
ar
X

iv
:1

50
5.

00
20

7v
1 

 [c
on

d-
m

at
.m

es
-h

al
l] 

 1
 M

ay
 2

01
5

Symmetry dependent electron localization and optical
absorption of polygonal quantum rings

Anna Sitek∗,‡, Vidar Gudmundsson∗, and Andrei Manolescu¶

∗Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
‡Department of Theoretical Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland

¶School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland
e-mail: sitek@hi.is

ABSTRACT
We compare energy spectra, electron localization and optical absorption of square and diamond quantum rings
and analyze how sample geometry affects those features. We show that low energy levels of diamond rings form
two groups delocalized between opposite corners which results in increased number of optical transitions. We also
show that contacts applied to corner areas allow for continuous change between square- and diamond-like behavior
of the same sample, irrespective of its shape.
Keywords: polygonal quantum rings, core-multi-shell structures, absorption.

1. INTRODUCTION

Polygonal quantum rings are very short hollow or core-multi-shell wires in which electrons are confined only in one
of the shells. The most common are hexagonal structures, butdodecagonal [1], triangular [2, 3] and tetragonal [4]
core-shell wires have already been achieved. The main feature which distinguishes polygonal from circular struc-
tures is a unique carrier localization, which in the case of quantum wires leads to a formation of one-dimensional
channels [5, 6, 7, 8, 9, 10]. As in the case of bent quantum wires [11], in the corner areas of polygonal rings
effective quantum wells are formed which attract low-energy electrons and localize them only in the vicinity of
the vertices [12, 13]. If the rings are externally and internally restricted by regular polygons, then the localization
probability associated with the lowest states is equally distributed between all corners, but this may be easily turned
into localization in single corners if the system symmetry is broken. Moreover, the existence of corners changes
the energy degeneracy, i.e. splits degeneracies related toangular momentum conservation. For sufficiently narrow
rings the polygon separates energy levels for which the probability distribution is localized only in the corner areas
from higher, mostly side-localized, eigenvalues. Electron distribution also affects absorption of electromagnetic
waves. In the presence of an external magnetic field and circularly polarized light only two transitions, each cou-
pled to a different polarization, from the ground state to the corner- or side-localized states above the energy gap
occur for symmetric samples [13].

In this paper we focus on square and diamond shaped rings, we show how probability distribution changes when
the system symmetry is reduced, and how it affects absorption of electromagnetic field. We compare two cases:
In the first case the system geometry is variable; we show thatfor a diamond ring the energy levels are only spin
degenerated and the corner-localized states form two energy groups. The lower one with probability distribution
equally shared by the two sharper corners and the higher group associated with electrons bound symmetrically to
the wider corners. We show that diamond samples allow for twice as many optical transition than the square rings
in the presence of one polarization type. In the second case we apply potentials to the corner areas and show how
they allow to switch between square- and diamond-like carrier localization and absorption for one or another ring
shape.

2. THE MODEL
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Figure 1:Sample model - diamond constraints, for with the ratio between the diagonals
is 0.8, applied on polar grid. Blue points indicate areas where an on-site potential was
applied. For visibility we reduced the number of site points.

The sample model used in our calculations is based on a discretization method on a polar grid with diamond
constraints defining the ring shape. The Hilbert space is spanned by vectors|kjσ〉, wherek andj refer to the
radial and angular coordinates, respectively, associatedonly with sites within the polygonal shell,δr andδφ are
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the corresponding intervals andσ denotes spin. The Hamiltonian matrix element in these coordinates is [14]

Hkjσ,k′j′σ′ = Tδσ,σ′

[(

tr + tφ +
1

2
t2B

(

rk
4Rext

)2

+ V

)

δk,k′δj,j′ (1)

−
(

tφ + tB
i

4δφ

)

δk,k′δj,j′+1 + trδk,k′+1δj,j′ +H.c.

]

+
1

2
T tBγ (σz)σ,σ′ δk,k′δj,j′ ,

whereT = ~
2/(2m∗R2

ext) is an energy factor,m∗ the effective mass of the semiconductor material,Rext is the
external radius of the polar grid,tr = (Rext/δr)

2, tφ = [Rext/(rkδφ)]
2, tB = ~eB/(m∗T ) is the cyclotron

energy in units ofT , e is the electron charge andB a magnetic field perpendicular to the ring plane (which lifts
energy degeneracies due to spin and angular momentum),σz stands for thezth Pauli matrix,γ = g∗m∗/(2me) is
the ratio between the Zeeman gap and the cyclotron energy with g∗ being the electrong-factor,me the free electron
mass, andV stands for an on-site potential.

The optical absorption coefficient is calculated in the dipole and zero temperature approximations according to
Refs. [15, 16, 17] and equals

α(~ω) = A~ω
∑

f

|〈f |ε · d|i〉|2δ (~ω − (Ef − Ei)) ,

whereA is a constant,ε = (1,±i) /
√
2 the circular polarization of the electromagnetic field,d the dipole moment

andEi,f the energies of the initial and final states|i, f〉, respectively. The delta function was approximated by a
Lorentzian(Γ/2) /{[~ω − (Ef − Ei)]

2
+ (Γ/2)

2}, whereΓ is a phenomenological broadening. Since we neglect
spin-orbit coupling, optical transitions do not allow for spin flip.

3. RESULTS

In all of the cases analyzed below the external radius of the disk-shaped grid, which is also the largest radius of the
tetragons, is set equal to25 nm and the side thicknesses are equal to5 nm. The material parameters correspond
to InAs, wherem∗ = 0.023me andg∗ = −14.9 and thus the energy unitT introduced in the Hamiltonian (1) is
approximately2.8 meV and the ratioγ = −0.171. The samples consist of over6000 grid points.
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Figure 2:Energy levels (a). Density of states (gray - dotted) and absorption coefficients in the presence of clockwise
(red - dashed) and counterclockwise (green - solid) polarization for the diamond ring shown in Fig. 1 initially
containing one electron in the ground state [(b) and (c)].
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(a) States No. 1(3), and 2(4).
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(b) States No. 5(7), and 6(8).
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(c) States No. 9, and 10.
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(d) States No. 11, and 12.

× 3

-1 -0.5 0 0.5 1x -1
-0.5

 0
 0.5

 1

y
 

 

 

 

Figure 3:Probability densities corresponding to the first 12 levels shown in Fig. 2(a). Corner states of the lowest
(a) and second (b) energy groups, then purely side localizedstates (c), and finally higher states where side and
corner localization coexists (d). For proper comparison the probability density in (c) and (d) was scaled by a
factor of three.
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In a recent study we analyzed regular polygons [13]. In the present paper we discuss what happens when the
symmetry of the polygon is changing. To do so we modify the square ring by decreasing one diagonal to40 nm and
obtain a diamond quantum ring as shown in Fig. 1. Several low energy levels of this sample are plotted in Fig. 2(a),
where one can distinguish two groups of states which look like four-fold degenerated energy levels, but in fact they
are composed of two close-by spin (two-fold) degenerated eigenvalues [inset to Fig. 2(a)]. The shape and depth
of the effective wells formed in the vicinity of the verticesdepend on corner angles and areas. Sharper corners
have a larger area between the external and the internal boundaries of the polygon, which results in formation of
deeper wells. Thus the lowest energy states, No. 1-4, are localized in the sharpest corners [3(a)], and the higher
energy states, No. 5-8, are spread between the (shallower) wells existing in the wider corners [3(b)]. This results
in formation of an energy gap of about 50 meV in the corner state domain. For a square polygon the two groups
of four states merge into a single group of eight states with adispersion of about 5 meV [13] (also shown below).
For the higher levels of the energy spectrum the probabilitydistributions are spread over the polygon sides. The
distribution corresponding to the first energy level above the corner localized groups, states No. 9-10, is purely
delocalized between the side areas [Fig. 3(c)] similarly tothe side states of a square ring. The localization pattern
of the higher states includes a small probability of finding the electron in corner areas, but here in the sharper
corners for the second state above the corner-localized group, No. 11-12 [Fig. 3(d)] or in the wider corner areas
for the next energy level (not shown). This means that electron distribution for a diamond ring differs considerably
from the one of a square sample only in the low-energy domain.

The symmetry reduction and formation of two different wellsaffects absorption of electromagnetic field. To
remove the spin degeneracy we consider the diamond sample immersed in a weak magnetic field of0.53 T, per-
pendicular to its plane, which produces a spin splitting of 0.48 meV. We assume the sample initially contains an
electron in the ground state. As seen in Fig. 2, light which iscircularly polarized in the sample plane may excite the
electron to two other corner states [Fig. 2(b)] as well as to side-localized states [Fig. 2(c)] and all four transitions
occur in the presence of both clockwise and counterclockwise polarization types. In the analogous case of a square
ring only two, complementary transitions occur for each type of polarization [13].
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(a) States No. 1(3), and 2(4).
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Figure 4:Probability distribution associated with the ground stateof a diamond sample with an on-site potential
equal to372 meV (a), corresponding energy levels (b), and absorption spectrum for magnetic field equal to0.53 T
[(c) and (d)].

An external electric field allows to control electron distribution within a ring. If it is applied in the plane of the
polygon it affects all of the corners and changes the geometry of the effective wells formed in their vicinity. This
may easily break wave function symmetry, and thus open all spin allowed transitions, or partially restore symmetric
electron localization in asymmetric samples [13]. Even more precise control may be achieved if point contacts are
applied in the corner areas which enable to control the depthof each well separately.

To model this later situation we applied an on-site potential in the wider corner areas of diamond sample as
indicated by the blue points in Fig. 1. Negative potential deepens the quantum wells and thus shifts the energy
levels of the sample and delocalizes low-energy carriers between all of the corners. The ratio of probability maxima
depends on the value of the external potential and may be continuously adjusted, i.e., probability distribution may
become equally distributed between all four corners as in the case of an ideal square ring [Fig. 4(a)]. In this case
the energy spectrum is nearly indistinguishable from the one of square sample [Fig. 4(b) and Ref. [13]], but even
levels which seem to be four-fold degenerated consists of pairs of very close only spin degenerated eigenvalues. In
the case shown in Fig. 4 this splitting is a results of a small mismatch of the potential and could be reduced even
further. As long as all corners are populated, even if the localization peaks differ considerably from each other, the
energy spectrum resembles more the one of a square sample [13] than of a diamond ring [Fig. 2(a)].

Interesting effects are observed in the absorption spectrum if all of the corners are nearly equally populated. As
seen in Figs. 4(c) and 4(d), two transitions from the ground state to corner- and side-localized states occur, but in
each domain one of the absorption coefficient’s maximum is about 1000 times smaller from the other one. Thus,
irrespective of the sample shape, only two relevant transitions associated with one polarization type take place, as
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in the case of square rings [13].

4. CONCLUSIONS

We studied electron localization and optical absorption ofa diamond quantum ring and compared it to the square
sample. We showed that this geometry induces two groups of low-energy states localized either in the sharper or
in the wider corners, respectively. The probability distributions associated with higher energy levels are mostly
spread over all polygon sides and resemble those of square rings. Diamond rings allow for more optical transitions
in the presence of one circular polarization type than square rings. We also showed that gates applied in corner
areas enable to achieve a wide range of electron localization patterns and thus different energy and absorption
spectra within one sample irrespective of its shape which opens wide range of control possibilities.
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