25) and (26), SNR = 0 dB
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V. SIMULATION

In this section, the performance of the Or3-CATL in terms
of MSE is assessed through simulations, and is compared to
that of reference algorithms based on Kalman. For all our
simulations the channel autocorrelation function is assumed
to be given by the widely accepted Jakes’ model, as stated in
Section II.

Fig. 5 gives the comparison between simulated and theoret-
ical MSE versus fn for fdT = 10−3, and SNR = 0, 20 and
40 dB. The sub-optimal loop parameters (m = 3, ζ =

√
5
6 ) are

considered (see section IV-A). The theoretical dynamic and
static error variances (dashed lines) σ2

εα and σ2
εN are obtained

by numerical integration of (25) and (26), respectively. The
approximated error variances (square points) computed by the
approximated formulae ((27) with (28) and (32)) are also
plotted. It is observed that the approximated MSEs match very
well the theoretical MSEs. On the other hand, we can also
observe that the component σ2

εα is the main contribution of
σ2
ε for small fn, whereas the component σ2

εN dominates when
fn increases. This is understood from (32) and (28) since σ2

εα
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Fig. 5: Theoretical and simulated MSEs vs fn/fd (Or3-CATL
with m = 3, ζ =

√
5
6 , SNR = 0, 20, 40 dB, fdT = 10−3)

is inversely proportional to f6n, while σ2
εN is proportional to

fn. Simulated MSEs have also been plotted. The simulated
dynamic error variance σ2

εα was obtained by forcing the noise
N(n) to zero, whereas the simulated static error variance
σ2
εN was obtained by maintaining the CA to a constant

value equal to its standard deviation σα. First of all, we can
observe that all the theoretical curves are very close to the
simulated ones, which validates our theoretical analysis and
our approximations. Therefore, the abscissa of the minimum
of the simulated MSE σ2

ε matches also very well with the
(theoretical closed form (33)) optimal natural frequency (such
that fn/fd (Jakes) = 2, 3.9 and 7.6 respectively for SNR =
0, 20, and 40 dB).

Fig. 6 compares the MSE of the Or3-CATL with that of the
AR1CM -KF [3]–[6], the AR1MAV -KF [7] [8] and the Or2-
KF [2] by means of Monte-Carlo simulations for fdT = 10−4

and fdT = 10−3. Note that our proposed Or3-CATL algorithm
assumes the same a priori knowledge as that required for the
KF (Jakes model, noise variance, Doppler frequency). We also
plot the on-line BCRB as reference [13]. It is observed that
the MSE performance of the AR1CM -KF is very poor. This
result corroborates the works cited in the introduction, which
point out that the AR1CM -KF is convenient for high mobility
(fdT >> 10−2), but exhibits poor performance at fdT ≤
10−2 as proved by [8]. As expected, the Or2-KF performs
better than AR1CM -KF and AR1MAV -KF. Finally, the MSE
of the Or3-CATL with the loop parameters properly chosen
(see section IV) is the closest to the BCRB (which could be
concluded from the MSE expressions of the 4 estimators). This
result shows that it is preferable to use a well-chosen third-
order algorithm based on simple CATL to a Kalman Filter
when the later is based only on first- or second-order models.

Fig. 7 shows the MSE of the different systems versus
fdT . The gain in performance of the Or3-CATL is greater
for small values of fdT . When fdT increases, the MSEs of
the AR1MAV -KF, Or2-KF and Or3-CATL systems seem to
converge to the MSE of the AR1CM -KF.
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Fig. 6: MSE of the Or3-CATL compared to literature versus
SNR for (a) fdT = 10−4 (b) fdT = 10−3
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Fig. 7: MSE versus fdT , SNR = 20 dB

VI. CONCLUSION

In this paper, a channel path complex amplitude estimator
over slow fading channels has been proposed and analyzed.
The simple case of a flat fading channel was considered, but

the results can be applied or generalized to more complex sys-
tems, such as wireless OFDM systems. Our proposed estimator
is based on a third-order tracking loop. We have also proposed
a simple method to properly tune the three loop parameters.
We have demonstrated that, by fixing the capacitance ratio to
3, the damping factor to

√
5
6 , and by computing the natural

frequency with a given expression depending on the Doppler
frequency, it is possible to achieve near-optimal performance
in terms of MSE. Simulation results show that, with these
well-chosen parameters, the proposed algorithm outperforms
the more complex Kalman filter based algorithms of the
literature (based on first- or second-order models), as long as
the mobility is moderate (i.e. fdT < 10−2), which is a very
common scenario.
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