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Transporte Óticas Multicamada

Planning and Dimensioning of Multilayer Optical

Transport Networks
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palavras-chave redes de transporte multicamada, arquiteturas dos nós, desenho topológico,

algoritmos genéticos, agregação, planeamento greenfield e multipeŕıodo,

programação linear inteira, análise tecno-económica

resumo Nesta tese é apresentado um estudo sobre o planeamento de redes de trans-

porte óticas multicamada, considerando as diversas restrições de implemen-

tação. São propostos métodos de otimização para as várias etapas do

planeamento da rede, nomeadamente desenho de topologias f́ısicas, e di-

mensionamento de nós em ambiente greenfield e multipeŕıodo. Os métodos

desenvolvidos baseiam-se em modelos de programação linear inteira (PLI),

algoritmos heuŕısticos e métodos estat́ısticos.

Inicialmente, as principais tecnologias e as diferentes arquiteturas de nós

usualmente utilizadas em redes de transporte óticas multicamada são apre-

sentadas. Adicionalmente, são também abordados os principais esquemas

de agregação e modos de transporte.

Assumindo que a localização dos nós é conhecida, a primeira etapa do pro-

cesso de planeamento da rede é a implementação das ligações. Assim, é

proposto um algoritmo genético para o desenho de topologias f́ısicas so-

breviventes com custo ḿınimo, bem como um modelo de dimensionamento

para as ligações. Dentro do algoritmo heuŕıstico vários operadores genéticos

são avaliados, comparados e o seu erro calculado através de um modelo de

PLI.

Posteriormente, os nós são planeados. Assim, são propostos modelos de

otimização para o dimensionamento dos nós, adequados para cenários green-

field. Os modelos são baseados em PLI e calculam o número e tipo de mó-

dulos necessários para implementar arquiteturas fixas e flex́ıveis, tanto para

a camada elétrica como ótica, tendo em consideração as restrições de im-

plementação. Utilizando os modelos desenvolvidos, são realizadas análises

comparativas técnico-económicas, com foco no CapEx, consumo energético

e requisitos de espaço. Como resultado, e tendo por base um grande con-

junto de simulações, é proposto um método de otimização baseado em

regras simples para selecção da arquitetura do nó.

Finalmente, são apresentados métodos de otimização baseados em mod-

elos PLI adequados para cenários multipeŕıodo. Os modelos consideram

as várias arquiteturas para a camada elétrica e permitem um planeamento

considerando reagregação sem interrupção de tráfego. Assim, é realizada

uma análise comparativa técnico-económica e avaliados os benef́ıcios al-

cançados através da exploração da reagregação sem interrupção de tráfego,

destacando as condições onde estes são mais significativos.





keywords multilayer transport networks, node architectures, topological design, ge-

netic algorithms, grooming, greenfield and multi-period planning, integer

linear programming, techno-economic analysis

abstract This thesis presents a study on the planning of multilayer optical trans-

port networks considering the various hardware implementation constraints.

Optimization methods for the various stages of the network planning are pro-

posed, namely physical topologies design, and greenfield and multi-period

nodes dimensioning. The developed methods rely on integer linear program-

ming models (ILP), heuristic algorithms and statistical methods.

Initially, the enabling technologies and the different node architectures usu-

ally employed in multilayer optical transport networks are presented. Addi-

tionally, the main grooming schemes and transport modes are also discussed.

Assuming that the node localization is known, the first stage of the overall

network planning process is the deployment of the network links. Thus, a

genetic algorithm for the design of survivable physical topologies with min-

imum cost is proposed, as well as a dimensioning model for links. Within

the heuristic algorithm various genetic operators are evaluated, compared

and benchmarked using an ILP model.

After, the nodes are planned. Therefore, optimization models for the nodes

dimensioning to use in greenfield scenarios are proposed. The models are

based on ILPs and calculate the number and type of modules required to

implement fixed and flexible architectures, for both the electrical and the

optical layer, taking into consideration the hardware implementation con-

straints. Using the developed models, comparative techno-economic analy-

sis are performed focusing on the CapEx, power consumption, and footprint

requirements. As a result, and based on the outcome of a large set of simu-

lations, an optimization method based on simple rules for node architecture

selection is proposed.

Finally, optimization methods based on ILPs to use in multi-period planning

are presented. The models consider the various electrical layer architectures,

and enable a planning considering hitless re-grooming. Then, a comparative

techno-economic analysis is performed and the savings attained by exploit-

ing hitless re-grooming evaluated, highlighting the conditions where such

savings are more significant.
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CHAPTER 1

Introduction

Internet supports global telecommunications and has become a major driver of world

economy and social interaction. However, the constant introduction of new services is pushing

the bandwidth required in transport networks to its limits [1]. As a result, network operators

demand costly network elements with more capacity, higher transmission rates and faster

processing. On the other hand, operators also suffer an huge pressure to reduce the cost

per bit transported due to the networks high deployment and maintenance costs [2]. Thus,

operators need to be able to cope with the traffic growth while maintaining the offered

quality of service in a cost efficient manner. In this context, an optimized network planning

and dimensioning becomes critical.

Transport networks have evolved from point-to-point wavelength division multiplexing

(WDM) systems towards multilayer flexible networks. Multilayer networks enable the inter-

working between electronic and optical technologies, allowing a more efficient groom, switch

and transport of the traffic [5]. Additionally, flexible networks enable operators to setup

connections and reconfigure established connections by remote action, thus making transport

networks more responsive to the traffic changes [6, 7]. Nevertheless, these technological ad-

vances are increasing the complexity of the planning process. As a result, the manual and

rule-of-thumb network planning strategies of the past are being replaced by sophisticated soft-

ware tools. Usually, the planning tools aim to minimize the total cost of ownership (TCO)

of the network. The network TCO can be divided into capital expenditures (CapEx) and

operational expenditures (OpEx) [3, 4]. The CapEx is related to the costs with the setup of

the infrastructure. This comprises the network physical infrastructure (i.e. network elements

such as routers, switches, fibers) and software (for instance network management systems),

as well as the building to host equipment and/or staff [3]. The OpEx is related to the costs to

keep the network operating. This includes maintenance, power consumption, rents (such as

buildings, equipment or fibers), service management, repairment, ongoing network planning
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and marketing and pricing, among others [3].

The planning tool usually requires a set of input information that depends on the system

vendor available equipment, and on the network operator requirements. Based on the pro-

cessing of these input parameters, a cost efficient solution is obtained and a variety of outputs

generated. Figure 1.1 illustrates the classical dimensioning process.

Network physical data

Traffic matrices

Prices of the equipment

Specialized rules

Bill of material

Installation reports

Configuration files

Updating files

Dimensioning

tool

In
p

u
ts

O
u

tp
u

ts

Figure 1.1: Classical dimensioning tools inputs and outputs [4].

As presented in Fig. 1.1, the input parameters can include the physical topology (or

nodes location), client traffic matrices, prices for each component of the network elements,

and specialized rules (for instance the survivability and grooming scheme or routing policy).

The outputs generated generally includes the links and nodes equipment, installation reports,

files for configurations and updates, reports with overall performance analysis and the network

TCO.

1.1 Motivation and objectives

The network planning tool is important for both systems vendors and network operators

and is used in the various stages of the telecommunications business. In the budgeting

and implementation stages, a planning tool offering a cost-efficient solution to the network

operator can be decisive to the system vendor, in a competing environment. After, in the

operation stage, the planning tool can be used to re-optimize the available resources, bringing

additional cost savings to network operators. Moreover, as new competing technologies are

always being introduced, planning tools are also used to evaluate and compare the various

alternatives before advancing to their manufacturing, market introduction and deployment.

Thus, the planning tool directly affect the competitiveness of a vendor or an operator.

Nowadays, various planning tools for optical transport networks are commercially avail-

able, providing solutions in a non-vendor specific environment. Examples of such tools are

AriaNetworks [8], WANDL [9], VPIsystems [10], SteelCentral (former OPNET SP Trans-

port Planner) [11], and Detecon NetWorks [12]. Due to their commercial nature, these tools

usually only provide support for mature, and with large market penetration, technologies.

Even though, systems vendors and network operators desire to make prospective studies on

competing technologies, take into account specialized implementation constraints or propri-

etary technology. Consequently, many operators and vendors make use of tailored in-house

2
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developed software like Coriant TransNet [13] and 7196 [14], Alcatel-Lucent 1390 [15], Cisco

network planning system (NPS) [16], Infinera NPS [17] or Ericsson optical networks planner

[18]. However, due to their proprietary nature, these tools are not publicly available to per-

form comparative studies and evaluate the quality of the obtained solutions [19]. From the

research point of view, the development of methodologies and optimization tools for trans-

port networks planning is being intensively investigated [4, 20–33]. Most of the solutions

rely on statistical methods [4, 20–24], heuristic algorithms [28, 30–33], or integer linear pro-

gramming (ILP) models [25–30]. Statistical methods provide the fastest way to dimension a

network, and are suitable for preliminary stages of the planning process, where information

is not complete. However, they are very sensitive to changes in the assumptions used in

their development, and the results can have a high level of uncertainty. Heuristic algorithms

tend to be relatively fast, scalable, and suitable for large instances of the problem. However,

optimal solutions are not guaranteed and changes to contain newly constraints can prove

to be difficult. In opposition, with ILP models optimal solutions can be obtained, at least,

for some instances of the problem. However, scalability limitations may arise depending on

the computational resources available. Nevertheless, the type of solutions obtained and the

models themselves can give an insight in key and structural aspects of the problem. More-

over, the ILP models also enable easy and quick changes. This is particularly relevant in

an environment that new technologies are always being proposed and that requirements can

differ substantially between operators.

Due to the challenges and importance of the planning and dimensioning of transport

networks, for both academia and industry, this PhD was developed in collaboration between

University of Aveiro, Instituto de Telecomunicações Aveiro, and Coriant Portugal. It has

intended to contribute for the knowledge transfer between the academia and the industry,

and has produced research in the area of planning multilayer optical networks, in its various

stages. This thesis intended to achieve four main objectives:

1. Detailed study of the various implementation constraints, functionalities, and limita-

tions, for the various multilayer transport nodes architectures. This includes the as-

sembling of a realistic and consolidated database comprising the cost, number of slots

and ports, and power consumption for all modules required by the architectures.

2. Development of tools for the optimized design of survivable physical topologies with

minimum cost for links.

3. Development of optimization tools for multilayer nodes dimensioning that takes into

consideration the hardware implementation constraints, suitable for greenfield and

multi-period scenarios.

4. Perform accurate techno-economic comparisons between the different architectures.

3
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1.2 Thesis outline

This thesis is organized in seven chapters. Chapter 2 consists of a state-of-art review about

multilayer optical transport networks. The chapter introduces and explains the main concepts

and notions used throughout the thesis. It starts by describing the main functions performed

by the links and the nodes in a transport network, then the relation between the network

transport mode and the grooming scheme that can be employed is presented. Thereafter

the links architecture is presented in detail, followed by the general nodes implementation.

The remaining of the chapter is devoted to the detailed description of the various fixed and

flexible architectures used to implement the electrical and the optical layer of a node.

The first stage of the overall network design process is the deployment of the network

links. Therefore, Chapter 3 presents a genetic algorithm for the design of survivable physical

topologies with minimum CapEx for links. As the convergence of the genetic algorithms

depends on the used genetic operators, we analyze their impact on the quality of the obtained

solutions. The performance of different initial population generators, selection methods,

crossover operators and population sizes are compared and benchmarked using an ILP model

and a set of node locations of real-world transport networks.

After the deployment of the network links, the nodes must be planned. Thus, dimensioning

models for nodes are proposed in Chapter 4. The models calculate the number and type of

modules required to implement fixed and flexible architectures, for both the electrical and the

optical layer. Regarding the electrical layer, the developed model is based on ILP formulations

and intend to optimize the grooming of the client signals. For the optical layer, an analytical

model is proposed, allowing the calculation of the number of modules required to implement

reconfigurable optical add/drop multiplexers (ROADM) with different levels of flexibility.

All the proposed models take into consideration the hardware implementation constraints.

Nevertheless, the developed models are sufficiently generic in a way that they are not vendor

or technology specific.

In Chapter 5, a comparative techno-economic analysis for greenfield scenarios is presented,

using the models presented in Chapter 4. The analysis focus on the CapEx, power consump-

tion, and footprint requirements. The followed methodology assumes a single node, varying

the factors that have an impact on the node performance. For the comparative analysis of the

electrical layer architectures, different traffic loads and client traffic patterns are considered.

Regarding the optical layer architectures, different number of add/drop channels and nodal

degrees are taken into consideration. By focusing the analysis on a single node, it is possible

to generate a meaningful set of simulations not biased by network-wide design decisions (e.g.,

routing), thus gaining insight on key factors affecting the performance of the various node

architectures. As a result of the comparative techno-economic study, an optimization method

based on node architecture selection is proposed. The optimization method is based on sta-

tistical and simple rules, identifying the scenarios where a determined architecture (electrical

and optical) brings advantages. Then, when considering the network and using the developed

rules, the total network OpEx can be minimized by selecting the architecture of each node

4
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accordingly.

The last stage of the overall network design process is the multi-period (or brownfield)

planning. At this stage, capacity is already deployed in the network and the goal is to accom-

modate the new client signals in an optimized manner. In Chapter 6, detailed dimensioning

models to use in multi-period planning are proposed, and a comparative techno-economic

analysis presented. This chapter focused on the electrical layer architectures. Importantly,

the potential savings attained by exploiting hitless re-grooming are also assessed, highlighting

the traffic conditions where such savings are more significant. Once again, and due to the

same reasons pointed out before, the analysis assumes a single node, different client traffic

patterns and levels of traffic variability. Finally, the main conclusions and suggestions for

future research directions are presented in Chapter 7.

1.3 Main contributions

This thesis proposes optimization methods and methodologies for the various planning

stages of multilayer transport networks. Furthermore, various comparative techno-economic

analysis are performed, for both greenfield and multi-period scenarios. In the author’s opin-

ion, the most important results of thesis are the following:

1. Study of the main characteristics of transport network topologies and proposal of a

genetic algorithm that can be used to determine the least cost network topology [J1,

J2, J3, B1, C1, C2, C9].

2. Development of optimization models to calculate the quantities and costs of network

elements for fixed and flexible multilayer node architectures in greenfield scenarios.

Performance of various techno-economic studies for the CapEx, power consumption

and footprint requirements for single nodes and networks [J4, C3, C4, C5, C6, C7, C8,

C11, C12, C13].

3. Proposal of an optimization method based on statistical and simple rules for total

network OpEx minimization. The method enables node architecture selection by site,

depending on its specific properties and requirements [J4].

4. Development of optimization models to calculate the quantities and costs of network

elements for fixed and flexible electrical node architectures in multi-period scenarios.

Performance of various techno-economic studies for the CapEx, power consumption and

footprint requirements for single nodes [J5, C10, C14].

5. Identification of the scenarios and traffic conditions where hitless re-grooming can bring

cost benefits [J5, C14].
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CHAPTER 2

Transport modes, links and nodes architectures

Internet traffic can be highly variable and uncertain [1–4]. Traffic variability and uncer-

tainty may arise from different causes such as the growth of content sharing, the widespread

use of cloud computing, large social events, or network failures. This traffic variability can

be observed in granularity, geographic and temporal distribution [1–4]. Thus, network oper-

ators need to be able to cope with the traffic changes while maintaining the offered quality

of service. In the past, they have relied in overprovisioning (and underutilizing) the network

resources [4]. Currently, operators are under pressure to lower the cost per bit transported.

In order to achieve that, the deployment of flexible transport networks is being pursued [5–9].

Optical transport networks comprise a set of network elements, connected by optical fiber

links, and have the function of providing transport, routing, supervision, and survivability to

the client signals [10, 11]. To optimize the available resources, the low-speed client signals

need to be efficiently groomed into high-speed optical channels. Nowadays, the grooming is

realized by electronic devices, thus multilayer nodes are implemented where an electrical and

an optical layer processes the signal [8, 12–14]. However, optical-electrical-optical (OEO)

conversions and electronic processing are costly operations [9, 15, 16]. Depending on the

placement of OEO conversion elements, optical transport networks can operate in opaque,

transparent or translucent mode [15]. Currently, multi-layer nodes can be implemented using

a variety of architectures with different levels of flexibility [5, 8, 9, 17, 18]. In this chapter

the network modes of operation, the links, and the nodes architectures are discussed.

The chapter is organized in six sections. The node functions, the network modes of

operation and their respective grooming schemes are presented in Section 2.1. Section 2.2

is devoted to the links architecture, and Section 2.3 to the general nodes architecture. The

detailed description of the nodes electrical layer is presented in Section 2.4. Regarding the

node optical layer, the considered architectures are presented in Section 2.5. Finally, in

Section 2.6 the chapter is summarized.



2. Transport modes, links and nodes architectures

2.1 Transport modes and grooming schemes

An optical transport network can be seen as set of bidirectional links connecting nodes.

Optical links have the function of provisioning connection of an optical signal between two

adjacent nodes [15, 19]. Nodes can perform six main functions: encapsulation; electrical

switching; deterministic or statistical multiplexing (grooming); wavelength assignment; opti-

cal switching; and optical multiplexing [15, 19]. The client signals, regardless of the native

protocol, are received by the node and encapsulated using a standard/protocol that meets

transport networks requirements (Optical Transport Network (OTN) is the common choice

in optical transport networks, nowadays). The encapsulation process attaches controlling

information to the client signal [15, 19]. The encapsulated client signals can then be electri-

cally switched, groomed, routed, and forwarded toward their final destination, allowing the

rearrangement and interconnection of lower data rate signals to, or between, higher bit rate

signals. To efficiently fill these high bit rate signals, time division multiplexing (TDM) or sta-

tistical multiplexing can be deployed [15, 19]. Afterward, the optical layer is responsible for

the wavelength assignment, optical switching and multiplexing. We are assuming that the

wavelengths are assigned following the International Telecommunication Union - Telecom-

munication Standardization Sector (ITU-T) grid [20]. After, optical switching enables one

or more wavelengths to be switched in the optical domain between different ports. Finally,

to take advantage of the spectrum range provisioned by a single fiber, optical multiplexing

is performed. Wavelength division multiplexing (WDM) is a technology in which several

wavelengths are combined and transmitted over a single fiber [15, 19].

As aforementioned, an optical transport network can operate in opaque, transparent or

translucent mode [15]. A transport mode is identified in function of its utilization of OEO

conversions, and is closely related to the ability of the node to perform electrical and/or

optical switching. A network configured in opaque transport mode performs OEO conversion

of the signals at the end of each transmission system, i.e., at every node [15]. A network

operating in a transparent mode keeps the signal of a source destination connection in the

optical domain at every intermediate nodes, i.e., except in the end nodes the signal does not

undergo OEO conversion [15]. In translucent networks the signals travel through the network

in the optical domain, however in some intermediate nodes it goes to OEO conversion [15]. In

the context of node functions, the encapsulation, electrical switching, grooming, wavelength

assignment, and WDM multiplexing are required under all the transport modes. Additionally,

transparent and translucent networks require optical switching. Table 2.1 summarizes the

node required functions for the three transport modes considered.

In the following, we briefly describe the main characteristics of the three transport modes

and relate them with the grooming scheme. The description is illustrated by a 4-nodes net-

work example. In all the transport modes illustration (see Figs. 2.1, 2.2 and 2.3) ports used

to send/receive client signals are represented as gray squares and ports used to send/receive

wavelengths are represented as colored squares. Equipment of the electrical layer is pre-

sented with gray background whereas equipment of the optical layer is presented with white

12



2.1. Transport modes and grooming schemes

Table 2.1: Relation between the network mode of operation, the grooming scheme, and the end and
intermediate node functions. Functions that are not present in all nodes are in italic.

Transport

mode
Opaque Transparent Translucent

Grooming

scheme
� Link-by-link � Single-hop � Multi-hop

End nodes

� Encapsulation

� Electrical switching

� Grooming

� Wavelength assignment

� WDM multiplexing

� Encapsulation

� Electrical switching

� Grooming

� Wavelength assignment

� WDM multiplexing

� Encapsulation

� Electrical switching

� Grooming

� Wavelength assignment

� WDM multiplexing

Intermediate

nodes

� Electrical switching

� Grooming

� Wavelength assignment

� WDM multiplexing

� Optical switching

� WDM multiplexing

� Electrical switching

� Grooming

� Wavelength assignment

� Optical switching

� WDM multiplexing

background.

2.1.1 Opaque transport mode

A network configured in opaque transport mode performs OEO conversion of the signals at

the end of each transmission system [15]. In this kind of networks the signals are regenerated

at every node since they have to be converted to the electronic domain. An advantage of this

mode is that it eliminates accumulation of physical impairments and allows full flexibility in

client signals switching and grooming [15]. Thus, it can improve capacity utilization of optical

channels by providing traffic grooming at every node. Moreover, wavelength continuity is not

a requirement as the signal goes to the electrical domain at every intermediate node. However,

this solution typically increases the CapEx and the power consumption of the network because

every node needs to carry out OEO conversion for each single wavelength [9, 15, 16, 21].

Figure 2.1 presents the 4-nodes network example operating in opaque mode. To take

advantage of the OEO conversion at every intermediate node, a link-by-link grooming scheme

is used [13, 22]. In the link-by-link grooming scheme every client signal can be groomed with

any other client signal that share the same link [13, 22]. As can be observed in Fig. 2.1, the

client signal between the nodes one and four is groomed with the client signal between the

nodes one and two and two and three in the link between the nodes one and two. After, in

the transmission system between the nodes two and four, the same client signal is groomed

with the one between the nodes two and four.
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AMP

Encapsulation

1-2 1-3 1-4 1-2 2-3 2-4

3-42-31-3 3-42-41-4

Wavelength 

assignment

Equipment with electrical switching and grooming functions

WDM multiplexer/demultiplexer

Figure 2.1: Opaque mode of operation with a link-by-link grooming scheme. As OEO conversion is
performed at every node, the clients can be groomed independently of their source and destination,
provided that they share a common transmission system in the path. Each node requires electrical
switching, grooming, wavelength assignment, and WDM multiplexing functions.

2.1.2 Transparent transport mode

A network operating in transparent mode keeps the signal in the optical domain at every

intermediate nodes of the path between the source and the destination [15]. Electrical re-

generation is not present, thus the quality of the optical signals degrade as they traverse the

optical components along the route limiting the maximum transmission length of the optical

path [15, 19]. As this type of network only performs OEO conversion at the end nodes of the

path, capacity utilization of the wavelength channels is restricted to client signals with the

same end points. Moreover, wavelength continuity must be guaranteed.

Figure 2.2 presents the 4-nodes network example operating in transparent mode thus,

employing a single-hop grooming scheme [13, 22]. In the single-hop grooming scheme only

client signals with the same source and destination can be groomed into the same wavelength.

At each node, add and drop wavelengths are sent to the electrical layer, whereas through

wavelengths are switched in the optical domain. In the example presented in Fig. 2.2,

each pair of nodes have a dedicated wavelength that remains in the optical layer in each

intermediate node. Note that only client signals with the same end-points share the same

wavelength.
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Figure 2.2: Transparent mode of operation with a single-hop grooming scheme. As OEO conversion
is only performed at the end-nodes, grooming of client signals is restricted to services with the same
end-points. Each node requires WDM multiplexing and optical switching functions.

2.1.3 Translucent transport mode

In order to take the advantages of the two above mentioned types of networks, an al-

ternative to opaque and transparent networks are translucent networks [15]. In translucent

networks, the signal suffer OEO conversion in selected intermediate locations before it reaches

its destination. The signals are converted to the electronic domain to improve signal quality,

or when sub-wavelength switching and grooming needs to be performed. Therefore, capacity

utilization of wavelengths can be better optimized in translucent networks.

Figure 2.3 presents the 4-nodes network example operating in translucent mode thus,

employing a multi-hop grooming scheme [13, 22]. In the multi-hop grooming scheme client

signals with different source and destination nodes can share the same lightpath up to some

common intermediate node. Client signals can use more than one lightpath to travel from

the source to the destination node. At each node, lightpaths carrying local traffic or carrying

client traffic that needs to be switched to a different lightpath are sent to the electrical layer

whereas lightpaths carrying through traffic are kept in the optical layer. In the example

presented in Fig. 2.3, the client signal between the nodes one and four is groomed with the

client signals between the nodes one and two and one and three from node one to node three.
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At the node three the signals are sent to the electrical domain and switched. The client signal

between the nodes one and four is switched to the lightpath between the nodes three and

four. Note that the client signals between the nodes two and four and three and four are also

switched to that lightpath and groomed with the one between the nodes one and four.
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AMP
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3 4

1-2 1-3 1-4 1-2 2-3 2-4

3-42-31-3 3-42-41-4

Equipment with electrical 

switching and grooming functions

Equipment with optical 

switching function

Encapsulation
Wavelength 

assignment
WDM multiplexer/demultiplexer

Figure 2.3: Translucent mode of operation with a multi-hop grooming scheme. As OEO conversion is
performed at selected nodes, a client signal can use more than one lightpath to reach its destination.
Each node requires WDM multiplexing and optical switching functions and may require electrical
switching, grooming and wavelength assignment.

2.2 Links architecture

Links can be composed by one or more transmission systems. The transmission system

starts and ends in the node and has the function of transport a WDM signal between directly

connected nodes [15, 19]. To perform this function, the transmission system comprises a pair

of optical fibers and amplifiers, see Fig. 2.4.

The optical fiber is the medium where the optical signal is transmitted and is capable

of transporting data on wavelengths [19]. As the WDM signal propagates into the fiber it

suffers different linear and nonlinear impairments [23]. One of the limiting effect is fiber

attenuation. To counteracts fiber attenuation the optical signal needs to be amplified or

became too weak for a correct detection. Therefore, inline optical amplifiers are incorporated
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Figure 2.4: Bidirectional transmission system architecture: optical fiber and inline optical amplifiers.

in the transmission system. The separation between consecutive amplification stages is called

the span [15, 19]. Typically, an amplifier acts over the complete spectral range at once

(e.g., the conventional band, i.e. the C-band, from 1531 nm to 1570 nm [20]), so all the

wavelengths are amplified at the same time. Moreover, optical amplifiers are transparent to

protocol, modulation and bit rate thus, they can be changed without replacing the amplifier.

Currently, erbium doped fiber amplifiers (EDFA) [24] and Raman fiber amplifiers (RFA)

[25] are available for transport applications. Note that optical amplifiers do not perform

the reshaping and retiming of the signal, thus the signal may still need to be regenerated

periodically. Besides increasing the signal strength, the optical amplifier also degrades the

optical signal-to-noise ratio (OSNR) due to the addition of amplified spontaneous emission

(ASE) noise [24].

In commercial systems, transmission systems are installed within conduits [26]. The gen-

eral purpose of the conduit is to provide a protected pathway for the transmission system.

Conduits can be buried on the ground or submersed in the water, and usually follow major

railways, roads, rivers, or oceans [26]. Typically, inline optical amplifiers are modules installed

into small cabinets located along the conduit.

2.3 Nodes architecture

Nowadays, high-capacity multilayer transport nodes are customizable systems assembled

with multiple types of modules [16, 18, 27, 28]. As depicted in Fig. 2.5, multilayer nodes

consist of three main building blocks: modules with different functions and number of ports,

shelves to provide a common infrastructure to the modules, and the rack to support and pro-

vide power to the shelves [16, 18, 27, 28]. Both the electrical and the optical layer equipment

are implemented in a similar way, however requiring different types of modules and shelves.

A module (also named card or blade) is an independent device with well-defined functional-

ities (e.g., encapsulation, grooming, wavelength assignment) [16, 18, 28]. Modules enclose the

electrical (e.g. chips, processors) and the optical (e.g. lasers, photodiodes) components nec-

essary to perform the given function(s). Usually, modules have connections through the front

panel and the backplane. Front panel interworking is typically made via optical connectors

whereas backplane communication uses electrical pin connectors [16, 28]. In the remaining,

front panel connections will be simply referred as ports. Ports are equipped with transceivers

(e.g., small form-factor plugabble (XFP) or C form-factor pluggable (CFP)) and are used
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Figure 2.5: Node schematic: port, module, slot, shelf and rack. High-performance nodes are sets of
modules each one with particular functionalities. Each module has a specific number of ports and
occupies a pre-determined number of slots in a shelf. The shelf is then attached into a rack that
provides power and cooling to the system.

to interconnect two different modules through optical fibers. In the remainder of this work

we always assume bidirectional connections. A transceiver implements the physical media

adaptation functions to transmit and receive the optical signals over the defined reach [29].

Depending on the travel distance, short-reach or long-reach transceivers must be used [29].

Usually, short-reach transceivers are gray, i.e. are wavelength independent and long-reach

transceivers are colored, i.e. are wavelength dependent. Additionally, data information can

also be exchanged between modules using the backplane. Note that modules connected to

different backplanes generally cannot communicate with each other except when there is an

external link (such as a short-reach fiber link) connecting them [16, 18, 28]. We are going

to assume single-shelf backplanes [28]. The space offered by the shelf is usually divided into

units of space called slots. Each type of module can occupy one or more slots in the shelf.

Moreover, some predetermined slots are reserved for the control modules that are required for

operation, administration and management (OAM) of the system [28]. Shelves are attached

into racks. The rack provides mechanics for mounting multiple shelves and provides power

and cooling to the system. Figure 2.5 presents the schematic of a rack that can support up

to three shelves, a power and a cooling system. The shelf in the middle has 12 slots and it

is equipped with three modules. One module with four ports occupying one slot, another

module with sixteen ports occupying two slots and the control module.

In the following a detailed overview of the modules required to implement fixed and flex-

ible architectures in the electrical and the optical layer of the node is presented. Fixed node

architectures, requires technicians to visit the node site for reconfiguration whereas flexi-

ble node architectures enable operators to remotely reconfigure their networks through the
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management system software [18].

2.4 Electrical layer

The client signals originated, typically, from IP routers, Ethernet or SDH/SONET switches

are encapsulated, switched, and groomed into line signals. In transport networks, currently

encapsulation, electrical switching and electrical grooming is usually realized using OTN

technology [12, 30]. OTN is a circuit switch technology defined in ITU-T Standard G.709

and provides an unified transport platform that supports various types of client services [10].

To widely support the different services, the client traffic is encapsulated into optical data

units (ODU), regardless of the original protocol. The ODU is the basic payload that is

electronically switched and groomed [10, 30]. One drawback of circuit switching is that it is a

technology with constant bit rate. As the network is becoming more packet dominated (e.g.,

layer-2 Ethernet, layer-3 IP), technologies with constant bit rate can introduce inefficiencies

in bandwidth utilization [12, 31]. Therefore, electrical switching and grooming in transport

networks are evolving to handle either packets (typically < 1 Gbit/s) or circuits (typically

≥ 1 Gbit/s). The current technology of choice for packet switching transport networks is

the multi protocol label switching - transport profile (MPLS-TP) [19, 32]. MPLS-TP is a

customization of MPLS that is being defined by the Internet Engineering Task Force (IETF)

and align the efficiency of packet networking with the reliability required in transport networks

operation. This technology labels the units of data and provides switching and grooming by

manipulating these labels [32]. In transport networks MPLS-TP is usually implemented with

generic framing procedure (GFP) over OTN optical transport units (OTU) [10, 30, 33].

The physical implementation of the electrical layer can have a fixed or a flexible archi-

tecture. A fixed architecture supports manual circuit switching and a flexible architecture

can support automatic circuit or packet switching. Fixed architectures are assumed to be

realized via muxponders or cascades of muxponders whereas flexible architectures demand

electrical cross connects (EXC), that are assumed to allow remote reconfiguration [18]. In

the following, a detailed description of the architectures considered is presented.

2.4.1 Muxponders-based architecture

This section presents the fixed architecture based on muxponders [18, 34, 35]. A muxpon-

der is a module that can groom multiple low data rate client signals into an high data rate

signal, providing a combination of encapsulation and grooming functionalities [16, 18, 34, 35].

Muxponders with line ports also provide wavelength assignment. A muxponder module has

input ports to receive the smaller bit rate signals and output ports to send the groomed

higher bit rate signals. This type of architecture is referred as fixed because reconfiguration

requires a technician visit to the site, and the mixture of client signals (grooming configura-

tion) provided by each muxponder is defined by the module itself [16, 18, 34, 35]. If a different

grooming configuration is required a new type of module needs to be used. This architecture
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also introduces constraints in the interconnection of the client signals to the muxponder mod-

ule. Particularly, all client signals that are to be groomed into the same high data rate signal

must be connected to the same module. Moreover, access to specific client signals involves

the full demultiplexing of all client signals and re-multiplexing of the remaining ones. We

assume that all input muxponder ports are client ports and the output muxponder ports can

be used to cascade muxponders or as line ports. The muxponder output port can support a

pluggable transceiver, thus acting as a short or long reach module.

An example of a fixed architecture is presented in Fig. 2.6. Each solid close box represents

a required module that needs to be inserted into a shelf, see Figs. 2.5 and 2.6. Gray circles

are client ports and color circles represent line ports. Additionally, gray arrows depict client

signals and color arrows depict line signals. Fig. 2.6 presents an example where three mux-

ponders and one transponder are required. The transponder is used when the client signal

bit rate is the same than the line signal bit rate, thus not performing grooming. Typically,

muxponder modules provide TDM between two or more constant bit rates. For example,

2.5 Gbit/s signals into 10 Gbit/s or a mixture of 10 Gbit/s and 40 Gbit/s into a 100 Gbit/s

line signal. In some cases, muxponder modules with the required client and line bit rates are

not accessible. In this case a two stage grooming is necessary. For instance, let us assume

two types of muxponders (4 × 2.5 Gbit/s to 10 Gbit/s and 10 × 10 Gbit/s to 100 Gbit/s)

and a line signal at 100 Gbit/s. In this case, grooming a 2.5 Gbit/s client signal into a 100

Gbit/s line signal requires a two stage grooming. The first muxponder generates a 10 Gbit/s

signal and the second one grooms the signal along with others and transmits a 100 Gbit/s

wavelength, see Fig. 2.6. Moreover, client signals switching between different line signals can

only be performed by external interconnection and involves the full signal demultiplexing, as

can be observed in Fig. 2.6. In this architecture the backplane only provides monitoring of

the modules.

Client signals

Line signals

Transponder module

Client port (short-reach transceiver)

Line port (long-reach transceiver)

Bidirectional client signal

Bidirectional line signal (wavelength)

Muxponder module

Legend

Figure 2.6: Muxponder-based architecture example. The fixed architecture requires muxponders or
cascades of muxponders and transponders. The figure presents three types of muxponders, two of
them in a two stage architecture.
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2.4.2 Electrical cross connects based architectures

This section presents the flexible architecture based on EXCs. EXCs are equipments that

allow circuit switching or packet switching of client signals through backplane communication

[8, 14, 16, 18, 28, 34, 36, 37]. EXCs comprise client modules to receive the client signals and to

perform encapsulation, electrical switching modules, and line modules to perform grooming

and wavelength assignment. The ports of the client modules are equipped with short-reach

transceivers whereas the ports of the line modules are equipped with long-reach transceivers.

Usually, the modules port density depends on the port bit rate and slot capacity of the

equipment. In general, EXCs can perform non blocking switching [27, 28, 37]. Thus, client

signals can be connected to any module that is configured to accept them as the EXC can be

remotely controlled through the electrical switch module (ESM) [16, 18, 27, 28]. The ESM

is then responsible to switch the client signals via backplane to the line modules or between

line modules.

An example of a general EXC is presented in Fig. 2.7. Each solid close box represents

a required module. Gray circles are client ports and color circles represent line ports. Ad-

ditionally, gray arrows depict client signals and color arrows depict line signals. Solid lines

represent connections via fibers and dashed lines represent connections via backplane and

controlled by the ESM module. It can be observed three types of client modules that can

accept three different client bit rates (one module for each bit rate), three line modules, and

one ESM. Independently of the wavelength in which the client signal will be transported, it

can be connected to any module that is able to accept it. The ESM module receives the

signals from the different client modules and switch them into the line modules and between

line modules.

Client signals

Line signals

E
S

M

Client/Line/ESM module

Client port (short‐reach transceiver)

Line port (long‐reach transceiver)

Backplane

Bidirectional client signal

Bidirectional line signal (wavelength)

Bidirectional backplane communication

Legend

Figure 2.7: Electrical cross connect example. The flexible architecture requires a shelf enabling back-
plane switching, one type of client module per client service, line modules and an electrical switch
module (ESM). The figure presents three types of client modules, three line modules, and one ESM.

When discussing in which layer the electrical switching should be performed, three prin-

cipal node architectures can be distinguished: parallel, layered and hybrid [14, 16, 36, 37].

In the parallel architecture (see Fig. 2.8(a)), independent ODU and MPLS switches exist

for the circuit and packet traffic, respectively [36]. Note that the use of either only ODU
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or only MPLS switch is also an alternative. As in this option the switches are independent

devices, the same wavelength cannot be shared for circuit and packet traffic. Thereby creat-

ing possible network inefficiencies. In the layered architecture (see Fig. 2.8(b)), the packet

traffic is not directly encapsulated onto a wavelength but passes through the ODU switch

first [36]. Packet traffic is encapsulated into ODUs that are then switched and groomed along

with circuit traffic in the ODU switch. This solution offers an alternative approach for better

bandwidth exploitation as it allows the coexistence of circuit and packet traffic within the

same wavelength. However, at the cost of doubling the number of equipments. In the hybrid

architecture (see Fig. 2.8(c)), an integrated switch matrix is used for processing both the

circuit and the packet traffic [16, 36, 38–40]. This can lead to cost savings, as the common

parts (e.g., power supply, OAM communication, racks, fans) are shared, and the communi-

cation devices between layers (e.g., short-reach transceivers) reduced. Moreover, circuit and

packet traffic can share the same wavelength.

Client signals

Line signals

Circuit switch
(ODU)

Packet switch
(MPLS)

Packet switch
(MPLS)

Circuit switch
(ODU)

Hybrid circuit/packet switch
(ODU/MPLS)

Line signals Line signals

Client signals

Client signals

(c)(b)(a)

Figure 2.8: Flexible node architectures: (a) parallel, (b) layered, (c) hybrid. In parallel nodes separate
ODU and MPLS switches exist for the circuit and packet traffic. The layered nodes do not encapsulate
the packet traffic directly onto a wavelength but always passes through the ODU switch first. In
the hybrid nodes, the switch matrix is used for processing both the circuit and the packet traffic.
Regardless the node deployed, the line signal is an OTU.

2.5 Optical layer

In opaque networks, the node optical layer is only responsible to perform WDM multi-

plexing. In transparent and translucent networks optical switching is also performed in the

optical layer. In these transport modes, when a wavelength reached a node, it could either

be switched to the electrical layer to stop at the node (add/drop channels) or switched be-

tween different optical links to pass through the node (through channels). The key enabler

for the switching of wavelength channels is the ROADM [1, 5, 41–45]. ROADMs can have

different implementations with various degrees of flexibility. Flexibility in the context of the

optical layer refers to the ability of providing remote reconfiguration for the switching, central

frequency and direction of a wavelength [1, 5, 18, 44].
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2.5.1 Building blocks

Several basic modules are currently available for the deployment of the optical layer of

the node [5, 19, 44, 45]. The diagrams of the modules used as building blocks are shown

in Fig. 2.9. The figures emphasized the function performed by the module rather than the

technology used for its implementation. Note that each module is bidirectional and needs to

be inserted into a shelf that provides monitoring and controlling, see Fig. 2.5.
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Figure 2.9: Common building blocks for the nodes optical layer: (a) Optical splitter or coupler
(OSC), (b) wavelength splitter or coupler (WSC), (c) 1 × P wavelength selective switch (WSS), and
(d) Pi × Po wavelength selective switch (WSS).

The module presented in Fig. 2.9(a) is the optical splitter or coupler (OSC) [5, 44]. An

optical splitter distributes the optical power from the input port (on the left) to all the output

ports (on the right). Generally this type of module operates over all the frequency range of

the transmission system [5, 44]. In the opposite direction the optical power is coupled. As

can be seen in Fig. 2.9(a) the full WDM signal is present in all the ports.

In Fig. 2.9(b) a wavelength splitter or coupler (also referred to as a WDM multiplexer/

demultiplexer) is presented. The wavelength splitter or coupler (WSC) is a module to mul-

tiplex and demultiplex optical channels in different wavelengths [5, 44]. A WSC is usually

implemented by an arrayed waveguide grating (AWG) [5, 44]. In this type of module the

wavelength or wavelengths assigned to each port are fixed. As can be observed in Fig. 2.9(b),

the WDM signal in the left port is demultiplexed to the right ports. However, each port is

associated with a specific wavelength and cannot operate in a different one. In the opposite

direction it acts as a multiplexer.

The wavelength selective switches (WSS) presented in Figs. 2.9(c) and 2.9(d) are active

devices, thus enabling wavelength reconfiguration under software command [5, 44, 45]. WSSs
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can dynamically switch individual or a set of wavelengths into any port [5, 44, 45]. WSSs

are currently being deployed using liquid crystal (LC) and micro electro mechanical systems

(MEMS) [5, 44, 45]. A 1 × P WSS is a module that is able to switch a selected wavelength or

wavelengths from a single common optical port to any one of the P output ports. As shown

in Fig. 2.9(c), the WDM signal presented in the left port is demultiplexed and switched to

the right ports. The wavelengths that are present in the right ports can be remotely changed

without restrictions. In the opposite direction it multiplex the wavelength or wavelengths to

the common port.

The Pi × Po WSS presented in Fig. 2.9(d) is a generalization of a 1 × P WSS [5, 44, 45].

This module is able to switch individual or a set of wavelengths from any input port to any

output port, as long as there are no multiple copies of the same wavelength in a single port.

As shown in Fig. 2.9(d) the wavelengths received by the input ports (on the left) can be

dynamically switched to any of the output ports (on the right), and vice-versa.

Opaque networks only demand a WSC module at both ends of the transmission systems.

In transparent and translucent networks the ROADM is responsible to multiplex and switch

the wavelength channels. ROADMs comprise one or more modules presented in Fig. 2.9,

and are composed by a cross connection structure and an add/drop structure [5, 18]. The

cross connection structure is responsible to switch the wavelength signals between different

transmission systems that reach the node, and between the transmission systems and the

add/drop structure. The add/drop structure provides the interface between the electrical

layer and the cross connection structure. All ROADM architectures allow full flexibility in

the cross connection structure. However, some implementations have two major limitations in

the add/drop structure: they can only operate in a fixed wavelength, and the channel operated

by each port can only be sent to/received from one transmission system [1, 5, 18, 44]. In the

following, a detailed overview of ROADM architectures with different degrees of flexibility is

presented.

2.5.2 Cross connection structure

The cross connection structure is responsible to switch the wavelengths to the appropriate

transmission system to continue their paths, or to the add/drop structure to terminate at

the node. We assume that the cross connection structure is implemented in the same way

in all considered ROADM architectures and it is composed of one 1 × P WSS module and

a pre/booster amplifier per transmission system, i.e. per direction, see Fig. 2.10 [1, 5, 18].

Alternative solutions for cross connection structures are also possible. For instance, broadcast

and select architectures are implemented with a OSC in the incoming direction of a trans-

mission system and a WSS in the outcoming direction, enabling multicast communication

[5, 44]. However, they are out of the scope of this work. Further details can be found in

[1, 5, 41–44, 46–49]. The P ports of the WSS module are connected to all the remaining

directions and to the add/drop structure(s), selecting the wavelengths to route between the

different directions and between the directions and the add/drop structure. Considering the
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West fiber in Fig. 2.10 it can be observed that two wavelengths (red and blue) are switched

to the add/drop structure to terminate their paths whereas the remaining two (green and

orange) are switched to the others directions. The green optical channel is switched to the

East transmission system and the orange to the South.

Add/drop structure(s)

West East

South
A

M
P

W
S

S A
M

P

W
S
S

AMP

WSS

Figure 2.10: Cross connection structure of a ROADM. The cross connection structure is composed
by one 1× P bidirectional WSS per transmission system and is responsible to switch the wavelength
signals between the different transmission systems that reach the node and between the transmission
systems and the add/drop structure.

Each WSS must be directly connected to all the other WSSs and to the add/drop structure

to enable full flexibility. Thus, the maximum number of transmission systems that can

converge to the node, i. e. nodal degree, is limited by the port density in the WSS and by

the number of add/drop structures deployed.

2.5.3 Add/drop structure: fixed frequency and fixed direction

The add/drop structure defines the node flexibility. The node architecture shown in Fig.

2.11 is the fixed frequency and fixed direction ROADM [5, 18, 44]. In this architecture the

wavelength and the direction of the add/drop channel is fixed, and reconfiguration always

requires the technician intervention on the site. The fixed frequency and fixed direction

add/drop structure requires a dedicated WSC module per transmission system. Therefore

signals can only be sent to one direction and on the fixed wavelength defined by the WSC

port. As can be observed in Fig. 2.11, the wavelengths represented as red need to be plugged

into a specific port of the WSC module. To reconfigure a service wavelength, the transceiver

must be moved to the WSC port operating in the corresponding wavelength. Moreover,

since the add/drop structure is unique for each transmission system, moving a wavelength

to another direction requires physically moving the transceiver to the WSC module of the

desired direction. As can be observed in Fig. 2.11, the WSC attached to the West direction
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can only sent/receive signals in that specific direction.

West East

South

A
M

P

W
S

S A
M

P

W
SS

AMP

WSS

Cross connection 

structure

Regenerator

WSC

WSC

Add/drop 

structures

WSC

Figure 2.11: ROADM architecture with fixed frequency and fixed direction add/drop structure. One
WSC module is dedicated per transmission system. This architecture requires WSC, WSS and am-
plifier modules. Changes in the wavelength or in the direction of a specific add/drop channel requires
manual intervention on the site.

2.5.4 Add/drop structure: colorless and fixed direction

In a colorless architecture the wavelength assigned to any add/drop port can be change

remotely [5, 18, 44]. In the previous architecture the WSC module restrict each add/drop

port to only one particular wavelength. To eliminate this constraint a WSS module can be

used to replace the WSC module and provide the colorless functionality [5, 44]. Alternative

colorless ROADM architectures can be implemented with an OSC module instead of a WSS

module [5]. However, this type of architecture is not considered in this work. Note that

the colorless functionality demands wavelength tunable transmitters and receivers [5]. A

colorless and fixed direction add/drop ROADM is presented in Fig. 2.12. The implementation

is similar to the fixed frequency and fixed direction architecture presented in Fig. 2.11

but replacing the WSC by WSS modules. Moreover, as the WSS module can be remotely

reconfigured, changes in the wavelength that a specific port is operating can be performed

without the need of physically changing the port. However, this ROADM architecture still

has a dedicated add/drop structure per transmission system. As the WSS module have a

limited number of ports that is usually smaller than the maximum number of wavelengths

that can be multiplexed into a single transmission system, a cascade of WSS modules can be

used to increase the add/drop port count.
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Figure 2.12: ROADM architecture with colorless and fixed direction add/drop structure. WSS mod-
ules are dedicated per transmission system. Changes in the wavelength can be made remotely whereas
changes in the direction of a specific add/drop channel requires manual intervention on the site.

2.5.5 Add/drop structure: fixed frequency and directionless

In a directionless ROADM any add/drop channel can be remotely redirected to any trans-

mission system that converges to the node [5, 18, 44]. Directionless architectures are im-

plemented by sharing the same add/drop structure between all transmission systems start-

ing/ending on the ROADM. The fixed frequency and directionless add/drop structure shown

in Fig. 2.13 requires one WSC and one WSS module per add/drop structure. The add/drop

channels are connected to a WSC module, thus not enabling the colorless functionality. Af-

ter, a WSS module that is connected to all the node directions switch the wavelengths to

the appropriate transmission system. Changes in the direction of an add/drop channel can

be performed remotely. In spite of a WSC module is usually able to multiplex/demultiplex

all the channels that a single transmission system can support, as the add/drop structure is

shared, the maximum number of add/drop channels is limited by the number of add/drop

structures implemented.

2.5.6 Add/drop structure: colorless and directionless

The colorless and directionless ROADM is presented in Fig. 2.14 [5, 18, 44]. This archi-

tecture enables that both the wavelength and/or the direction of a specific add/drop channel

can be remotely changed. The add/drop channels feed the P × 1 WSS module, where all
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Figure 2.13: ROADM architecture with fixed frequency and directionless add/drop structure. The
add/drop structure is shared between all the transmission systems. One WSC and one WSS module
are required per add/drop structure. Changes in the wavelength requires manual intervention on the
site whereas changes in the direction can be made remotely.

the signals are multiplexed. This WSS module is connected to another 1 × P WSS that is

connected to all the node directions, see Fig 2.14(a). In this way, both the wavelength and the

direction are dynamically reconfigurable. However, multiples copies of the same wavelength

cannot be transmitted along the same add/drop structure even if directed to different trans-

mission systems. This is referred as the contention problem [5]. As an example, consider the

wavelength represented as yellow and coming from the South direction in Fig. 2.14(a). Even

if the yellow wavelength is available in the East transmission system, a wavelength conversion

needs to be performed in the regenerator, otherwise the two wavelengths are blocked in the

WSS common port of the add/drop structure, see Fig. 2.14(a).

As previously discussed, the maximum number of add/drop channels per add/drop struc-

ture is restricted by the number of ports in the WSS. However, in this architecture a cascade

of WSSs is avoided due to the losses imposed to the signal [42, 48, 50]. To increase the max-

imum number of add/drop channels, the number of add/drop structures can be increased, at

the cost of a reducing the maximum nodal degree allowed. An alternative extended colorless

and directionless add/drop structure is the architecture presented in Fig. 2.14(b) [18, 42, 48].

The add/drop channels feed the P × 1 WSS before going through an OSC module. The OSC

module aggregates all WDM signals that arrive from the different WSSs in the add/drop
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structure. An amplifier is usually required at the output/input of the OSC module in order

to compensate the losses imposed by the WSSs and OSC modules [42]. Finally, the combined

signal is transmitted to another 1 × P WSS module that is connected to all directions, and

routes the wavelengths to their intended destinations.
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Figure 2.14: ROADM architecture with colorless and directionless add/drop structure. This architec-
ture requires WSS, OSC, and amplifier modules. Changes in the wavelength or in the direction of a
specific add/drop channel can be made remotely. The architecture presented in (b) is an extended
version to increase the maximum number of add/drop channels.

2.5.7 Add/drop structure: colorless, directionless and contentionless

In a contentionless ROADM, a transmitter/receiver can be assigned to any wavelength

as long as that wavelength is not already in use on the output port [5, 18, 44, 46]. The

colorless, directionless and contentionless ROADM is presented in Fig. 2.15. The add/drop

structure is equipped with Pi × Po WSS. As aforementioned, the Pi × Po WSS can switch

any wavelength from any input port to any output port. The Pi ports receive the add/drop

channels that are switched to any of the Po directions of the node. As can be seen if Fig.

2.15 as long as the signals represented as red follow different paths they can be connected

to the same add/drop structure without blocking. A Pi × Po WSS module may not provide

sufficient add/drop ports. An extended architecture to increase the add/drop ratio is the

implementation of more than one add/drop structure, thus decreasing the maximum nodal

degree. Note that a cascade of 1 × P WSS cannot be deployed as removes the contentionless

capability.
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Figure 2.15: ROADM architecture with colorless, directionless and contentionless add/drop structure.
This architecture only requires Pi × Po WSS modules. Multiples copies of the same wavelength can
be used within the same add/drop structure provided that they follow different directions.

2.6 Chapter summary

This chapter overview the transport modes of operation and the architectures to imple-

ment the transmission system, the electrical and the optical layer of the node. The chapter

starts by presenting the opaque, transparent and translucent transport modes of operation

and relating them with the grooming schemes. The link-by-link grooming scheme is used in

opaque networks, and the single-hop grooming scheme is used in transparent ones. Regarding

translucent networks, as OEO conversion can be performed in selected nodes, a multi-hop

grooming scheme can be employed. The transmission system architecture is then overviewed.

Later, the building blocks used in a general node architecture are presented. Considering

the architectures to implement the electrical layer of the node, a fixed architecture based

on muxponders, and a flexible architecture based on EXCs are presented in detail. Re-

garding the optical layer, the building blocks used in the various ROADM architectures are

explained. Finally, ROADMs with fixed frequency, fixed direction, colorless, directionless and

contentionless capabilities are described.
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CHAPTER 3

Survivable topological design and links dimensioning

The proliferation of Internet access and the appearance of new telecommunications services

are originating a demand for resilient networks with extremely high capacity [1]. With such

huge amount of traffic traversing a single optical fiber a link failure may lead to catastrophic

consequences affecting critical applications from governmental agencies, banks or health ser-

vices. These traffic interruptions have also associated big economical losses for operators due

to the downtime costs [2]. Therefore, design a network topology with the required character-

istics to recover connections in case of failure is of paramount importance in optical transport

networks.

The nodes location is one of the first pieces of information that the network designer has,

corresponding to the location of the central offices where the traffic is added and dropped.

Thus, the first stage of the overall network design process is the topological design. At this

stage the connections between the nodes are established, i.e. the conduits are deployed.

The network topological design should guarantee a reliable network, and this depends on

which links are going to be implemented [3, 4]. An optimized solution depends on the traffic

requirements. However, the traffic to be transported by the network is hard to forecast and

is continuously changing [5, 6]. In practice, several probable traffic scenarios are defined

and evaluated, then the lowest cost network that will remain feasible for the majority of

the scenarios is implemented [5]. Therefore, the development of methods to quickly design

physical topologies at minimum cost is crucial. In this chapter, the problem of jointly design

the physical topology, ensure survivability, and minimize the network CapEx related to the

links is addressed. In order to deal with this problem a genetic algorithm is developed, and

the impact of the genetic operators on the quality of the obtained solutions analyzed.

The chapter is organized in six sections. In Section 3.1 an introduction to the survivable

topological design problem is given, and the mathematical formulation of the dimensioning

problem is presented in Section 3.2. After, Section 3.3 is devoted to the detailed explanation
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of the two initial population generators, the two selection methods, and the two crossover

operators considered within the genetic algorithm. Section 3.4 presents the ILP used to

benchmark the obtained solutions. In Section 3.5 the impact of the genetic operators on the

quality of the solutions is analyzed. Finally, Section 3.6 summarizes the chapter.

3.1 Survivable topological design problem

The most cost effective way to connect a set of nodes is known to be the minimum spanning

tree [7]. The minimum spanning tree ensures that between any pair of nodes exists, at least,

one path, thus exists connectivity. However, survivability is not guaranteed. To ensure the

network survivability, a pre-specified number of disjoint paths between any pair of nodes is

required. The disjoint paths can be disjoint by links or by nodes, depending on the type

of failures in analysis. In optical networks, the failure of multiple fibers at the same time is

extremely rare [8]. The majority of failures regard single-link failures. Thus, we aim to design

a network topology survivable against any single link failure. A survivable topology against

single link failures requires two link disjoint paths between each pair of nodes [9]. To ensure

survivability a protection scheme have also to be implemented. We focus on path dedicated

protection, where a link disjoint backup path is used to protect each optical channel [8]. In this

scheme the backup path has dedicated resources that cannot be shared with others working

and backup paths. When a working path link fails all the affected demands are switched

to their respective dedicated backup path. The survivable topological design problem, not

allowing the use of parallel edges, is strongly NP-hard [3, 10]; thus ILP models only lead

to optimal solutions, within reasonable time and computational effort, for small networks.

Consequently, heuristics are commonly used to search for near-optimal solutions.

The topological design problem has attracted the attention of many researchers [3, 11–

27]. Commonly, two main methodologies are used for designing a topology with certain

requirements: statistical modeling and optimization methods. In the first approach, statisti-

cal properties of real networks are obtained through collection and interpretation of topology

related characteristics [11–15]. After, the topologies are designed to resemble the statistical

properties observed [11, 12]. In the second approach, an objective function to be either max-

imized or minimized is developed, and an optimization method (ILP or heuristic) is used to

find the most suitable topology that maximize/minimize that objective function [3, 4, 16–27].

The objective function usually aims to minimize the CapEx, the power consumption, or the

number of fibers in the network. For instance, in [16–19] the optimization focus in minimizing

the cost associated with the optical fibers and in [20], the authors attempt to minimize cost

through the trade-off between the fiber length and number of wavelengths. None of these

works consider the network survivability. Optimization methods for the topological design

of survivable networks can be found in [4, 21–27]. In [21–23] ILP models and heuristics are

analyzed to minimize the total number of links, and in [24, 25] the 2-connected graph concept

is used for the topological design. Authors in [26] presents an heuristic method for the joint

minimization of the CapEx and the power consumption with survivability requirements. A
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state of art in ILP models and decomposition methods for the survivable design problem

can be found in [3, 27]. Regarding genetic algorithms in the design of telecommunication

networks, the works [28, 29] uses it. In [28], a genetic algorithm is presented to route and

dimension dynamic optical networks, without considering the network survivability, and in

[29] a genetic algorithm to minimize the CapEx of an all-optical network considering physical

impairments is proposed.

For a better understanding of the problem under study, an example is presented. The nodes

location and the traffic matrix are the inputs of the problem. In the example, presented in

Fig. 3.1, the distance between nodes one and two, one and three, two and four, and three

and four, is of 500 km and the distance between nodes one and four, and two and three is of

707 km. The used traffic is an uniform and unitary matrix, i.e., two demands exist between

all pairs of nodes, the working and the backup.

500 km

500 km

500 km 500 km707 km707 km

1

3

2

4

1-2 1-3 1-4 1-2 2-3 2-4

1-3 2-3 3-4 1-4 2-4 3-4

Figure 3.1: Inputs of the survivable topological design problem. Given the nodes location and the
traffic model the goal is the connect all the nodes ensuring the survivability of all demands against
single link failures at minimum CapEx for links.

One feasible solution of the problem is the topology and routing presented in Fig. 3.2.

The solid lines represent the working path of each demand and the dashed lines represent the

corresponding backup path. The routing scheme is the shortest path in number of hops for

the working path and the second shortest path in number of hops for the dedicated backup

path. The required spacing between amplifiers is assumed to be of 80 km. As each link only

has one transmission system, a total of 32 optical amplifiers are required.

As an example, consider the demand between the nodes one and three (shown in blue) and

the demand between the nodes two and three (shown in orange) in Fig. 3.2. Since there is a

direct connection between the nodes one and three, the demand will be sent directly through

this link. Note that the same connection also transports the demand between the nodes two
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Figure 3.2: Dimensioned network using a dedicated protection scheme, corresponding to a feasible
solution for the survivable topological design problem. Working paths are represented as solid lines
and backup paths as dashed lines. The shortest path in number of hops was considered for both paths.

and three and belongs to the backup path of the demand between the nodes three and four.

If the link between the nodes one and three fails, the demands between the nodes one and

three and two and three will be affected, requiring a backup path that not go through that

failed link. The demand between one and three is re-routed by the links between nodes one

and four, and later in the link between the nodes four and three. The other affected demand

which was formerly carried by the links between the nodes two and one, and one and three is

carried by the links between the nodes two and four and later by the link between the nodes

four and three, see Fig. 3.2.

3.2 Links dimensioning

Links are sets of transmission systems comprising the optical fiber and optical amplifiers,

see Fig. 2.4. The set of links deployed must guarantee the connectivity between all pairs of

nodes regardless the transport mode used in the network. Thus, in this chapter we assume a

general node that can operate in opaque, transparent or translucent mode.

A network topology is generally represented as a graph G(V,Ep), where V = {1, . . . , N},
is the set of nodes, where N is the number of nodes, and Ep = {{i, j} : i, j ∈ V, i < j}, is the

set of links. In this chapter, Ep represents all bidirectional links that can be deployed, and the

goal is to find a subset of Ep that corresponds to the survivable topology at minimum CapEx

for links. The nodes location defines the distance between them, i. e., the links length. The

link length in kilometers between the node i and j will be denoted by LL(i, j).
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The network has to support a given traffic, corresponding to a set of demands between

nodes. A demand can be seen as a flow between the origin node, o, and the destination

node, d. The set of node pairs requesting at least one optical channel defines the logical

topology, and is denoted by Ec = {(o, d) : o, d ∈ V, o 6= d}. Each demand can be supported

by one or more optical channels. The required capacity between the network nodes can be

represented as a matrix, [L(o, d)], in which the elements L(o, d) hold the number of optical

channels required between the origin node o to the destination node d. We consider that

currently deployed optical transport networks contain bidirectional transmission systems and

symmetric traffic. Hence, all demands are bidirectional and L(o, d) = L(d, o).

The CapEx regarding links is composed by a cost depending on the number of transmission

systems installed, and a cost depending on the number of optical channels that traverses each

transmission system. The costs depending on the number of transmission systems installed

in the link {i, j}, TS(i, j), are the costs with its deployment plus the cost with the optical

fibers, and optical amplifiers. The cost with the optical fiber is proportional to the length

LL(i, j) between the nodes. The number of optical amplifiers depends on LL(i, j) and on the

span. Therefore, TS(i, j) can be assumed to be given by

TS(i, j) =

(
Y (i, j) + LL(i, j)cf +

⌈
LL(i, j)

span
− 1

⌉
coa

)
U(i, j), ∀{i, j} ∈ Ep, (3.1)

where Y (i, j) is the cost with right-of-way privileges and/or method used to deploy a trans-

mission system between the nodes i and j, cf is the cost of the optical fiber per kilometer,

d(LL(i, j)/span)−1e is the number of optical amplifiers, and coa is the cost of a bidirectional

optical amplifier. As one or more transmission systems can be required, the integer non-

negative variable U(i, j) indicates the number of transmission systems installed in the link

between the nodes i and j.

The number of transmission systems installed, U(i, j), is dependent on the maximum

number of optical channels that a transmission system can support and on the number of

optical channels that are routed through the link {i, j}, W (i, j). The value of W (i, j) is

calculated by adding the number of optical channels, L(o, d), for all demands that traverse

the link {i, j}. Thus,

W (i, j) =
∑

(o,d)∈Ec

L(o, d)(Zodij + Zodji ), ∀{i, j} ∈ Ep, (3.2)

where Zodij and Zodji are binary variables that indicate whether the optical channel between

nodes o and d is routed through the link {i, j} or not. As the links can be traversed in both

ways, the variables Zodij indicate if the demand (o, d) traverse the link in the direction from

nodes i to j whereas the variables Zodji are related to the direction from j to i. The number

of transmission systems installed, U(i, j), is then obtained using W (i, j) by

U(i, j) =

⌈
W (i, j)

K(i, j)

⌉
, ∀{i, j} ∈ Ep, (3.3)
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whereK(i, j) is the capacity of a particular transmission system in number of optical channels.

The costs depending on the number of optical channels that traverse the link between the

nodes i and j, TO(i, j), are related to the costs associated to transport and switch one optical

channel. For instance, a pair of long-reach transceivers in opaque networks, or the cost related

to enable the switching of an optical channel in transparent and translucent networks. Given

that co is that cost, TO(i, j) can be calculated by

TO(i, j) = coW (i, j), ∀{i, j} ∈ Ep. (3.4)

Therefore, the CapEx for links, CapExL, is given by the sum of the cost TS(i, j) plus TO(i, j)

for all links,

CapExL =
∑

{i,j}∈Ep

TS(i, j) + TO(i, j). (3.5)

The topological design problem is characterized by being hard in complexity, time con-

sumption, and memory requirements. Consequently, exact solutions within reasonable time

can only be obtained for small networks. As optical transport networks can have more than

100 nodes [15, 30], ILP models are prohibitive for larger networks. In the following, a heuris-

tic approach and an ILP model to obtain solutions that minimize CapExL with survivability

requirements are presented. The ILP model is used to evaluate the quality of the solutions

obtained using the genetic algorithm in terms of accuracy and time consumption, for small

networks. The topology and the paths between the nodes are obtained by the values of the

variables U(i, j), Zodij and Zodji , respectively.

3.3 Genetic algorithm

Genetic algorithms are search algorithms based on the mechanics of natural selection [31].

In every generation (iteration), a new set of artificial individuals (solutions) is created, using

pieces of the previous generation. The new population is expected to be globally fittest

than their progenitors. A genetic algorithm has the following steps: generation of an initial

population, encoding, evaluation, selection, crossover, mutation, and decoding [31, 32]. Figure

3.3 presents a flowchart of a generic genetic algorithm.

A set of initial feasible solutions for the problem (individuals) is generated, forming the

initial population. Every solution is represented by an individual in the population. In

order to uniquely identify each one, they are codified into a genetic code. The genetic code

needs to preserve all the information regarding the solution as well as guarantees that the

information can be transferred to the offsprings. After, the genetic algorithm modifies this

population repeatedly. All the individuals of the population are evaluated, i.e., the cost

of the solutions is calculated. Then, pairs of individuals are chosen under selection rules,

usually based on the evaluation of each individual. After, the selected pairs of individuals
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Figure 3.3: Flowchart of a generic genetic algorithm.

are combined under crossover rules, giving rise to others pairs of individuals (offsprings). To

increase the population diversity, mutations can also be applied at this stage. The offsprings

are then also evaluated and a new population is selected from individuals belonging to both

generations. This procedure is repeated until the halting criteria is reached. At this point,

the fittest individual is decoded corresponding to the best solution achieved.

The convergence of a genetic algorithm is dependent on the used operators. In the fol-

lowing, two initial population generators, two selection methods, and two crossover operators

are presented within the genetic algorithm.

3.3.1 Initial population

A feasible solution for the problem is a network topology with at least two link-disjoint

paths between any pair of nodes. We use two topology generators to create the initial popu-

lation set. One generates completely random topologies, based on [33]. The other generates

topologies that preserve the main characteristics of real telecommunication networks, based

on [30].

The random topology generator starts by designing a ring topology connecting all nodes of

the network, thus guaranteeing that all initial solutions are feasible [33]. The ring topology

is randomly generated for each individual. After, t links are added to the ring topology,

connecting t pairs of randomly selected nodes. The number t of additional links is randomly

generated and ranges from 0 to N(N − 3)/2, i.e., from a ring to a full mesh network. Figure

3.4 presents some possible topologies generated using this method for a 4-nodes network. The

links of the ring topology are displayed as solid black lines. Additional links are presented as

dashed grey lines.

The topology generator presented in [30] models a survivable transport network as a set

of interconnected smaller sub-networks and introduces constraints to guarantee the charac-

teristics showed by real ones, see Fig. 3.5. The topology generator is based on the Waxman

approach, where the probability of a pair of nodes being directly connected depends on the
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Figure 3.4: Generation of initial population solutions using the random topology generator presented
in [33]. The algorithm starts by designing a ring topology (black solid lines). Afterwards a random
number, t, is generated corresponding to the number of additional links to be added to the ring (grey
dashed lines). The end nodes of each individual link are randomly selected.

Euclidian distance between them [34]. The method starts by partitioning the plane where

the network will be implemented into regions of equal size. The nodes are then placed into

the regions, see Fig. 3.5(a). Note that the node location is an input of the problem. After the

above procedure, we may have regions without nodes, with one, two, or more than two nodes.

If a region has two or more nodes an additional procedure is required, that is, if there are

two nodes they are directly connected; if there are more than two nodes they are connected

as a closed cycle, see Fig. 3.5(b). For regions with more than three nodes, the way the nodes

are directly connected follows the Waxman link probability [30, 34]. The probability, φ(i, j),

of existing a link between the node i and the node j is given by [34]

φ(i, j) = β exp
−LL(i, j)

γ∆
, ∀{i, j} ∈ Ep, (3.6)

where LL(i, j) is the distance, in kilometers, between the node i and j; ∆ is the maximum

distance between any two nodes in the network; and following [30], γ and β are both assumed

to be 0.4.

Once the nodes inside each region are interconnected, new links should be added to in-

terconnect the regions, guaranteeing the network survivability. This process also follows the

Waxman link probability, however, each node of the selected pair belongs to different regions.

In order to guarantee that the generated topology will be survivable, some precautions should

be taken into account: if a region has only one node, this node must be connected to at least

two nodes of neighbor regions; if the region has only two nodes, each one must be connected

to a node in neighbor regions; if a region has more than two nodes, at least two nodes must

be connected to nodes of neighbor regions, see Fig. 3.5(c). Two nodes of a region can be

connected to the same destination node in a neighbor region only if node-disjoint paths are

not required. At this phase we have a connected and survivable network topology (at least

against single link failures). Afterwards, a random number of additional links are added to

the network, see Fig. 3.5(d).
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(a) (b)

(c) (d)

Figure 3.5: Generation of initial population solutions using the topology generator that resembles the
properties of real world networks [30]: (a) The plane and the nodes placed into regions. (b) Intra-
region survivability. (c) Region interconnection. (d) A possible network topology over a six-region
plane.

3.3.2 Encoding and decoding

The encoding corresponds to the creation of a genetic code that uniquely represents a

solution. To encode the solutions, we used the concatenation of the rows of the upper trian-

gular matrix of the adjacency matrix. The adjacency matrix is an N ×N matrix in which an

element in position i, j is 1 if node i is directly connected to node j, and 0 otherwise. As the

network links are bidirectional, the adjacency matrix is symmetric. As an example, consider

the four node network topology presented in Fig. 3.2. The adjacency matrix of the network

is

[g] =


0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

 , (3.7)
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and the respective genetic code is,

1 1 1 | 0 1 | 1.

Given the genetic code of the solutions, the decoding is the inverse operation. Note that the

decoding operation is only performed at the end and for the best solution achieved.

3.3.3 Evaluation

The evaluation consists of determining the CapEx for links, CapExL, of each topology.

To calculate CapExL we determine two paths for each demand (a working and a backup

path) and use them to calculate the number of optical channels needed in each link, thus

W (i, j). We assume that the working path is the shortest path (in number of hops) and the

backup path is the second-shortest path. The working path is determined using the Dijkstra

algorithm. To obtain a second link disjoint shortest path, the links in the working path

are overweighted, and the backup path is determined using the Dijkstra algorithm a second

time. If two or more shortest paths exist, we use the first path encountered. Note that the

feasibility of the solutions can only be guaranteed at the initial population. Later on, if the

two disjoint paths cannot be obtained, the solution is removed from the population. The two

link-disjoint paths determined using the Dijkstra algorithm will be used to give values to the

variables Zodij and Zodji . After all the demands have been routed, W (i, j) is obtained using

Eq. (3.2) and U(i, j) using Eq. (3.3). With the values for the variables W (i, j) and U(i, j)

determined, the cost TS(i, j) is obtained using Eq. (3.1) and the cost TO(i, j) is calculated

using Eq. (3.4). Finally, CapExL is calculated using expression (3.5).

The use of the shortest paths in number of hops is an approximation used in the proposed

genetic algorithm. This approximation is assessed in the following, using the ILP model.

3.3.4 Selection

In the selection phase, pairs of individuals are chosen for crossover. Usually, individuals

are selected based on their fitness, i.e., the cost of the respective solution. The selection

method usually emphasizes the fitter individuals expecting that their offspring will have

higher fitness too. However, a strong selection can reduce the diversity of the population,

leading to suboptimal solutions; contrariwise a weak selection can result in slow evolution

[31, 32]. Two different selection methods that differ in the selection pressure are used: the

roulette wheel and the tournament method [31].

In the roulette wheel method, solutions are chosen based on their fitness. The lower cost

solutions have higher probability to be chosen for crossover than solutions with higher cost.

After all solutions are evaluated, the total generation cost is determined by adding all the

solution costs. The next step is the calculation of the solution fitness. The fitness of each

solution is the difference between the total generation cost and the cost of the solution. In

this way, the solutions with lower cost will have higher fitness than the solutions with higher

cost. Finally, the selection probability is calculated by the ratio between the solution fitness
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and the sum of the fitness among all individuals. Therefore, solutions with lower cost have

greater probability of being selected for crossover. Table 3.1 shows an example of the crossover

probability calculation using the roulette wheel method for the solutions presented in Fig.

3.4. As can be seen solution A has the smaller cost and therefore the highest probability to

be chosen. The opposite happens in solution D where its higher cost leads to the smallest

probability.

Table 3.1: Example of the crossover probability determination using the roulette wheel selection
method.

Individual Genetic code Cost Fitness Probability

A 110011 20 100 0.28

B 111101 30 90 0.25

C 111110 30 90 0.25

D 111111 40 80 0.22

TOTAL ——— 120 360 1

In the tournament method, the fitness of each solution has a smaller impact in the selection

of individuals for crossover. The selection is done randomly. Four individuals are randomly

selected from the population and grouped two by two. Afterwards, two numbers, r1 and r2,

ranging between 0 and 1 are randomly generated. If r1 < 0.75, the solution with the smaller

cost from the first group is selected for crossover; otherwise the less-fit individual is selected.

The same occurs for the second group.

3.3.5 Crossover and mutation

In the crossover operation, pairs of individuals previously selected are combined, giving

rise to another pair of new individuals. Usually the crossover operators respect the following

properties [31, 32]:

� The crossover of two equal individuals will lead to a new pair of individuals like the

previous ones,

� The crossover of two individuals that are in the nearby of the search space will generate

individuals next to them.

There is no guarantee that the crossover of two individuals with good fitness will generate

a high quality individual as well. A crossover is called lethal when produce individuals with

low fitness and this comes from two highly adapted individuals [31]. To assess the impact

of the crossover operator in the quality of the obtained solutions two crossover operators are

analyzed: the single point crossover and the uniform crossover [31, 32].

In the single point crossover, a border between two elements of the genetic code is randomly

selected. The two left sides of progenitor 1 and progenitor 2 are copied to offspring 1 and
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offspring 2, respectively. The right sides of each code shall be exchanged, i.e., the right side

of progenitor 1 is copied to offspring 2 and the right side of progenitor 2 is copied to offspring

1. An example is displayed in Table 3.2. In this example, the border is placed between the

fourth and the fifth element of the genetic code for the two progenitors.

Table 3.2: Example of the single point crossover.

Individual Genetic code

Progenitor 1 1 1 1 1 0 1

Progenitor 2 1 0 1 1 1 1

Offspring 1 1 1 1 1 1 1

Offspring 2 1 0 1 1 0 1

In the uniform crossover, a mask is randomly generated. If the crossover mask bit m is 1,

the offspring 1 receives the bit m from progenitor 1 and offspring 2 receives the bit m from

progenitor 2. If the mask bit m is 0, offspring 1 inherits the bit m from progenitor 2 and

offspring 2 inherits it from progenitor 1. The example in Table 3.3 illustrates this process.

Table 3.3: Example of the uniform crossover.

Individual Genetic code

Progenitor 1 1 1 1 1 0 1

Progenitor 2 1 0 1 1 1 1

Mask 0 1 1 0 0 1

Offspring 1 1 1 1 1 1 1

Offspring 2 1 0 1 1 0 1

The mutation operation consists of a simple exchange of 0’s to 1’s, or vice versa (add or

remove links), at random locations of the genetic code, for a randomly selected number of

individuals. This operation has the goal of increasing the diversity of the population.

After the individuals are evaluated, selected, and reproduced, the next generation is cre-

ated. The selection of the individuals to form the next generation is made from the present

generation and the generated offspring. We consider that a maximum of 20% of individuals

are selected from the present generation, the remaining 80% are offsprings, to make available

for crossover the maximum number of different links as possible.

3.4 Integer linear programming model

The ILP model is used to benchmark the solutions obtained using the genetic algorithm.

The ILP model is the following [21–23, 27]:
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minimize CapExL =
∑

{i,j}∈Ep

TS(i, j) + TO(i, j) (3.5)

subject to

∑
j∈V \{o}

Zodij −
∑

j∈V \{d}

Zodji =


2, i = o

0, i 6= o, d

−2, i = d

, ∀(o, d) ∈ Ec,∀i ∈ V (3.8)

∑
(o,d)∈Ec

L(o, d)(Zodij + Zodji ) ≤ K(i, j)U(i, j), ∀{i, j} ∈ Ep (3.9)

U(i, j) ∈ N0, ∀{i, j} ∈ Ep (3.10)

Zodij , Z
od
ji ∈ {0, 1}, ∀(o, d) ∈ Ec,∀{i, j} ∈ Ep (3.11)

The objective function, to be minimized, is the expression (3.5). Constraints (3.8) are the

usual flow conservation constraints and ensure that, for each (o, d) pair, we route two units

of flow from node o to node d. Figure 3.6 shows an example of two units flow from the origin

node o to the destination node d. The source node sends two units of flow and the destination

node has to receive those two units of flow. In the remaining nodes, being neither origin nor

destination, the receive flow have to be send, constraints (3.8).

Figure 3.6: Example of two flows in a network. The origin node, o, sends two flows that are received
by the destination node, d. In the intermediary nodes the received flows need to be sent. The two
flows are sent through disjoint links.

Constraints (3.8) together with (3.9) guarantee the connectivity between all pairs of nodes.

Constraints set (3.9) connects the sets of variables, guaranteeing that the total number of

optical channels that crosses the link {i, j}, in both directions, does not exceeds the maximum

capacity, K(i, j), of the number of installed transmission systems, U(i, j). Constraints set

(3.10) defines the variables U(i, j) as non negative integer variables, allowing the installation

of more than one transmission system in each link. The disjointness of the two flows, to ensure
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survivability, is enforced by constraints (3.11). As the variables Zodij and Zodji are binary, the

two flows cannot traverse the same links, even if using different transmission systems. Hence,

the existence of two link-disjoint paths for each origin destination pair is guaranteed.

3.5 Impact of genetic algorithm operators

As aforementioned, the convergence of the genetic algorithm depends on the used op-

erators. Hence, this section reports the computational results obtained using the genetic

algorithm and the ILP model. The genetic algorithm is implemented in C++. Using the ge-

netic algorithm feasible solutions, corresponding to upper bounds for the optimal value, are

obtained. The ILP model is used to obtain lower bounds and is solved using the branch and

bound method from the commercial optimization software Xpress IVE 1.18 [35]. The results

are obtained using a PC Intel Core 2 at 1.83 GHz and 1 GB RAM. The halting criteria used

for the ILP model is the obtention of the optimal solution or 10 hours of processing time.

In the genetic algorithm we performed 100 iterations, which required less than four minutes

for the largest network. We observed marginal improvements in the solutions obtained when

increasing this number of iterations.

To evaluate the quality of the obtained solutions the gap between the upper, bu, and the

lower, bl, bound is calculated as follows

gap =
100(bu − bl)

bu
, (3.12)

where bu is the cost of the solution obtained using the genetic algorithm and bl the cost of

the solution obtained using the ILP model.

The computational results are obtained for the node location of nine real telecommuni-

cations networks. We assume that all links can be implemented. As the cost of deploy a

link is hard to obtain, and for a matter of simplicity we consider Y (i, j) = 0, ∀{i, j} ∈ Ep.
The maximum number of optical channels supported by each transmission system is 80, i.e.,

K(i, j) = 80, ∀{i, j} ∈ Ep. We also consider that the maximum distance between optical

amplifiers is 80 km, i.e., span = 80. The cost with the required equipments in normalized

monetary units (m.u) is presented in Table 3.4 [36].

Table 3.4: Costs with the transmission system [36].

Equipment Notation Cost (m.u.) Quantity

Optical fiber cf 0.80 per km

Optical amplifier coa 1.92 per fiber and per span

Switch of an optical channel co 0.66 per fiber per channel

To assess the impact of the initial population, selection method, crossover operator and

number of individuals in the population, we perform five runs for each of the following com-

binations of operators:
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� 100 individuals, roulette wheel selection, single point crossover;

� 100 individuals, tournament selection, single point crossover;

� 100 individuals, roulette wheel selection, uniform crossover;

� 100 individuals, tournament selection, uniform crossover;

� 500 individuals, roulette wheel selection, single point crossover;

� 500 individuals, tournament selection, single point crossover;

� 500 individuals, roulette wheel selection, uniform crossover;

� 500 individuals, tournament selection, uniform crossover.

3.5.1 The impact of the initial population

We start by assessing and comparing the quality of the obtained solutions when using

different initial population generators. The presented results are obtained using uniform

traffic. The initial populations are randomly generated [33] or following [30], as described

in subsection 3.3.1. The number of nodes, the number of regions and the number of nodes

placed in each region are presented in Table 3.5, for all considered networks.

Table 3.5: Real world reference networks [30].

Network Nodes Regions Nodes per region

VIA 9 2 5 - 4

RNP 10 4 0 - 8 - 1 - 1

vBNS 12 3 3 - 4 - 5

CESNET 12 3 4 - 7 - 1

ITALY 14 2 12 - 2

NFSNET 14 2 7 - 7

AUSTRIA 15 3 3 - 4 - 8

GERMANY 17 4 8 - 2 - 5 - 2

SPAIN 17 4 8 - 2 - 7 - 0

Figure 3.7 shows the evolution of the gap for the best solution obtained, among all combi-

nations, for initial populations generated using the random topology generator (Fig. 3.7(a))

and using the topology generator presented in [30] (Fig. 3.7(b)).

As can be seen, for initial populations generated using the random topology generator,

the optimal solution is obtained for the three smallest networks. With the increase in the

number of nodes the gap also increases reaching almost 15%, see Fig. 3.7(a). For initial

populations generated using the topology generator presented in [30], see Fig. 3.7(b), the

genetic algorithm also obtains the optimal solution for networks with less than 12 nodes. The
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exception is the CESNET network in which the best solution obtained has a gap of 4.1%.

Increasing the number of nodes the gap also increases. However, the solutions obtained within

100 iterations have gaps always smaller than 10%, see Fig. 3.7(b).

Considering the best solution obtained for all networks and combinations, only for the

networks in which the optimal solution is obtained, an initial population randomly generated

obtains a solution as good as the one obtained using [30]. In all the other networks the

solutions obtained using the topology generator presented in [30] have smaller cost. The

improvements range between 1% and 10%. One reason for this is that in the random topology

generator all the links have the same probability to be chosen. Contrariwise, in the topology

generator presented in [30] longer links have smaller probability than shorter ones. We also

used a ring-based random topology generator in which the ring topology is equal for all

initial individuals. However, in this case the links that belong to this ring are maintained

at the crossover operation being changed only in the mutation operation, which penalize the

obtained results.
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Figure 3.7: Evolution of the gap for the best solution obtained for the nine reference networks in
each iteration for initial populations generated with the: (a) random topology generator [33] and (b)
topology generator presented in [30].

3.5.2 The impact of the combinations

In this section, the eight operators combinations are compared and analyzed. The pre-

sented results are obtained using an initial population generated using [30] and uniform traffic.

Figure 3.8 presents the best solution obtained in each iteration by the genetic algorithm, for

each combination. Results for the vBNS network, a network with 12 nodes, are presented in

Fig. 3.8(a). In Fig. 3.8(b) are presented the results for the SPAIN network, a network with

17 nodes. The lower bound obtained using the ILP model is also presented as a solid line.

As can be seen in Fig. 3.8(a), for the 12 nodes network, the convergence to a solution is fast

for all combinations. The difference between the best solution obtained for each combination

is not significant. As the number of nodes increases, the convergence to a solution is slower.

As can be seen in Fig. 3.8(b), the convergence to a solution is only visible after the 60th
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Figure 3.8: Evolution of the best solution obtained in each iteration using the topology generator
presented in [30] for the eight considered combinations and lower bound obtained using the ILP model
(solid black line) for: (a) vBNS network (12 nodes) and (b) SPAIN network (17 nodes).

iteration. The difference between the quality of the obtained solutions increases as well.

To compare the eight combinations the gap of the best solution obtained for each method,

among the five runs, is presented in Table 3.6. The best solution obtained is bold marked.

The genetic algorithm with a population of 500 individuals, roulette wheel selection and

uniform crossover obtains the best solution for eight networks, see Table 3.6. Moreover, a

population of 500 individuals, tournament selection and uniform crossover equals the best

solution obtained in six networks. The second best solution is also always obtained by one

of these combinations. The difference between the solutions obtained by each combination

ranges between 0% and 14%, tending to increase with the raise of the number of nodes.

Table 3.6: Gap of the best solution obtained with each of the eight considered combinations for initial
populations generated using [30].

100 individuals 500 individuals

Single point Uniform Single point Uniform

Network R. wheel Tourn. R. wheel Tourn. R. wheel Tourn. R. wheel Tourn.

VIA 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

RNP 2.6 % 7.9 % 3.5 % 2.7 % 1.9 % 1.9 % 0.0 % 0.0 %

vBNS 1.9 % 2.5 % 0.0 % 2.7 % 2.1 % 2.7 % 0.0 % 0.0 %

CESNET 6.0 % 8.9 % 4.1 % 6.0 % 7.0 % 7.3 % 4.8 % 4.1 %

ITALY 15.6 % 16.3 % 8.5 % 10.1 % 21.1 % 10.4 % 6.0 % 6.0 %

NFSNET 13.2 % 22.2 % 9.7 % 11.3 % 10.5 % 13.1 % 8.2 % 8.7 %

AUSTRIA 17.6 % 14.8 % 9.8 % 11.3 % 13.9 % 13.7 % 7.8 % 8.4 %

GERMANY 19.6 % 22.4 % 13.9 % 13.9 % 16.8 % 14.9 % 9.5 % 9.5 %

SPAIN 18.8 % 22.7 % 12.8 % 17.8 % 14.9 % 18.4 % 8.8 % 9.7 %

Making a comparison among the combinations, the uniform crossover obtains better solu-

tions than the single point crossover, independently of the number of individuals and selection
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method, see Table 3.6. The uniform crossover does not preserve large blocks of the progeni-

tors genetic code to the offsprings, therefore it increases the population diversity and allows

the genetic algorithm to obtain better solutions. On the other hand, fixing the crossover

operator, the solutions obtained using the roulette wheel selection method are quite similar

to the ones obtained using the tournament method. Improvements are observed when using

the roulette wheel selection method. Comparing the results obtained with the different sizes

of population, fixing the selection method and crossover operator, large populations (500

individuals) obtain better solutions than smaller ones (100 individuals). However, runs were

also performed with populations of 1000 individuals and only residual improvements were

obtained, with relation to solutions obtained with 500 individuals.

In spite of the individuals generation and the crossover operators being random, the differ-

ence between the solutions obtained by each run, among the five, is not significant. Moreover,

as the size of the network increases such difference decreases.

3.5.3 The impact of the traffic pattern

Finally, the impact of the traffic model in the obtained solutions is analyzed. The non-

uniform traffic is randomly generated with 0 ≥ L(o, d) ≥ 5. The gap and the processing time

for the solutions obtained using the ILP model and the genetic algorithm (GA) are presented

in Table 3.7.

Table 3.7: Computational results using the ILP model and the genetic algorithm for uniform and
non-uniform demand matrices.

Uniform traffic Non-uniform traffic

ILP GA ILP GA

Network Nodes Time gap Time gap Time gap Time gap

VIA 9 1 s 0.0 % 8 s 0.0 % 4 s 0.0 % 8 s 0.0 %

RNP 10 42 s 0.0 % 27 s 0.0 % 24 m 0.0 % 27 s 3.2 %

vBNS 12 2 m 0.0 % 32 s 0.0 % 10 h 1.8 % 32 s 4.6 %

CESNET 12 7 h 0.0 % 01 m 4.1 % 10 h 0.3 % 01 m 5.7 %

ITALY 14 10 h 4.4 % 02 m 6.0 % 10 h 3.2 % 02 m 9.3 %

NFSNET 14 10 h 3.0 % 02 m 8.2 % 10 h 5.7 % 02 m 9.6 %

AUSTRIA 15 10 h 4.4 % 02 m 7.7 % 10 h 8.0 % 02 m 10.8 %

GERMANY 17 10 h 6.7 % 04 m 9.5 % 8 h(∗) 8.6 % 04 m 12.2 %

SPAIN 17 10 h 8.3 % 04 m 8.8 % 10 h 8.4 % 04 m 13.0 %

(∗) Overloaded memory

For uniform traffic, the ILP model obtained the optimal solution for networks with less

than 12 nodes. However, it is worth to note that the vBNS and CESNET networks required

substantially different processing time, in spite of having the same number of nodes, see
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Table 3.7. A reason for this may be found in the difference of the geographical area where

the networks are implemented. The vBNS network, with 12 nodes, is in the USA and the

CESNET network, also with 12 nodes, is in the Czech Republic. Due to the larger area that

the vBNS network has to cover, the majority of its links are fixed since the beginning due to

the distance. For networks with more than 12 nodes the ILP model obtains a solution with a

gap smaller than 8.3% within 10 hours. With the exception of the GERMANY and SPAIN

networks, the ILP model obtains a solution with a gap smaller than 10% in less than 3 hours.

The genetic algorithm is much faster than the ILP model and obtains near optimal solu-

tions. For networks with less than 12 nodes the genetic algorithm obtains either the optimal

solution or a solution with a gap of 4% within 1 minute. For networks with more than 12

nodes the genetic algorithm obtains solutions with gaps smaller than 10% within 4 minutes.

A solution was obtained in approximately 45 minutes for a network with 100 nodes. In this

case, the gap was not calculated as this problem cannot be addressed using the ILP model

within a reasonable time and computational effort.

The topology obtained using the ILP model and the genetic algorithm for the GERMANY

network with uniform traffic can be observed in Fig. 3.9(a). The dashed links are the ones that

differ in both solutions. The black dashed lines represent the links of the topology obtained

using the genetic algorithm. The grey dashed lines represent the links of the topology obtained

using the ILP model. The black solid lines represent the common links to both solutions.

None of the topologies obtained are optimal, see Table 3.7. However, the majority of the

optimal links are already present in both solutions.

(a) (b)

Figure 3.9: Topologies obtained using the ILP model and the genetic algorithm for the node location
of (a) GERMANY network with uniform traffic and (b) RNP network with non-uniform traffic. The
dashed links differ in both solutions and the solid links are common.

Considering non-uniform traffic, the complexity of the problem increases. In this case the

ILP model only obtained the optimal solution, within the time limit, for networks with less

53



3. Survivable topological design and links dimensioning

than 10 nodes. However, solutions with a gap smaller than 8.6% can still be obtained in 10

hours. We also observe that the ILP model obtains solutions with gaps smaller than 10%

within 3 hours of processing time. For the GERMANY network, the computer runs out of

memory before the end of the 10 hours of processing time.

The genetic algorithm maintains the processing time, although the results obtained suf-

fered an increase in the gap. We observed that the responsibility of such increase is due

to the routing algorithm. The optimal routing is not always the shortest path, sometimes

longer routes can optimize the network available resources. Fig. 3.9(b) depicts the best result

obtained with the node location of the RNP network, using the ILP model and the genetic

algorithm with a non-uniform traffic. As can be seen in Table 3.7, the genetic algorithm

obtained a solution with a gap of 3.2%. Nevertheless, the physical topology obtained is the

optimal, see Fig. 3.9(b). The gap is only due to suboptimal routing.

3.6 Chapter summary

This chapter describes the work developed in order to design survivable topologies at min-

imum CapEx for links. The chapter starts by presenting an introduction to the survivable

topological design problem and the dimensioning model for links. Later a genetic algorithm

is showed. Two initial population generators, two selection methods, two crossover opera-

tors, and two sizes of populations are reported and compared within the genetic algorithm.

Additionally, an integer linear programming model is also presented to evaluate the quality

of the genetic algorithm solutions. Computational results obtained using the node location of

real telecommunication networks showed that initial populations generated using a method

that preserves the main characteristics of real optical networks improves the quality of the

obtained solutions. Moreover, crossover operators that do not preserve large blocks of the

genetic code increase the diversity of the population and the probability of finding better

solutions. The results accuracy and the saved processing time encourage the use of this kind

of heuristic within the survivable topological design problem in optical transport networks.
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CHAPTER 4

Nodes dimensioning

Transmission systems are often deployed in large number and are shared by a large number

of wavelengths, therefore nodes are generally considered the most expensive part of an optical

transport network. Moreover, nodes play a key role as they are responsible to aggregate the

client traffic into wavelengths and switch that wavelengths between transmission systems.

As the gap between the capacity offered by a single wavelength and the bandwidth required

by a typical service request is increasing, network planners need to carefully select which

mixture of client signals should be aggregated as well as in which locations the grooming

operation should be performed. Thus, the development of optimization methods for the

accurate dimensioning of multilayer nodes is a capital concern in transport networks.

Usually, nodes dimensioning models have been neglecting the constraints imposed by the

hardware implementation such as the types of available modules, the size of the backplane,

the number of ports per module, or the extra modules for OAM and switching control [1–

3]. However, optimal module planning is an important problem in network dimensioning

and deployment. An optimized module planning can minimize the total number of modules,

shelves and racks resulting in cost reduction joint with power consumption and footprint

requirements savings. Moreover, it allows an alignment between the planned solution and

the deployed one. Thus, it is important to optimally plan and organize the modules. In this

chapter a dimensioning model that calculates the number and type of modules at each node

providing that the traffic requirements are fully supported is presented. The model considers

all the architectures for the electrical and optical layer presented in Chapter 2, and focuses

on greenfield planning, i.e. no pre-deployed capacity exists.

The chapter is organized in five sections. The inputs and assumptions of the dimensioning

model for the different node architectures are presented in Section 4.1. In Section 4.2, the

dimensioning model for the muxponders-based architecture is presented, and Section 4.3 is

devoted to the model considering EXCs based architectures. The dimensioning model for the
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optical layer can be found in Section 4.4. At the end, Section 4.5 summarizes the chapter.

4.1 Dimensioning model

The development of dimensioning models is an active research field in the literature.

Dimensioning models are closely related to the grooming operation as it determines the

number of ports and wavelengths required. Traffic grooming was first studied to aggregate

SDH/SONET traffic in order to minimize the number of wavelengths used in ring topolo-

gies [4]. Later such studies were extended to mesh topologies [5, 6]. Previous works include

minimization of network blocking [6–8], or total network cost [9]. These works rely on ILP

models or heuristics, which require complete information about the network topology and

traffic requirements. In a preliminary network evaluation, network planners can desire to

have an estimation of the network resources without having complete information. In this

context, semi-empirical formulations to dimensioning optical transport networks with limited

inputs are described in [10–12]. The aim is to quickly estimate the amount of traffic that can

be carried over a given network, or, conversely, given the traffic to be supported, to assess

the characteristics of the topology required. In later years, traffic grooming considering the

physical-layer impairments [13–15], intended to minimize the power consumption [16–18], or

in multilayer networks [18–21] is also receiving increasing interest. The optimization of mul-

tilayer networks has been focused on the two layer IP-over-WDM [18, 19], or the three layer

IP-over-OTN-over-WDM [20, 21] architectures. Regarding the optical layer, the majority

of the works investigate the feasibility and scalability of different ROADM architectures in

terms of cost [22–25], power consumption [25–27], optical impairments [28–30], or blocking

probability [31–34]. In all the previous works, the nodes are assumed to be only port count.

Moreover, the dimensioning of the client side as well as the required control modules are not

taken into consideration. In [1–3] the modules planning problem is addressed. The works

[1, 2] focus on the link-by-link grooming scheme, and in [3] in the minimization of the power

consumption in multi-shelf nodes.

A multilayer network is represented as a graph G(V,Ec, Ep) where V = {1, . . . , N}, is the

set of nodes, Ec = {(o, d) : o, d ∈ V } is the set of node pairs exchanging traffic, defining

the logical topology, and Ep = {{i, j} : i, j ∈ V }, is the set of links defining the physical

topology. Network nodes exchange traffic from a origin node, o, to a destination node, d.

Henceforward, we focus on the OTN technology defined in ITU-T recommendation G.709

[35], however the approaches and models are extendable to support other technologies such

as SDH/SONET or Ethernet. The client traffic to be supported by the network can be

represented in N × N matrices [Tc], where c is the bit rate of the client signals. The set

of all client bit rates is denoted by C = {c : c ∈ {1.25, 2.5, 10, 40, 100}}. The elements

tc(o, d) of the [Tc] matrix, hold the demands with bit rate c in units of transmission (e.g.,

ODU2), between the nodes o and d. As an example the matrix [T10] represents all 10 Gbit/s

(ODU2) client signals between all pairs of nodes. These lower bit rate client signals are then

groomed to form a higher bit rate line signal, l. The set of line bit rates will be denoted
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4.1. Dimensioning model

by L = {l : l ∈ {2.5, 10, 40, 100}}, corresponding to an OTU1, OTU2, OTU3 and OTU4,

respectively. The ITU-T recommendation G.709 specifies that it is possible to mix various

lower bit rate signals, with different bit rates, into a single higher bit rate signal. The OTN

grooming configurations are presented in Fig. 4.1. An OTN grooming configurations, ε, is

defined as the maximum number of lower bit rate signals that can be groomed. For instance

4× 2.5 Gbit/s to 10 Gbit/s and 2× 40 Gbit/s + 2× 10 Gbit/s to 100 Gbit/s are two possible

grooming configurations.

ODU0

ODU1

ODU2

ODU3

ODU4

ODU1 ODU2 ODU3 ODU4

OTU1

2 8 32 80

4 16

4

40

10
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OTU2
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Figure 4.1: OTN grooming configurations, ε. The presented values are the maximum number of lower
bit rate signals that can be groomed into the next higher bit rate signal. Various lower bit rate signals,
with different bit rates can be groomed into a single higher bit rate signal.

To implement the architectures for the electrical and optical layer of the node, various

equipments can be used. Figure 4.2 presents examples of the assumptions regarding the

implementation of the node architectures presented in Chapter 2. Figure 4.2(a) is related

to the muxponders-based and ROADM architectures, Fig. 4.2(b) to the non-blocking EXC

architecture, and Fig. 4.2(c) to the partial non-blocking EXCs architecture. In the dis-

played example, the rack can accommodate either three shelves occupying one row each (see

Fig. 4.2(a) and (c)) or one shelf with three rows (see Fig. 4.2(b)). The muxponders-based

and ROADM architectures do not require a shelf enabling the switching of client signals by

backplane. In these architectures the backplane only provides communication of OAM data

between the modules and the control module (red module). The interconnection between

modules (if needed) is done by external links thus, any module can be plugged into any

available slot in the shelf (see Fig. 4.2(a)). In EXCs-based architectures the backplane (gray

areas) provides communication of OAM data to the control module, however it also allows

data signal communication between different modules. As aforementioned in Section 2.4.2,

EXCs-based architectures require an additional control module, the ESM (blue modules). In

the non-blocking EXC architecture, a common backplane is shared between all the modules

deployed in the rack, for instance the three row shelf presented in Fig. 4.2(b). Thus, the

modules can be inserted in any slot as the backplane is common to all. The ESM is respon-

sible to switch the client signals via backplane to the line modules or between line modules.
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4. Nodes dimensioning

Note that this is an example, and in order to behave as a non-blocking EXC architecture the

shelf size needs to be large enough to accommodate all the required modules. Alternatively,

in the partial non-blocking EXCs architecture, shelves of smaller size can be deployed in the

rack, offering a more scalable solution, for instance up to three shelves per rack (see Fig.

4.2(c)). In this solution only modules inserted in the same shelf can communicate through

the backplane. Thereby restricting switching and grooming to modules sharing the same

shelf. Therefore, in both planning and operation phase, the interconnection between client

and line modules connected to different shelves should be prevented.
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Figure 4.2: Node architectures implementation: (a) muxponders-based and ROADM architectures;
(b) non-blocking EXC architecture, (b) partial non-blocking EXCs architecture.

Select which grooming configuration should be used in order to minimize the number

of required modules is a typical combinatorial optimization problem. This problem was

modeled as a bin-packing problem (or Knapsack problem) [36] with the architectures related

constraints taken into account. We focus on the single-hop grooming scheme in this chapter.

In this way, we can decouple the grooming process from the physical topology and routing

algorithm. In order to deal with this problem ILPs models are used.

4.2 Muxponders-based architecture

The muxponders-based architecture, i.e. fixed grooming, requires various types of mux-

ponders, and transponder modules, see Fig. 2.6. A muxponder module has various input

ports to receive client signals and one output port to generate a higher or equal bit rate

signal. The transponder module will be treated as a muxponder in which the bit rate of the

input client signal is equal to the bit rate of the line signal. The availability of muxponders

of certain type depends on the system vendor. If a muxponder receiving client signals with

bit rate c and generating a target output signal with bit rate l is not available, a cascade

of muxponders is required. We assume a maximum of two stage grooming in this thesis.

However, the extension for more grooming stages can be straightforward achieved. Hereafter,
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4.2. Muxponders-based architecture

c∗ ∈ C will denote a client bit rate requiring a two stage grooming. The subset of client bit

rates requiring a two stage grooming will be denoted by C∗ ⊂ C. Note that the client bit

rates c∗ ∈ C∗ need to be groomed into a bit rate c ∈ C \ C∗, i.e. a client bit rate for which

exists a muxponder accepting it and generating a signal with bit rate l. We assume that one

cascade of muxponders is always available: c∗ → c → l. As aforementioned a muxponder

module defines one or a few grooming configurations, ε. The set of muxponder modules used

in the first stage grooming will be denoted by X∗ = {ε}, i.e. muxponders accepting signals

with bit rate c∗ and generating signals with bit rate c 6= l. The set of muxponder modules

used in the second stage grooming, or in a single stage grooming, will be denoted by X = {ε},
i.e. muxponders accepting signals with bit rate c and generating signals with bit rate l.

As an example let us consider that c can be a client signal at 1.25 Gbit/s, 2.5 Gbit/s,

10 Gbit/s, or 40 Gbit/s and l a signal at 40 Gbit/s or 100 Gbit/s. Moreover, consider that

the unique muxponder types accepting signals at 1.25 Gbit/s and 2.5 Gbit/s are the ones

corresponding to configurations 1 and 2 presented in Table 4.1. A muxponder accepting client

signals operating at 1.25 Gbit/s or 2.5 Gbit/s and generating an output signal at 40 Gbit/s

or 100 Gbit/s is not available. Thus, these inputs define C∗ = {1.25, 2.5}, C \C∗ = {10, 40},
X∗ = {1, 2}, and X = {3, 4, 5, 6}.

Table 4.1: Example of available muxponders.

Input signals Output signal Grooming

bit rate bit rate configuration (ε)

1.25 Gbit/s 2.5 Gbit/s 10 Gbit/s 40 Gbit/s

4 2 0 0 10 Gbit/s 1

6 1 0 0 10 Gbit/s 2

0 0 4 0 40 Gbit/s 3

0 0 0 1 40 Gbit/s 4

0 0 10 0 100 Gbit/s 5

0 0 2 2 100 Gbit/s 6

In the first stage grooming, client signals with bit rate c∗ are groomed into client signals

with bit rate c through a given grooming configuration ε ∈ X∗. The input and output ports

of muxponders used in the first stage grooming are equipped with short reach transceivers,

see Fig. 2.6. The total number of short-reach transceivers with bit rate c∗ in the node o

for muxponders-based architectures, Tsvmbc∗ (o), only depends on the number of client signals

with the given bit rate, tc∗(o, d). Thus, is given by

Tsvmbc∗ (o) =
∑
d∈V

tc∗(o, d), ∀c∗ ∈ C∗,∀o ∈ V. (4.1)

The number of muxponder modules with output bit rate c required for the demands
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4. Nodes dimensioning

between the nodes o and d and accepting traffic in the grooming configuration ε ∈ X∗,

M ε
c (o, d), depends on the type of muxponder modules available and on tc∗(o, d). A grooming

operation is performed at this stage, to aggregate client signals with bit rate c∗ into client

signals with bit rate c. Thus, the following ILP is used to minimize M ε
c (o, d),

minimize
∑

c∈C\C∗

∑
ε∈X∗

∑
(o,d)∈Ec

M ε
c (o, d) (4.2)

subject to

tc∗(o, d) ≤
∑
ε∈X∗

Hc∗,ε
c M ε

c (o, d), ∀(o, d) ∈ Ec,∀c∗ ∈ C∗ (4.3)∑
c∗∈C∗

c∗tc∗(o, d) ≤
∑
ε∈X∗

cM ε
c (o, d), ∀(o, d) ∈ Ec (4.4)

M ε
c (o, d) ∈ N0, ∀(o, d) ∈ Ec,∀ε ∈ X∗ (4.5)

Objective function (4.2) is a generic cost function of the total number of muxponder modules

of all types. Constraint (4.3) indicates that the tc∗(o, d) client signals with bit rate c∗ need to

be groomed into muxponder modules with output bit rate c in one grooming configuration ε,

M ε
c (o, d), considering that a maximum of Hc∗,ε

c input signals with bit rate c∗ can be accepted

in that configuration (for instance the values in Table 4.1). Constraint (4.4) ensures that the

total bandwidth required between nodes o to d for all client signals with bit rate c∗ is smaller

or equal to the bandwidth of all output signals with bit rate c in all muxponders. Finally,

constraints (4.5) define the variables M ε
c (o, d) as non negative integer variables allowing the

use of more than one muxponder module between the same node pairs.

The total number of muxponder modules with grooming configuration ε ∈ X∗ required to

groom the client signals with bit rate c∗ into a signal with bit rate c in the node o, M ε
c (o), is

given by

M ε
c (o) =

∑
d∈V

M ε
c (o, d), ∀ε ∈ X∗,∀o ∈ V. (4.6)

As the signals generated in the first stage grooming are input signals of the muxponders used

in the second stage, tc(o, d) needs to be updated to t′c(o, d) by

t′c(o, d) = tc(o, d) +
∑
ε∈X∗

M ε
c (o, d), ∀c ∈ C \ C∗,∀(o, d) ∈ Ec. (4.7)

Thus, the total number of short-reach transceivers with bit rate c in node o, Tsvmbc (o), is

given by

Tsvmbc (o) =
∑
d∈V

t′c(o, d), ∀c ∈ C \ C∗,∀o ∈ V. (4.8)

Note that each output signal of M ε
c (o, d) requires two short reach transceivers, one at the
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4.2. Muxponders-based architecture

output port of the first stage grooming muxponder and another at the input port of the

second stage grooming muxponder, see Fig. 2.6.

The muxponders used in the second stage (or in a single stage grooming) receive input

signals with bit rate c and generate output line signals with bit rate l. The number of

muxponder modules with output bit rate l required for the demands between the nodes o

and d and accepting traffic in the grooming configuration ε ∈ X, M ε
l (o, d) is also calculated

using an ILP. The ILP is similar to the one used for the first stage grooming but replacing

M ε
c (o, d) by M ε

l (o, d), and tc∗(o, d) by t′c(o, d),

minimize
∑
l∈L

∑
ε∈X

∑
(o,d)∈Ec

M ε
l (o, d) (4.9)

subject to

t′c(o, d) ≤
∑
ε∈X

Hc,ε
l M ε

l (o, d), ∀(o, d) ∈ Ec, ∀c ∈ C \ C∗ (4.10)∑
c∈C\C∗

ctc(o, d) ≤
∑
ε∈X

lM ε
l (o, d), ∀(o, d) ∈ Ec (4.11)

M ε
l (o, d) ∈ N0, ∀(o, d) ∈ Ec, ∀ε ∈ X (4.12)

Objective (4.9) is the usual generic cost function. Constraints (4.10) and (4.11) guarantees

that all client signals are aggregated in one grooming configuration, ε, and that the total band-

width provided by line signals is higher or equal than all client signals bandwidth. Finally,

constraints (4.12) define M ε
l (o, d) as non negative integer variables.

As in the first stage grooming, M ε
l (o), is given by

M ε
l (o) =

∑
d∈V

M ε
l (o, d), ∀ε ∈ X,∀o ∈ V. (4.13)

The muxponders M ε
l are equipped with long-reach transceivers. Thus, as we assume single

output ports, the total number of long-reach transceivers with bit rate l in the node o,

Tsvmbl (o), is given by

Tsvmbl (o) = M ε
l (o), ∀l ∈ L,∀o ∈ V. (4.14)

All the modules need to be connected into a shelf, and each type of module occupies a

given number of slots. The total number of slots at node o in muxponders-based architectures,

Smbtot (o), is achieved by multiplying the total number of modules by its respective size in

number of slots,

Smbtot (o) =
∑
ε∈X∗

M ε
c (o)S

ε
c +

∑
ε∈X

M ε
l (o)S

ε
l , ∀o ∈ V, (4.15)

where Sεc and Sεl are the number of slots required by the muxponders with output c and l, in

configuration ε, respectively. To accommodate the Smbtot (o) required slots, one or more shelves
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4. Nodes dimensioning

are necessary. Each shelf can support a given number of slots, Smbsf , being some reserved

for the mandatory control modules. We assume that each shelf requires one control module.

Thus, the number of control modules in node o, Mmb
ctr (o), equals the number of shelves,

Mmb
sf (o). Considering that Smbctr is the number of slots reserved for the control module, we

have Smbsf − Smbctr available slots per shelf. In this type of architecture any module can be

connected to any shelf, see Fig. 4.2(a). Therefore, the number of shelves in node o for

muxponders-based architectures, Mmb
sf (o), equals the number of control modules and is given

by

Mmb
sf (o) = Mmb

ctr (o) =

⌈
Smbtot (o)

Smbsf − Smbctr

⌉
, ∀o ∈ V. (4.16)

Note that more than one control module can be present in each shelf for protection purposes.

In this case, Smbctr should account for the various control modules required.

4.3 Electrical cross connects based architectures

The EXC-based architecture, presented in Fig. 2.7, requires client modules for each c type

of traffic, line modules, and an ESM per shelf. In this case any demand can be plugged into

any client port of any client module, independently of the destination node, provided that

they share a common backplane. Moreover, all possible grooming configurations are allowed.

In the following the models for non-blocking EXC and partial blocking EXCs architectures

are presented.

4.3.1 Non-blocking electrical cross connect

The client signals are received by client modules equipped with short-reach transceivers.

The total number of short-reach transceivers with bit rate c required in the node o for non-

blocking EXCs architectures, Tsvnbec (o), is given by

Tsvnbec (o) =
∑
d∈V

tc(o, d), ∀ c ∈ C,∀ o ∈ V. (4.17)

Client modules can have one or more ports. Thus, the number of client modules accepting

signals with bit rate c, required in the node o, Mc(o), is given by

Mc(o) =

⌈∑
d∈V tc(o, d)

Pc

⌉
, ∀ c ∈ C,∀ o ∈ V, (4.18)

where Pc is the number of ports of the client module accepting signals with bit rate c.

The client signals are groomed to form line signals. The ILP to minimize the number of

line modules with bit rate l in node o, Ml(o), used in non-blocking EXC architectures is as

follows,
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4.3. Electrical cross connects based architectures

minimize
∑
l∈L

∑
o∈V

Ml(o) (4.19)

subject to∑
c∈C

ctc(o, d) ≤
∑
l∈L

lOl(o, d), ∀(o, d) ∈ Ec (4.20)

Ml(o) ≥
∑

d∈V Ol(o, d)

Pl
, ∀l ∈ L,∀o ∈ V (4.21)

Ol(o, d) ∈ N0, ∀l ∈ L,∀(o, d) ∈ Ec (4.22)

Ml(o) ∈ N0, ∀l ∈ L,∀o ∈ V (4.23)

Objective (4.19) is the generic cost function and intends to minimize the number of line

modules in the network. Constraints (4.20) ensures that the bandwidth provided by all

the line signals between the nodes o and d, Ol(o, d), is higher or equal than the bandwidth

requested by all client signals between the same node pairs. Constraint (4.21) ensures that the

number of line modules with bit rate l is higher or equal to the relation between the number

of required line signals with bit rate l for all destination nodes, and the number of output

ports that the line module can support Pl. Finally, constraints (4.22) and (4.23) define the

variables Ol(o, d) and Ml(o) as non negative integer variables. It is worth to note that this

ILP is similar to the one used for muxponders-based architectures. However, constraint (4.10)

related to the grooming configuration restrictions is replaced by constraint (4.21) regarding

the number of ports in each line module.

Line modules ports are equipped with long-reach transceivers. The number of long-reach

transceivers with bit rate l in the node o, Tsvnbel (o), is given by

Tsvnbel (o) =
∑
d∈V

Ol(o, d), ∀l ∈ L,∀ o ∈ V. (4.24)

The total number of slots for client and line modules at node o in non-blocking EXCs

architectures, Snbetot (o), is then achieved by

Snbetot (o) =
∑
c∈C

Mc(o)Sc +
∑
l∈L

Ml(o)Sl, ∀o ∈ V, (4.25)

where Sc is the number of slots occupied by the client module with bit rate c and Sl is the

number of slots occupied by the line module with bit rate l. As in the muxponders-based

architectures, we assume that each shelf requires one control module and that each module

can be plugged into any available slot in the shelf, see Fig. 4.2(b). However, in this case an

additional ESM module is needed. Hence, as only one shelf, Mnbe
sf (o), is used in this type of

architecture, only one control module, Mnbe
ctr (o), and one ESM, Mnbe

esm(o), is required in node

o for non-blocking EXC architecture. Thus,
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Mnbe
sf (o) = Mnbe

ctr (o) = Mnbe
esm(o) = 1, ∀o ∈ V. (4.26)

4.3.2 Partial non-blocking electrical cross connects

In partial non-blocking EXCs architecture the interconnection between client and line

modules connected to different backplanes needs to be prevented. We assume that the client

and line modules used in this type of architecture are the same as the ones used in the

non-blocking EXC architecture. The total number of short-reach transceivers with bit rate c

required in the node o for partial non-blocking EXCs architecture, Tsvpbec (o), is the same as

for non-blocking grooming. Thus, is given by Eq. (4.17).

In this case, the grooming operation needs to take into consideration the shelf in which

the client and the line modules are connected. Therefore, both the number of client and

line modules are optimized using an ILP. In order to formulate the ILP, the binary variable

B(o, s) is introduced. The variable B(o, s) is 1 if shelf s is implemented in node o, otherwise

takes the value 0. The set of shelves will be denoted by S = {s}. Thus, the number of client

modules accepting signals with bit rate c, in node o and shelf s, Mc(o, s), and the number of

line modules with with bit rate l, in node o and shelf s, Ml(o, s), are minimized by

minimize
∑
o∈V

∑
s∈S

(∑
c∈C

Mc(o, s) +
∑
l∈L

Ml(o, s)

+ B(o, s)

)
(4.27)

subject to

tc(o, d) ≤
∑
s∈S

Oc(o, d, s), ∀(o, d) ∈ Ec, ∀c ∈ C (4.28)

Mc(o, s) ≥
∑

d∈V Oc(o, d, s)

Pc
, ∀c ∈ C,∀s ∈ S (4.29)∑

c∈C
ctc(o, d) ≤

∑
l∈L

∑
s∈S

lOl(o, d, s), ∀(o, d) ∈ Ec (4.30)

Ml(o, s) ≥
∑

d∈V Ol(o, d, s)

Pl
, ∀l ∈ L,∀s ∈ S (4.31)∑

c∈C
Mc(o, s)Sc +

∑
l∈L

Ml(o, s)Sl

≤ (Spbesf − (Spbectr + Spbeesm))B(o, s), ∀o ∈ V,∀s ∈ S (4.32)

Oc(o, d, s) ∈ N0, ∀c ∈ C,∀(o, d) ∈ Ec,∀s ∈ S (4.33)

Ol(o, d, s) ∈ N0, ∀l ∈ L,∀(o, d) ∈ Ec,∀s ∈ S (4.34)

Mc(o, s) ∈ N0, ∀c ∈ C,∀o ∈ V,∀s ∈ S (4.35)

Ml(o, s) ∈ N0, ∀l ∈ L,∀o ∈ V,∀s ∈ S (4.36)

B(o, s) ∈ {0, 1}, ∀o ∈ V,∀s ∈ S (4.37)
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Objective (4.27) is the generic cost function intended to minimize the total number of modules

and shelves of the network. Constraint (4.28) ensures that all tc(o, d) client signals with bit

rate c have a client port in one of the shelves s, in each of the nodes o and d, Oc(o, d, s).

Constraint (4.29) guarantees that the total number of client ports with bit rate c in the node

o, and shelf s, Oc(o, d, s), is smaller or equal than the number of client modules installed

in that particular shelf, Mc(o, s), assuming that each client module has Pc available ports.

Constraint (4.30) ensures that the bandwidth provided by all the line ports in all the shelves,

Ol(o, d, s), is higher or equal than the bandwidth requested by all client signals. Constraint

(4.31) is similar to constraint (4.29), however considering line modules in all the shelves,

Ml(o, s). Finally, constraints (4.32) guarantees that in each node o, the number of slots

required for client and line modules in the same shelf, B(o, s), does not exceeds it maximum

number of slots. Note that each shelf requires one control module occupying Spbectr slots, and an

additional ESM module occupying Spbeesm slots, thus Spbesf − (Spbectr +Spbeesm) slots are available for

client and line modules in each shelf. Constraints (4.34)-(4.36) define the variables Oc(o, d, s),

Ol(o, d, s), Mc(o, s) and Ml(o, s) as non negative integer variables. At last, constraint (4.37)

defines the variable B(o, s) as binary.

The total number of line modules with bit rate l in the node o, Mpbe
l (o), is given by

Mpbe
l (o) =

∑
s∈S

Ml(o, s), ∀l ∈ L,∀o ∈ V. (4.38)

Line modules ports are equipped with long-reach transceivers. Thus, the number of long-reach

transceivers with bit rate l in the node o, Tsvpbel (o), is given by

Tsvnbel (o) =
∑
d∈V

∑
s∈S

Ol(o, d, s), ∀l ∈ L,∀o ∈ V. (4.39)

In this architecture the number of shelves required at each node is minimized using the

ILP. Therefore, the number of control modules in node o, Mpbe
ctr (o), equals the number of

ESMs, Mpbe
esm(o), and the number of shelves, Mpbe

sf (o), and is given by

Mpbe
sf (o) = Mpbe

ctr (o) = Mpbe
esm(o) =

∑
s∈S

B(o, s), ∀o ∈ V. (4.40)

4.4 Reconfigurable optical add/drop multiplexer architectures

This section presents the dimensioning model for the optical layer, thus for the ROADM

architectures. The ROADMs are responsible to multiplex and switch the wavelength signals.

A wavelength can traverse one or more ROADMs between the origin node o to the destination

node d. The number of wavelengths that need to be routed through the network depends

on the electrical layer architecture. For the muxponders-based architecture the number of

wavelengths required between the nodes o and d, Lmb(o, d), is given by the sum among all

line muxponders modules,
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Lmb(o, d) =
∑
ε∈X

M ε
l (o, d), ∀(o, d) ∈ Ec. (4.41)

Regarding non-blocking EXC architecture, Lnbe(o, d), is given by

Lnbe(o, d) =
∑
l∈L

Ol(o, d), ∀(o, d) ∈ Ec, (4.42)

and for partial non-blocking EXCs architecture, Lpbe(o, d), by

Lpbe(o, d) =
∑
l∈L

∑
s∈S

Ol(o, d, s), ∀(o, d) ∈ Ec. (4.43)

In the following, this variable will be referred independently of the electrical layer architecture

thus, it will be named simply as L(o, d).

As referred above, the wavelength channels are routed through the physical links {i, j}.
Therefore, we will used the indexes i and j in this section as the ROADMs are related to

the physical topology. The physical topology, Ep, and the number of transmission systems

installed, U(i, j), are inputs of the model. For instance, Ep and U(i, j) can be obtained using

the methods presented in Chapter 3. The number of transmission systems defines the nodal

degree, δ(i), which can be calculated by

δ(i) =
∑
j∈V

U(i, j), ∀i ∈ V. (4.44)

The maximum nodal degree per node is limited by the number of output ports in the 1

× P WSS used in the cross connection structure, and by the number of required add/drop

structures, see Section 2.5.2. Thus, the maximum nodal degree at node i, δmax(i), is given

by

δmax(i) = P + 1−A(i), ∀i ∈ V, (4.45)

where A(i) is the number of add/drop structures in the node i.

The cross connection structure is implemented in the same way in all the considered

ROADM architectures, see Section 2.5. One 1 × P WSS module and one pre/booster am-

plifier module are required per transmission system. Therefore, the total number of 1 × P

WSSs, Mxc
wss(i), and pre/booster amplifiers, Mxc

amp(i), used in the cross connection structure

of node i is calculated by

Mxc
wss = Mxc

amp = δ(i), ∀i ∈ V. (4.46)

It is worth to note that modules used in ROADM architectures can be connected in any

available slot. The space occupied by the modules used in the cross connection structure will

be calculated with the ones used in the add/drop structure as they can share the same shelf.
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4.4.1 Fixed frequency and fixed direction

The fixed frequency and fixed direction add/drop structure, see Fig. 2.11, only requires

one WSC module per transmission system. We assume that the WSC is capable of multi-

plex/demultiplex all the wavelengths supported by the transmission system, K. Thus, the

number of WSC modules in the add/drop structure of the node i, Mads
wsc(i), equals the nodal

degree,

Mads
wsc(i) = δ(i), ∀i ∈ V. (4.47)

The total number of slots required at node i in fixed frequency and fixed direction ROADM,

SFFtot (i), is calculated by multiplying the total number of modules required in the add/drop

and cross connection structures by its respective size in number of slots. Thus, it is given by

SFFtot (i) = Mxc
wss(i)S

xc
wss +Mxc

amp(i)S
xc
amp +Mads

wsc(i)S
ads
wsc, ∀i ∈ V, (4.48)

where Sxcwss, S
xc
amp and Sadswsc are the number of slots occupied by the 1 × P WSS, amplifier,

and WSC modules, respectively. As in the electrical layer, we assume that each shelf requires

a control module. Thus, the number of control modules in node i for fixed frequency and

fixed direction ROADM, MFF
ctr (i), equals the number of shelves, MFF

sf (i), and is given by

MFF
sf (i) = MFF

ctr (i) =

⌈
SFFtot (i)

Ssf − Sctr

⌉
, ∀i ∈ V. (4.49)

4.4.2 Colorless and fixed direction

The colorless and fixed direction add/drop structure, see Fig. 2.12, still has a dedicated

add/drop structure per transmission system. However, in this case the number of 1 × P WSS

modules depends on the number of add/drop channels per direction. The maximum number

of channels that can be added/dropped per structure is limited by the number of ports in the

1 × P WSS module. Let PCFads (i, j) be the number of add/drop ports needed in the node i for

the channels of direction j. Thus, if PCFads (i, j) > P a cascade of 1 × P WSS is required. The

number of 1 × P WSS modules required in the add/drop structure of node i and direction

j, MCF
wss(i, j), is then given by

MCF
wss(i, j) =


1, if PCFads (i, j) ≤ P

⌈
PCF
ads (i,j)
P

⌉
+ 1, if PCFads (i, j) > P

, ∀(i, j) ∈ Ep. (4.50)

The total number of 1 × P WSS modules required in the add/drop structure in node i,

Mads
wss(i), is then calculated as

Mads
wss(i) =

∑
j∈V

MCF
wss(i, j), ∀i ∈ V. (4.51)

71



4. Nodes dimensioning

The total number of slots required at node i in colorless and fixed direction ROADM,

SCFtot (i), is calculated as

SCFtot (i) = Mxc
wss(i)S

xc
wss +Mxc

amp(i)S
xc
amp +Mads

wss(i)S
ads
wss, ∀i ∈ V, (4.52)

where Sadswss is the number of slots occupied by the 1 × P WSSs used in the add/drop structure.

Once again, the number of control modules in node i for colorless and fixed direction ROADM,

MCF
ctr (i), equals the number of shelves, MCF

sf (i) and is given by

MCF
sf (i) = MCF

ctr (i) =

⌈
SCFtot (i)

Ssf − Sctr

⌉
, ∀i ∈ V. (4.53)

4.4.3 Fixed frequency and directionless

The fixed frequency and directionless add/drop structure, see Fig. 2.13, share the add/drop

structure between all the transmission systems. One WSS and one WSC module is required

per add/drop structure. The number of add/drop structures required in a given node de-

pends on the number of add/drop channels. The total number of add/drop ports needed in

the add/drop structures of node i, PFDads (i), is given by

PFDads (i) =
∑
d∈V

L(o, d) + 2R(i), ∀i ∈ V : i = o, (4.54)

where R(i) is the number of signals requiring regeneration in the node i. Note that each re-

generated signal requires two ports in the add/drop structure. The number of WSC modules,

Mads
wsc(i), and 1 × P WSS modules, Mads

wss(i), required in node i, to cope with the PFDads (i)

signals, equals the number of add/drop structures, A(i). Thus, is given by

A(i) = Mads
wsc(i) = Mads

wss(i) =

⌈
Pads(i)

K

⌉
, ∀i ∈ V, (4.55)

where K is the capacity of the transmission system in number of channels. By equation (4.45)

it can be seen that each additional add/drop structure reduces the maximum nodal degree

of the node.

The total number of slots required at node i in fixed frequency and directionless ROADM,

SFDtot (i), is calculated as

SFDtot (i) = Mxc
wss(i)S

xc
wss +Mxc

amp(i)S
xc
amp +Mads

wsc(i)S
ads
wsc +Mads

wss(i)S
ads
wss, ∀i ∈ V, (4.56)

and the number of control modules in node i, MFD
ctr (i), equals the number of shelves, MFD

sf (i)

and is given by

MFD
sf (i) = MFD

ctr (i) =

⌈
SFDtot (i)

Ssf − Sctr

⌉
, ∀i ∈ V. (4.57)
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4.4.4 Colorless and directionless

Regarding the modules necessary to implement the colorless and directionless add/drop

structure, see Fig. 2.14, 1 × P WSS, OSC, and amplifier modules can be required per

add/drop structure. As in the fixed frequency and directionless ROADM, the add/drop

structure is shared between all the node directions. The total number of add/drop ports

needed in the add/drop structures of node i, PCDads (i), is calculated using (4.54). To cope with

the PCDads (i) signals, one or more add/drop structures can be required. However, in the cases

that δmax(i) is reached, the extended architecture presented in Fig. 2.14(b) is used. The

number of add/drop structures required in node i is given by

A(i) =


⌈
PCD
ads (i)
P

⌉
, if PCDads (i) ≤ P (P − δ(i) + 1)

⌈
PCD
ads (i)
P.Posc

⌉
, if PCDads (i) > P (P − δ(i) + 1)

, ∀i ∈ V, (4.58)

where Posc is the number of ports in the OSC module.

The number of 1 × P WSS modules depends on the number of add/drop structures and on

PCDads (i). If PCDads (i) ≤ P (P−δ(i)+1) only two 1 × P WSS modules are required per add/drop

structure, see Fig. 2.14(a), whereas if PCDads (i) > P (P − δ(i) + 1) more modules are needed,

see Fig. 2.14(b). One 1 × P WSS is required per add/drop structure for the connection to

the different transmission systems, and further 1 × P WSS modules are necessary to support

the PCDads (i) signals. Thus, the number of 1 × P WSS modules required in the add/drop

structures of node i, Mads
wss(i), is given by

Mads
wss(i) =


2A(i), if PCDads (i) ≤ P (P − δ(i) + 1)

A(i) +
⌈
PCD
ads (i)
P

⌉
, if PCDads (i) > P (P − δ(i) + 1)

, ∀i ∈ V. (4.59)

For the case that PCDads (i) > P (P − δ(i) + 1), OSC and amplifier modules are required to

implement the extended architecture. The number of OSC modules, Mads
osc (i), and in node

amplification, Mads
amp(i), required in node i, equals the number of add/drop structures, A(i),

and is given by

Mads
osc (i) = Mads

amp(i) =


0, if PCDads (i) ≤ P (P − δ(i) + 1)

A(i), if PCDads (i) > P (P − δ(i) + 1)

, ∀i ∈ V. (4.60)

The total number of slots required at node i in the colorless and directionless add/drop

structure, SCDtot (i), is calculated as
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SCDtot (i) = Mxc
wss(i)S

xc
wss+Mxc

amp(i)S
xc
amp+Mads

wss(i)S
ads
wss+Mads

amp(i)S
ads
amp+Mads

osc (i)Sadsosc , ∀i ∈ V,
(4.61)

where Sadsosc is the number of slots required by the OSC module in the add/drop structure.

Once again we assume one control module per shelf. Thus, the number of shelves, MCD
sf (i),

and of control modules, MCD
ctr (i), required in node i for the colorless and directionless ROADM

is given by

MCD
sf (i) = MCD

ctr (i) =

⌈
SCDtot (i)

Ssf − Sctr

⌉
, ∀i ∈ V. (4.62)

4.4.5 Colorless, directionless and contentionless

The colorless, directionless and contentionless add/drop structure, see Fig. 2.15, only

requires one Pi×Po WSS per add/drop structure. The total number of add/drop ports needed

in the add/drop structures of node i, PCDCads (i), is calculated using (4.54). To accommodate

the PCDCads (i) channels one or more add/drop structures can be required. In this case a

cascade of 1 × P WSS modules is avoided as it removes the contentionless functionality. The

total number of Pi × Po WSS required at node i, Mads
mwss(i), equals the number of add/drop

structures and is given by

A(i) = Mads
mwss(i) =

⌈
PCDCads (i)

Pi

⌉
, if PCDCads (i) ≤ Pi(Po − δ(i) + 1), ∀i ∈ V. (4.63)

The total number of slots required at node i in the colorless, directionless and contention-

less ROADM, SCDCtot (i), is calculated as

SCDCtot (i) = Mxc
wss(i)S

xc
wss +Mxc

amp(i)S
xc
amp +Mads

mwss(i)S
ads
mwss, ∀i ∈ V, (4.64)

where Sadsmwss is the number of slots required by the Pi × Po WSS module in the add/drop

structure. The number of shelves, MCDC
sf (i), and of control modules, MCDC

ctr (i), required in

node i for the colorless, directionless and contentionless ROADM is calculated as

MCDC
sf (i) = MCDC

ctr (i) =

⌈
SCDCtot (i)

Ssf − Sctr

⌉
, ∀i ∈ V. (4.65)

4.5 Chapter summary

This chapter describes the developed nodes dimensioning models for each of the electrical

and optical layer architectures considered. The models consider the imposed implementation

restrictions and determine the required building blocks, given the traffic requirements and

the network topology. The chapter starts by presenting the assumed nodes implementation,

followed by the inputs of the model for the grooming function. After, models based on
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ILPs for the muxponders-based and EXCs based architectures are reported. Regarding EXC

based architectures, either non-blocking and partial non-blocking EXCs architectures are

considered. At the end, a dimensioning model for each of the ROADM architectures presented

is also developed.
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CHAPTER 5

Greenfield planning

Given the broad variety of solutions and technologies available, it is not straightforward to

evaluate which one should be implemented in order to reduce the cost. At the electrical layer,

select whether muxponders architectures remain efficient or an EXC should be implemented

is a key cost aspect. Regarding the optical layer, the decision is which level of flexibility the

ROADM should have to support and switch the wavelengths in a cost efficient way. Thus,

techno-economic studies are decisive to identify the most profitable deployment solution and

assess the influence of the various cost contributions.

Usually, techno-economic analysis are performed considering all nodes equipped equally

and uniform traffic. However, in real scenarios, the nodes can have different requirements and

should be equipped accordingly. Moreover, while the focus of the existing studies was mainly

on the CapEx, nowadays, OpEx related costs such as the cost with the power consumption,

the footprint requirements, or the upgrade capabilities are important factors that should be

taken into consideration. In this chapter, an analysis and comparison between the various

node architectures presented in Chapter 2 using the models presented in Chapter 4 is reported.

The analysis focuses on the CapEx, power consumption and footprint requirements. As

the nodes dimensioning model assumes an end-to-end grooming scheme, the impact of the

grooming process can be decoupled from the routing algorithm. Therefore, we analyze a

single node, varying the factors that have an impact on the node performance. For the

electrical layer we analyze one single node under different traffic loads, traffic patterns, and

exchanging traffic with a different number of destination nodes. Regarding the optical layer

we analyze one single node increasing the nodal degree and number of add/drop channels.

Based on the outcome of a meaningful set of simulations, an optimization method based

on node architecture selection is proposed. We identify simple rules and scenarios where a

determined architecture (electrical and optical) brings advantage. Then, when considering

the network and after routing the demands, we can quickly optimize the total network cost
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by selecting the architecture of each node accordingly.

The chapter is organized in five sections. In Section 5.1, an analysis to the CapEx, power

consumption and footprint requirements of the architectures for the electrical layer is pre-

sented, and in Section 5.2 a similar analysis for the optical layer architectures is reported.

To evaluate the relative influence of the modules in the total network cost, Section 5.3 is

devoted to a sensitivity analysis. After, in Section 5.4 the optimization method based on

node architecture selection is presented, and its applicability demonstrated. At the end, in

Section 5.5 the chapter is summarized.

5.1 Electrical layer

The results obtained using the dimensioning model for the electrical layer presented in

Sections 4.2 and 4.3 are reported in this section. As aforementioned, we analyze one network

node using different traffic loads, traffic patterns and number of destination nodes. The

number of destination nodes is the number of other nodes to/from which the node has at

least a demand. We consider four client bit rates (1.25 Gbit/s, 2.5 Gbit/s, 10 Gbit/s, and

40 Gbit/s) and a single line bit rate of 100 Gbit/s, defining C = {c : c ∈ {1.25, 2.5, 10, 40}}
and L = {l : l ∈ {100}}. The type of available modules, the number of ports, the number of

required slots, the power consumption in Watts (W), and the price in monetary units (m.u.)

are presented in Table 5.1 [1–3].

The transceivers are assumed to be the same for all the architectures. Thus, 1.25 Gbit/s,

2.5 Gbit/s, 10 Gbit/s, and 40 Gbit/s short-reach (SR) transceivers and a 100 Gbit/s long-

reach (LR) transceiver are required, given the bit rates in C and L. Three muxponders

are available, one generating a 10 Gbit/s signal and two generating a 100 Gbit/s signal, see

Table 5.1. The 10 Gbit/s muxponder can accept all mixtures of 1.25 Gbit/s and 2.5 Gbit/s

signals and generates a 10 Gbit/s signal. Thus, it can have five grooming configurations

corresponding to the five alternatives to groom 1.25 Gbit/s and 2.5 Gbit/s signals into a 10

Gbit/s signal. Additionally two 100 Gbit/s muxponders are available, one accepting 2 ×
10 Gbit/s + 2 × 40 Gbit/s signals and another accepting 10 × 10 Gbit/s signals, defining

two more grooming configurations. Thus, the muxponders modules available define C∗ =

{1.25, 2.5}, X∗ = {1, . . . , 5}, C\C∗ = {10, 40}, andX = {6, 7}. For EXCs-based architectures

one module per bit rate is available. Regarding the non-blocking EXC architecture, the shelf,

the respective control module and the ESM are selected from the list in order to accommodate

all the required modules with the smaller size EXC possible. For partial non-blocking EXCs

architectures, the 16 slots shelf is always deployed. Regarding the power consumption of

the modules, we assume that each module always consumes its typical power, presented in

Table 5.1, even if not all available ports are in use. The power consumption of each shelf,

the corresponding control module, and the ESM (in EXC architectures) is accounted since

its deployment, as it is a fixed component.

In the framework of this study, we assume that the total traffic of node o, T (o), is dis-

tributed over the four client bit rates, defining a traffic pattern. The considered total traffic
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5.1. Electrical layer

Table 5.1: Modules specifications for the electrical layer [1–3].

Module Variable Ports Parameter Slots Parameter Power Price

type consumption (W) (m.u.)

Transceivers

1.25 Gbit/s (SR) Tsv1.25 - - - - 1 0.02

2.5 Gbit/s (SR) Tsv2.5 - - - - 1 0.05

10 Gbit/s (SR) Tsv10 - - - - 3.5 0.1

40 Gbit/s (SR) Tsv40 - - - - 8 0.4

100 Gbit/s (LR) Tsv100 - - - - 15 14

Muxponder modules

10 Gbit/s(1) M1...5
10 1 - 1 S1...5

10 50 1.2

100 Gbit/s(2) M6
100 1 - 2 S6

100 150 16

100 Gbit/s(3) M7
100 1 - 2 S7

100 150 13

Shelf Mmb
sf - Smb

sf 16(4) - (5) (5)

Control Mmb
ctr - - 1 Smb

ctr 300 5.3

Electrical cross connect modules

1.25 Gbit/s M1.25 32 P1.25 1 S1.25 224 3.8

2.5 Gbit/s M2.5 24 P2.5 1 S2.5 360 4.5

10 Gbit/s M10 10 P10 1 S10 340 5

40 Gbit/s M40 2 P40 1 S40 320 6.4

100 Gbit/s M100 1 P100 1 S100 360 12

Shelf Mpbe
sf - Spbe

sf 16(4) - (5) (5)

Control Mpbe
ctr - - 1 Spbe

ctr 400 8.3

ESM Mpbe
esm - - 1 Spbe

esm 200 3

Shelf Mnbe
sf - Snbe

sf 32(4) - (5) (5)

Control Mnbe
ctr - - 1 Snbe

ctr 600 13

ESM Mnbe
esm - - 1 Snbe

esm 225 3.5

Shelf Mnbe
sf - Snbe

sf 64(4) - (5) (5)

Control Mnbe
ctr - - 1 Snbe

ctr 900 31

ESM Mnbe
esm - - 2 Snbe

esm 300 6

Shelf Mnbe
sf - Snbe

sf 128(4) - (5) (5)

Control Mnbe
ctr - - 1 Snbe

ctr 1200 76

ESM Mnbe
esm - - 3 Snbe

esm 500 10

(1) All mixture of 1.25 Gbit/s and 2.5 Gbit/s to 10 Gbit/s (5 grooming configurations)
(2) 2 × 10 Gbit/s + 2 × 40 Gbit/s to 100 Gbit/s
(3) 10 × 10 Gbit/s to 100 Gbit/s
(4) Number of available slots
(5) Included in the control modules

is of 200 Gbit/s, 400 Gbit/s, 600 Gbit/s and 800 Gbit/s. Moreover, to evaluate the depen-

dence of the node architecture with the traffic pattern we consider the four traffic patterns

presented in Table 5.2. We denote by T (o) the traffic weighted mean in node o.

The number of client demands with bit rate c in node o, Dc(o), is then calculated as

Dc(o) =

⌈
TPc(o)

c

⌉
, (5.1)

where TPc(o) is the percentage of T (o) with bit rate c in Gbit/s. Note that T (o) equals the

sum of TPc(o) over all c. The Dc(o) demands are then randomly distributed, each demand
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5. Greenfield planning

Table 5.2: Client traffic patterns.

Pattern 1.25 Gbit/s 2.5 Gbit/s 10 Gbit/s 40 Gbit/s Weighted

Id mean (T (o))

1 60% 30% 10% 0% 2.5 Gbit/s

2 10% 20% 50% 20% 13.6 Gbit/s

3 5% 10% 50% 35% 19.3 Gbit/s

4 0% 5% 30% 65% 29.1 Gbit/s

at a time, by the destination nodes, d, using an uniform distribution thus, defining the values

of tc(1, d), with d ∈ {1, . . . , N}. Five and ten destination nodes are considered. The above

procedure is repeated 100 times for each combination of total traffic, traffic pattern, and

number of destination nodes, in order to generate a meaningful data set.

In the following sections, the obtained results are analyzed. Figures 5.1, 5.2 and 5.3

display the average values calculated using the 100 realizations for the CapEx, the power

consumption and the footprint requirements, respectively. Additionally, the error bars present

the minimum and maximum value obtained. In all the cases, the results for muxponders-based

architectures are presented in bars with solid fill, for non-blocking EXC in bars filled with

diagonal lines, and for partial non-blocking EXCs in bars filled with vertical lines. Moreover,

to evaluate the relative influence of the modules, the results are grouped by client, line and

control modules. Client modules are modules equipped with short-reach transceivers, and line

modules the ones equipped with long-reach transceivers. Thus, the muxponders used in the

first stage grooming and the modules to receive the client signals in EXC-based architectures

belong to the client modules. The muxponders used in the second stage grooming and the

modules used to form the line signals in EXC-based architectures belong to the line modules.

The control modules are the shelf, the control module and, in EXC-based architectures, the

ESM. The results regarding the client modules are represented in blue, the line modules in

gray, and the control modules in red, see Figs. 5.1, 5.2 and 5.3.

5.1.1 Capital expenditures

An analysis to the CapEx of the different electrical layer architectures is reported in this

section. Figure 5.1(a) is related to the CapEx in scenarios where the traffic is distributed

according to pattern 1, Fig. 5.1(b) to pattern 2, Fig. 5.1(c) to pattern 3, and Fig. 5.1(d) to

pattern 4. The left side presents the results for five destination nodes and the rigth side for

ten destination nodes.

As can be seen in Fig. 5.1, only minor differences between the total CapEx obtained for the

different traffic patterns can be seen, fixing the total traffic. A slight increase in the CapEx

is observed from 5 to 10 destination nodes. Comparing the architectures, the muxponders-

based architecture always presents lower CapEx than the EXC-based solutions. The saves

can reach 50%, however it is worth to note that this difference can be decreased in the OpEx
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Figure 5.1: CapEx for muxponders-based, non-blocking EXC, and partial non-blocking EXCs archi-
tectures considering 5 and 10 destination nodes with total traffic distributed according to: (a) pattern
1, (b) pattern 2, (c) pattern 3, and (d) pattern 4.

related to the technicians. Considering the EXC-based architectures it can be seen that the

CapEx related to the client and line modules is the same for both the non-blocking EXC

and partial non-blocking EXCs architectures. The differences between the two approaches

reside in the control modules. For low traffic loads (for instance 200 Gbit/s and 400 Gbit/s),

non-blocking EXC tends to present lower CapEx than partial non-blocking EXCs. In these

cases a slightly larger shelf can bring some benefits in terms of number of ESMs and control

modules required. With the increase of the total traffic the requirements in terms of shelf

size increases as well (for instance 600 Gbit/s and 800 Gbit/s). In this case the use of various

smaller shelves can bring cost benefits, see Fig. 5.1.

Analyzing the contribution of the types of modules, it can be seen that the line modules

dominate the total CapEx. This behavior was expected as the line modules are the most

expensive ones, see Table 5.1. The percentage of CapEx regarding line modules ranges

between 50% and 87% in muxponders-based architectures, and between 70% and 85% in EXC-

based architectures. The CapEx related with the client modules correspond to a percentage
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5. Greenfield planning

ranging between 7% and 34% in muxponders-based architectures, and between 13% and

24% in the EXC-based solutions. The bigger amplitude showed by the percentages in the

muxponders-based architecture, reflects their higher dependence on the traffic pattern. For

instance, patterns where only single stage grooming is needed for the majority of the traffic

(for instance pattern 4) requires only a few client modules. Regarding control modules, they

have a residual impact on the CapEx, contributing with a percentage ranging between 5% and

12% in muxponders-based architectures and between 4% and 7% in EXC-based architectures.

The higher values presented in the muxponders solution regards the patterns where a two

stage grooming is required for the majority of the traffic (for instance pattern 1). In this case,

the huge number of modules required increases the number of shelves and control modules.

Considering the amplitude of the results, muxponders-based architectures tend to present

lower amplitude than EXC-based architectures. However, the amplitude obtained represent

a variability of the total CapEx between 2% and 32% in muxponders-based architectures and

between 1% and 37% in EXCs-based solutions.

5.1.2 Power consumption

A similar analysis but regarding the power consumption is presented in this section. Figure

5.2(a) is related to traffic distributed according to pattern 1, Fig. 5.2(b) to pattern 2, Fig.

5.2(c) to pattern 3, and Fig. 5.2(d) to to pattern 4. The left side regards five destination

nodes and right side ten destination nodes.

As depicted in Fig. 5.2, muxponders-based architectures present lower power consumption

than EXCs-based solutions. The differences range between 35% and 227%. Moreover, the

power consumed by the client and line modules in the non-blocking EXC and in the partial

non-blocking EXCs architectures is the same, and the differences between both architectures

are only observed in the control modules, as in the CapEx analysis. However, in this case, the

partial non-blocking EXCs architecture only outperforms non-blocking EXC architectures for

200 Gbit/s total traffic. To higher traffic loads the power required by the control modules of

the various shelves required penalize the power consumption of the node.

Regarding the power consumption of the different types of modules, it can be seen that

the line modules power consumption is of the same order of magnitude than the one of the

client modules. The percentage of the total power consumption for client and line modules

ranges between 15% and 50% in muxponders architectures. For EXCs-based architectures

the percentage of power consumed by client modules ranges between 30% and 50% and

the line modules between 38% and 57%. The control modules in muxponders architectures

have a percentage ranging between 21% and 27% whereas in EXCs-based architectures ranges

between 6% and 13%. Therefore, this result suggests that the control modules have an higher

impact on the total power consumption of the node than in the total CapEx. The amplitude

presented by the results is smaller than the one observed in the CapEx. For muxponders-

based architectures the amplitude of the results correspond to a percentage ranging between

5% and 26%, and for EXCs architectures between 0% and 29%.
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Figure 5.2: Power consumption for muxponders-based, non-blocking EXC, and partial non-blocking
EXCs architectures considering 5 and 10 destination nodes with total traffic distributed according to:
(a) pattern 1, (b) pattern 2, (c) pattern 3, and (d) pattern 4.

5.1.3 Footprint requirements

In the following, an analysis to the footprint requirements is presented. To better under-

stand the differences between the architectures, the results are presented in number of slots.

Figure 5.3(a) is related to traffic distributed according to pattern 1, Fig. 5.3(b) to pattern

2, Fig. 5.3(c) to pattern 3, and Fig. 5.3(d) to to pattern 4. The black solid lines mark the

number of slots that can be accommodated into a single rack, assuming that each rack can

support up to three shelves with 16 slots each, i.e. 42 slots. Note that in the non-blocking

EXC architecture one rack is always deployed.

As depicted in Fig. 5.3, the muxponders-based architecture is the one requiring more

number of slots. Moreover, in traffic patterns where a two stage grooming is required for a

high percentage of the traffic these differences can reach 187%, for instance see Fig. 5.3(a).

Although a single muxponder module provides a combination of encapsulation and grooming

functions, they tend to occupy a larger number of slots, see Table 5.1. Moreover, the difference

between the number of slots required by the muxponders and by the EXCs-based architectures
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Figure 5.3: Footprint requirements in number of slots for muxponders-based, non-blocking EXC, and
partial non-blocking EXC considering 5 and 10 destination nodes with total traffic in: (a) pattern 1,
(b) pattern 2, (c) pattern 3, and (d) pattern 4.

tend to increase with the increase of the number of destination nodes. This can be explained

by the fact that only client signals to be groomed can be connected to the same muxponder

module, thus with the increase of the number of destination nodes the chances of having the

modules completely filled decrease, impacting the node footprint. Architectures employing an

EXC tend to require less number of slots. However, in spite of the number of slots required for

client and line modules being the same for both non-blocking EXC and partial non-blocking

EXCs architectures, the number of slots required for control modules in partial non-blocking

EXCs architectures tend to be higher. In the partial non-blocking EXCs architectures each

shelf requires an ESM and a control module, with the increase in the number of required

shelves, the number of slots required for control modules increases as well. In opposition, in

the non-blocking EXC architecture the control modules are shared between all client and line

modules. It is worth to note that one rack is almost always sufficient to accommodate all the

shelves in partial non-blocking EXCs. Considering the muxponders-based architecture, only

for low traffic loads one rack can accommodate all the required modules.
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In muxponders-based architectures, client modules represent a percentage ranging between

15% and 72% and line modules a percentage ranging between 22% and 77%. As in the

CapEx and power consumption cases the traffic pattern is responsible by those variations.

The control modules in muxponders-based architectures account only to a percentage ranging

between 6% and 9% of the total node footprint. Regarding the EXC-based architectures, the

client modules represent a percentage ranging between 32% and 60% and the line modules a

percentage ranging between 33% and 57%. The control modules contribute with a percentage

ranging between 5% and 14%. The amplitude obtained for the footprint is comparable to the

one obtained for the power consumption. For muxponders-based architectures it represents

a variability ranging between 5% and 35% whereas for EXC-based architectures represents a

variability between 0% and 21%.

5.2 Optical layer

The results obtained using the dimensioning model for the optical layer presented in Sec-

tion 4.4 are presented in this section. We analyze one network node with different nodal

degrees and different number of add/drop channels. For the ROADM architectures with ded-

icated add/drop structure, we assume an equal number of add/drop channels per direction.

Thus, in this case the total number of add/drop channels is divided by the nodal degree. A

node with degree two, four, six, and eight is considered with a number of add/drop channels

ranging from 2 to 80. The available modules specifications are presented in Table 5.3, which

was created considering the values available in [1–3]. The same shelf and control module are

assumed in all the ROADM architectures.

Table 5.3: Modules specifications for the optical layer [1–3].

Module Variable Ports Parameter Slots Parameter Power Price

type consumption (W) (m.u.)

WSC Mwsc 80 K 3 Swsc 40 2.3

1× P WSS Mwss 9 P 2 Swss 40 4

1× P WSS Mwss 20 P 2 Swss 45 6

OSC Mosc 9 Posc 1 Sosc 5 0.08

Pi × Po WSS Mmwss 9 × 9 Pi × Po 2 Smwss 55 48

Shelf Msf - Ssf 16(1) - (2) (2)

Control Mctr - - 1 Sctr 300 5.3

(1) Number of available slots
(2) Included in the control modules

5.2.1 Add/drop ratio analysis

Some ROADM architectures offer a maximum number of add/drop ports that can be

smaller than the maximum number of channels that can reach the node. The add/drop ratio

of a node is then defined as the relation between the maximum number of add/drop channels
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that the add/drop structures can support, and the maximum number of add/drop channels

of all directions. The architectures with a dedicated add/drop structure per direction, for

instance the fixed frequency and fixed direction and the colorless and fixed direction architec-

tures, always have an add/drop ratio of one. This is, all the channels of all the directions can

be added/dropped at a node. Considering the ROADM architectures in which the add/drop

structure is shared among all the node directions, for instance the fixed frequency and di-

rectionless, the colorless and directionless, and the colorless, directionless and contentionless

architectures, the add/drop ratio depends on the nodal degree and on the number of add/drop

structures required to accommodate all the add/drop channels.

Considering the fixed frequency and directionless, and the colorless and directionless ar-

chitectures, the add/drop ratio only depends on the number of ports in the 1 × P WSS

module used in the cross connection structure. As can be seen in Table 5.3, the number of

ports available allows each add/drop structure to support all the K channels of the fiber. For

instance, the WSC module can multiplex/demultiplex all the K channels, moreover 1 × 9,

and 1 × 20 WSSs are currently available. As typical values for K are 80 or 96 channels, a

cascade of WSSs can reach that value per add/drop structure. As an example, the use of

one 1 × 9 WSS connected to five 1 × 20 WSS can reach 100 add/drop ports per add/drop

structure. Note that even if the number of add/drop ports available is higher than K, each

add/drop structure can only be use to K add/drop channels because of the connection via

fiber between the different modules. Therefore, the add/drop ratio of node i, τ(i), for fixed

frequency and directionless, and colorless and directionless architectures is calculated as the

relation between the maximum number of add/drop structures allowed, given by Eq. (4.45),

and the nodal degree of the node

τ(i) =
(P − δ(i) + 1)K

δ(i)K
, if δ(i) ≤ δmax(i). (5.2)

Regarding the colorless, directionless and contentionless ROADM architecture, each add/drop

structure cannot accommodate all the K channels. As can be seen in Table 5.3, only 9 × 9

WSS modules are available. Moreover, a cascade of WSSs cannot be deployed in this type of

architecture. Thus, the add/drop ratio of node i for colorless, directionless and contentionless

ROADM, τ∗(i), is calculated as

τ∗(i) =
(Po − δ(i) + 1)Pi

δ(i)K
, if δ(i) ≤ δmax(i). (5.3)

Figure 5.4 presents the add/drop ratio calculated using Eqs. (5.2) and (5.3), for cross

connection structures using 1× 9 WSS (red circles), and 1× 20 WSS (red squares), and for

colorless, directionless and contentionless architecture using 9×9 WSS (blue triangles). Note

that for cross connection structures using 1× 9 WSS and for the colorless, directionless and

contentionless architecture using 9 × 9 WSS the maximum nodal degree is of nine. Consid-

ering cross connection structures using 1 × 20 WSS a maximum nodal degree of 20 can be

achieved. As can be seen in Fig. 5.4, the add/drop ratio decreases with the increase of the
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nodal degree. However, excluding the colorless, directionless and contentionless architecture,

add/drop ratios higher than 0.5 are observed for the majority of the nodal degrees. Regarding

the colorless, directionless and contentionless architecture an add/drop ratio of 0.5 is never

achieved. In this case, τ∗(i) ranges from 0.45 to 0.01.
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Figure 5.4: Add/drop ratio analysis for cross connection structures using 1× 9 WSS, and 1× 20 WSS
and for colorless, directionless and contentionless architecture using 9× 9 WSS. With the increase of
the nodal degree the add/drop ratio decreases.

In the following an analysis to the results obtained for the CapEx, power consumption and

footprint requirements is presented. As the maximum nodal degree considered is eight, the

cross connection structure is assumed to be deployed using 1 × 9 WSSs in all the ROADM

architectures.

5.2.2 Capital expenditures

An analysis of the CapEx for the ROADM architectures is presented in this section. Figure

5.5 presents the obtained results for the fixed frequency and fixed direction (black line), fixed

frequency and directionless (black dashed line), colorless and fixed direction (gray line), and

colorless and directionless using 1 × 9 WSS (red line), and 1 × 20 WSS (red dashed line).

Figure 5.5(a) is related to nodes with degree two, Fig. 5.5(b) to nodal degree four, Fig. 5.5(c)

to nodal degree six, and Fig. 5.5(d) to nodal degree eight. To guarantee the detail in the

analysis, the results for colorless, directionless and contentionless add/drop structures are

presented in Fig. 5.6.

As can be seen in Fig. 5.5, the fixed frequency and fixed direction (black line), and the

fixed frequency and directionless architectures (black dashed line) have the same CapEx, in-

dependently of the number of add/drop channels. The fixed frequency and fixed direction

ROADM has an add/drop ratio of one, thus it can accommodate all the channels. More-

over, as the add/drop structure is dedicated per direction the maximum capacity is installed

since its deployment. Considering the fixed frequency and directionless architecture, the uni-

form behavior is related to the maximum number of add/drop channels considered. If more

add/drop channels were used a step in the channel 81 should be observed, corresponding to

the deployment of another add/drop structure. In this case, the increase in the CapEx is

of 6.3 m.u., corresponding to the addition of a WSC and a WSS module. In these types of
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Figure 5.5: Evolution of the CapEx with the increase of the number of add/drop channels for fixed
frequency and fixed direction, fixed frequency and directionless, colorless and fixed direction, and
colorless and directionless using 1 × 9 WSS, and 1 × 20 WSS ROADMS with: (a) degree two, (b)
degree four, (c) degree six, and (d) degree eight.

ROADMs, the CapEx only increases with the increase of the nodal degree. The colorless and

fixed direction (gray line), and the colorless and directionless (red line) architectures presents

a stepwise behavior, due to their modular characteristics. For the colorless and fixed direction

(gray line) architecture two steps can be observed. The first, and bigger, step is related to

the deployment of a cascade of WSS (between 18 and 19 add/drop channels in Fig. 5.5(a),

between 36 and 37 add/drop channels in Fig. 5.5(b), between 52 and 53 add/drop channels

in Fig. 5.5(c), and between 72 and 73 add/drop channels in Fig. 5.5(d)). Up to that point

a single 1 × P WSS is required per transmission system, after that a cascade of WSSs is

required. Note that with the increase of the nodal degree this step starts happening in higher

number of add/drop channels as the channels are splitted by more directions, see Fig. 5.5.

The second step is related to the addition of new WSSs modules, after the deployment of the

cascade of WSSs. For instance, between the 36 and 37 add/drop channel in Fig. 5.5(a). Note

that, this type of step is only observed in Figs. 5.5(a) and 5.5(b). Considering the colorless

and directionless ROADM (red lines), two types of steps can also be observed: the first for

each additional P = 9 or P = 20 channels which is related to the addition of another WSS

90



5.2. Optical layer

module to the add/drop structure, and the second step for each P.Posc channels, related to

the addition of another add/drop structure. As each additional add/drop structure requires

an OSC, an amplifier, and at least two WSSs, the impact of adding an add/drop structure is

greater than of the addition of another WSS. For instance in the colorless and directionless

ROADM using 1× 9 WSSs, consider the steps between 18 and 19 add/drop channels in Fig.

5.5(a), between 62 and 63 add/drop channels in Fig. 5.5(b), between 36 and 37 add/drop

channels in Fig. 5.5(c), and between 9 and 10; and 72 and 73 add/drop channels in Fig.

5.5(d).

The CapEx for colorless, directionless and contentionless ROADMs is presented Fig. 5.6.

The blue line refers to node with degree two, the black line to degree four, the red line to

degree six, and the green line to degree eight. As can be observed, the CapEx for colorless,

directionless and contentionless ROADMs also presents a stepwise behavior. In this case

only one step is observed, corresponding to the addition of another add/drop structure, i.e. a

Pi×Po WSS. Note that with the increase of the nodal degree, and as presented in Section 5.2.1,

the maximum number of add/drop channels that the ROADM can accommodate decreases

substantially. For degree two (blue line), up to 72 add/drop channels can be supported,

however for degree eight (green line) the maximum number of add/drop channels is of 18.
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Figure 5.6: Evolution of the CapEx with the increase of the number of add/drop channels for colorless,
directionless and contentionless ROADMs with degree two, four, six, and eight.

As expected, the CapEx increases with the nodal degree, for all the architectures. Even

if the number of add/drop channels is the same, the increase of the nodal degree implies

an increase in the number of WSSs used in the cross connection structure. Comparing the

CapEx between the various architectures, it can be seen that the colorless, directionless and

contentionless ROADM is much more expensive than all the others architectures. This is

mainly due to the cost of the 9× 9 WSS which is much more costly than all other modules,

see Table 5.3. Considering the remaining architectures, the most cost-efficient architecture

depends on the scenario in which the node is operating. Excluding nodes with degree two,

the fixed frequency and directionless architecture is the one with lower CapEx, see Fig. 5.5.

In degree two nodes, the fixed frequency and fixed direction offers a CapEx efficient solution

as the nodal degree is low, see Fig. 5.5(a). With the increase of the nodal degree, and as

the add/drop structure is dedicated per direction, this type of ROADM starts having higher
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CapEx because a WSS and a WSC module is required per additional pair of fibers. The

colorless and fixed direction ROADM (gray lines) presents low CapEx for low number of

add/drop channels. After, when a cascade of WSSs is required the CapEx suffers an huge

increase. For high number of add/drop channels, the CapEx of this type of ROADM can be

greater than the colorless and directionless ROADM, however offering less flexibility. Finally,

the colorless and directionless ROADMs (red lines) are the architectures that offer a pay as

you growth solution. Comparing the solutions employing 1 × 9 WSS to the one employing

1 × 20 WSS in the add/drop structure, it can be seen that for low nodal degrees and low

number of add/drop channels the use of 1 × 9 WSS offers a more efficient solution. With

the increase of the number of add/drop channels, the availability of more ports in the 1× 20

WSS reduces the number of required modules. It is worth to note that with the increase of

the nodal degree the boundary point where an architecture employing 1× 20 WSS presents

lower CapEx than an architecture using 1 × 9 WSS appears at higher number of add/drop

channels. As an example, between the channel 19 and 20 in Fig. 5.5(a), between the 64 and

65 add/drop channel in Fig. 5.5(b), and between the 74 and 75 channel in Fig. 5.5(c). For

degree eight, see Fig. 5.5(d), the architecture using 1 × 9 WSS presents lower CapEx up to

80 add/drop channels.

5.2.3 Power consumption

This section presents the analysis to the power consumption. Figure 5.7 presents the ob-

tained results for the fixed frequency and fixed direction (black line), fixed frequency and

directionless (black dashed line), colorless and fixed direction (gray line), colorless and di-

rectionless using 1 × 9 WSS (red line), and 1 × 20 WSS (red dashed line), and colorless,

directionless and contentionless (blue line) architectures. Figure 5.7(a) is related to nodes

with nodal degree two, Fig. 5.7(b) to nodal degree four, Fig. 5.7(c) to nodal degree six, and

Fig. 5.7(d) to nodal degree eight.

The same behavior as the described in the previous section can be observed. However,

in this case the impact of starting a cascade of WSSs or adding another add/drop structure

is much higher, see Figs. 5.5 and 5.7. Comparing the power consumption required by the

architectures, it can be seen that for low number of add/drop channels a colorless, direction-

less and contentionless architecture (blue line) consumes less power than all the remaining

architectures, for all nodal degrees. With the increase of the number of add/drop channels

this architecture starts consuming more power, and for δ(i) = 2 it can be the one requiring

more power for high number of add/drop channels, see Fig. 5.7(a). In opposition, the fixed

frequency and directionless ROADM (black dashed line) has low power consumption for high

number of add/drop channels, being the most power efficient architecture in the majority

of the scenarios, see Fig. 5.7. The fixed frequency and fixed direction ROADM (black line)

provides a power-efficient solution for high number of add/drop channels and low nodal de-

gree, see Figs. 5.7(a) and 5.7(b). However, with the increase of the nodal degree the power

required by this architecture suffers an huge increase, turning it into one of the architectures
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Figure 5.7: Evolution of the power consumption with the increase of the number of add/drop channels
for fixed frequency and fixed direction, fixed frequency and directionless, colorless and fixed direction,
colorless and directionless using 1 × 9 WSS, and 1 × 20 WSS, and colorless, directionless and con-
tentionless ROADMS with: (a) degree two, (b) degree four, (c) degree six, and (d) degree eight.

consuming more power for δ(i) = 8, see Fig. 5.7(d). As in the CapEx, the colorless and fixed

direction ROADM (gray line) consumes low power as long as a cascade of WSSs is avoided,

and the nodal degree is low, see Figs. 5.7(a) and 5.7(b). After, the power consumption suffers

an huge increase making that architecture the one that consumes more power for high number

of add/drop channels, independently of the nodal degree. Contrariwise of what happens in

the CapEx, the colorless and directionless architecture employing 1 × 20 WSS (red dashed

line) almost always consume less power than the colorless and directionless architecture using

1× 9 WSS (red line). Only for very few number of add/drop channels the architecture using

1 × 9 WSS consumes less power. This behavior is due to the differences in terms of power

consumption between both modules being smaller than the difference in terms of price. Thus,

as architectures using 1× 20 WSS require less number of modules, they tend to consume less

power.
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5.2.4 Footprint requirements

After the analysis to the CapEx and power consumption required by the various ROADM

architectures, this section presents a similar analysis regarding the footprint requirements in

number of slots. Figure 5.8 presents the obtained results for the fixed frequency and fixed

direction (black line), fixed frequency and directionless (black dashed line), colorless and fixed

direction (gray line), colorless and directionless using 1 × 9 (red line), and 1 × 20 WSS (red

dashed line), and colorless, directionless and contentionless (blue line) architectures. As in

the previous sections, Fig. 5.8(a) is related to nodes with nodal degree two, Fig. 5.8(b) to

nodal degree four, Fig. 5.8(c) to nodal degree six, and Fig. 5.8(d) to nodal degree eight.
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Figure 5.8: Evolution of the footprint requirements, in number of slots, with the increase of the
number of add/drop channels for fixed frequency and fixed direction, fixed frequency and directionless,
colorless and fixed direction, colorless and directionless using 1×9 WSS, and 1×20 WSS, and colorless,
directionless and contentionless ROADMS with: (a) degree two, (b) degree four, (c) degree six, and
(d) degree eight.

The same behavior as the one observed in the previous sections is obtained for the node

footprint, i.e. the fixed frequency and fixed direction, and the fixed frequency and directionless

ROADMs only scale with the nodal degree, whereas the colorless and fixed direction, the

colorless and directionless, and the colorless, directionless and contentionless architectures

presents a stepwise function, see Fig. 5.8. As can be observed, the number of required slots is
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almost always below 32, thus only two shelves are required for the majority of the scenarios.

The unique exception is the colorless and fixed direction ROADM (gray line) for nodes with

degrees four, six and eight, and high number of add/drop channels, see Figs. 5.8(b), 5.8(c)

and 5.8(d). In this case three or even four shelves can be required.

Comparing the number of slots required by each architecture, it can be observed that for

low number of add/drop channels the colorless, directionless and contentionless architecture

(blue line) tend to require less space that all the remaining ROADM architectures. With

the increase of the number of channels the footprint of this type ROADM increases. As

in the previous cost factors, fixed frequency and directionless architectures (black dashed

line) tend to be more efficient with the increase of the number of add/drop channels. The

fixed frequency and fixed direction ROADM (black line) suffers an huge increase in the

footprint requirements with the increase of the nodal degree, turning the architecture one

of the ROADMs requiring more slots. The colorless and fixed direction ROADM (gray line)

only provides a good solution for δ(i) = 2 and low number of add/drop channels. Considering

the colorless and directionless architecture, the solution employing 1 × 20 WSS (red dashed

line) always requires the same or less number of slots than the one using 1×9 WSS (red line).

As pointed out in the presented analysis, depending on the scenario where the node is

operating and the cost factor in analysis, the most cost-efficient architecture varies. For high

number of number of add/drop channels and small nodal degree, the simpler structure of the

architectures with dedicated add/drop structure presents some benefits. However, for small

number of add/drop channels and high nodal degree, ROADMs that share the add/drop

structure tend to be more cost-efficient.

5.3 Sensitivity analysis

To evaluate the relative influence of the modules price and power consumption in the total

network CapEx and total network power consumption, and understand the sensitivity of the

results, this section presents a sensitivity analysis [7]. A sensitivity analysis to the footprint

is not performed as variations in the number of ports of the modules would require new

simulations. The price and power consumption of the modules presented in Tables 5.1 and 5.3

were varied in a pre-determined range, one class at a time, and then the total CapEx and total

power consumption compared. The considered class of modules are: client, line, control and

ROADM. The assumed ranges of the price and power consumption for each type of module are

±15% and ±50%. To avoid the comparison between all combinations of electrical and optical

layer architectures, a colorless and directionless ROADM using a 1 × 9 WSS is considered in

the optical layer for the electrical layer architectures comparison. Morevoer, the muxponders-

based and the partial non-blocking EXCs architectures are assumed in the electrical layer

when comparing the ROADM architectures. We considered a backbone network in Italy, with

31 nodes and 51 links [5]. We also assume that each fiber can support up to 80 wavelengths,

K = 80, and that the maximum transparent length of an optical channel is 2000 km [6]. Inline

amplification is not considered, and the total traffic is of 30 Tbit/s randomly distributed over

95



5. Greenfield planning

the 31 nodes. For each node, the traffic pattern is randomly generated. The Dc(o) client

demands are then attributed to random pairs of nodes and routed using the shortest path in

number of physical hops.

The obtained results for the CapEx are presented in Fig. 5.9. Figure 5.9(a) displays

the results considering variations in the electrical layer modules. Gray bars are related to

the muxponders-based architecture, red bars to the non-blocking EXC, and blue bars to the

partial non-blocking EXCs architecture. The left side presents the results obtained by varying

the price of the client modules, the center regards line modules, and the right side control

modules. Figure 5.9(b) presents the results considering variations in the ROADM modules.

Black bars are related to the fixed frequency and fixed direction ROADM, light gray bars to

fixed frequency and directionless, purple bars to the colorless and fixed direction, green bars to

the colorless and directionless using 1 × 9 WSS, orange bars to the colorless and directionless

using 1 × 20 WSS, and yellow bars to the colorless, directionless and contentionless ROADM

architecture. The left side presents the results considering the electrical layer deployed with

the muxponders-based architecture, and the right side to the partial non-blocking EXCs

architecture.
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Figure 5.9: Network CapEx variation by type of module price variation: (a) for the electrical layer,
and (b) ROADMs. The line modules have the highest impact in the network CapEx. In the ROADMs,
the colorless, directionless and contentionless architecture has the higher impact. Variations in the
price of the client, control modules and ROADMs have residual impact.

As shown in Fig. 5.9 the line modules are the most influential parameter in the analysis,

followed by the colorless, directionless and contentionless ROADM. Variations in the price of

the client, control modules, and modules used in the remaining ROADM architectures have a

residual impact on the total network CapEx. The variations in the price of the line modules

implies a variation of almost that percentage in the total network CapEx. As can be observed

in Fig. 5.9(a), a variation of ±15% and ±50% results in a total network variation of ±12%

and ±40%, respectively. In the opposite are client, control modules, and modules used in

the remaining ROADM architectures, where a variation of ±50% in the modules price results

in a variation of less than 5% in the total network CapEx. The lower CapEx presented by
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5.3. Sensitivity analysis

the muxponders-based architecture increases the impact of the ROADMs price in the total

network CapEx, see Fig. 5.9(b).

Figure 5.10 presents the results obtained considering the power consumption. Figure

5.10(a) is related to the electrical layer architectures and Fig. 5.10(b) to the ROADM archi-

tectures. The bars colors are the same as described in Fig. 5.9.
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Figure 5.10: Network power consumption variation by type of module power consumption variation:
(a) for the electrical layer, and (b) ROADMs. The line modules and the ROADMs have the highest
impact in the network power consumption. Variations in the power consumption of the control modules
have residual impact.

As can be observed in Fig. 5.10, the line modules are again the most influential module

in the total power consumption. However, the impact of the client and control modules

increases. The total network variations obtained by varying the line modules continues being

more than half of the enforced variation. A variation of ±15% and ±50% in the line modules

power consumption results in a total network variation of ±9% and ±30%, respectively.

The client modules have less impact in the total network power consumption, presenting

variations of ±4% and ±13% when varying the modules power consumption in ±15% and

±50%, respectively. Regarding ROADMs, a variation of ±15% and ±50% results in a total

network variation of ±1% and ±4%, respectively. It is worth to note that the number of

required slots has an impact on the power consumption. Muxponder-based architectures

tend to require more slots, which is reflected in the higher power requirements of the control

modules, see Fig. 5.3. Due to this, variations in the control modules power consumption has

an impact in the total network power consumption in muxponder-based architectures, see gray

bars in Fig. 5.10(a). In this case, a variation of ±15% and ±50% in the power consumption

of the control modules implies a variation of ±3% and ±12% in the total network power

consumption.
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5. Greenfield planning

5.4 Optimization method

The analysis performed in Sections 5.1 and 5.2 suggests that an heterogeneous network,

i.e. a network where each node is equipped with a different architecture, can present lower

cost than an homogeneous network, i.e. a network where all the network nodes are equipped

equally. As pointed out before a given architecture do not presents the lower CapEx, power

consumption and footprint requirements, it depends on the scenario where the node is oper-

ating and cost factor in analysis. In this section, we propose an optimization method based

on node architecture selection for the OpEx related to the power consumption and footprint

requirements. The optimization method consists of simple rules identifying the scenarios

where each architecture consumes less power and requires less number of slots. Then, and

depending on the relation between the cost with the power consumption and the cost with

the footprint requirements, the most cost efficient architecture is selected. The method focus

on the power consumption and footprint requirements, however the same methodology can

be applied to others costs such as the maintenance, reparation related costs or the CapEx.

The OpEx related to the power consumption and footprint requirements, OpExN , is

assumed to be the accumulated cost during one year. Let ET (o) and RT (o) be the total

power consumption and the total number of racks required in the node o. Note that ET (o)

is calculated as the product between the number of required modules of each type and its

respective power consumption, and RT (o), is the smallest integer not less than the ratio

between the number of shelves required in the node o and the maximum number of shelves

per rack. Thus, OpExN is calculated as

OpExN =
∑
o∈V

ET (o)8760ce +RT (o)sr12cr, (5.4)

where 8760 is the number of hours of one year, ce is the average cost per kWh over a year,

sr is the space occupied by one rack in m2, 12 is the number of months of one year, and cr

is the average rent cost of 1 m2 per month over a year. In order to simplify the analysis,

and because realistic values for ce and cr are difficult to obtain, we consider the cost factor

α given by,

α =
sr12cr
8760ce

. (5.5)

Considering (5.4) and (5.5) we obtain,

OpExN = π
∑
o∈V

ET (o) + αRT (o), (5.6)

where π = 8760ce. Note that according to [4], nowadays α is of the order of 10. To minimize

OpExN we propose a set of simple rules to select the architecture for each node. Considering

the electrical layer, the rules are based on estimations using linear regressions of the results.

Considering the ROADMs, and in order to facilitate the analysis, we assume two sets of

ROADMs: low flexibility and high flexibility. The low flexibility ROADMs are assumed to be
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5.4. Optimization method

the fixed frequency and fixed direction, the fixed frequency and directionless, and the colorless

and fixed direction. The high flexibility ROADMs are the colorless and directionless using

1×9 WSS, and 1×20 WSSs, and the colorless, directionless and contentionless architectures.

In the optical layer, the rules were empirically defined based on the results analysis.

As presented in Section 5.1, the power consumption and the number of slots required by

the electrical layer architectures depends on the total traffic, T (o), on the weighted mean

defined by the traffic pattern, T (o), and on the number of destination nodes, N(o), on node

o. Moreover, as muxponders-based architectures tend to consume less power but require more

number of slots than EXC-based architectures, the most efficient architecture will depend on

the value of α. Therefore, to avoid time consuming simulations in order to select the most

efficient architecture, we developed an expression per architecture that estimates ET (o) and

RT (o), given T (o), T (o), and N(o). To obtain one single expression three kinds of linear

regressions were performed. Firstly, we obtain one expression per traffic pattern and number

of destination nodes for ET (o) (and RT (o)), i.e. one linear regression of the total values

presented in Fig. 5.2 (and Fig. 5.3) per architecture. The independent variable of this type

of equations is T (o) whereas the dependent variable is ET (o) in kW (and RT (o) in number

of slots). This methodology led to eight expressions per electrical layer architecture (four per

number of destination nodes), dependent on T (o). The type of expression is linear,

ET (o) = a0T (o) + b0, (5.7)

in which a0 and b0 depend on T (o). Similar equations are obtained for RT (o). At this stage,

new sets for regression were considered. Two sets with the four a0 and other two with the

four b0, one entry per considered traffic pattern. Each set corresponds to a given number of

destination nodes. Using the same methodology, regressions were performed over the four

sets using T (o) as independent variable and a0 and b0 as dependent. After this step, two

equations dependent on T (o) and T (o) per architecture are obtained. One regarding five

destination nodes and another regarding ten destination nodes. The equations are of the

type

ET (o) = (a0,0T (o) + a0,1)T (o) + (b0,0T (o) + b0,1). (5.8)

At this stage, four sets per number of destination nodes are considered. One with the two

a0,0, another with the two a0,1, and two more with the b0,0 and b0,1. Linear regressions in

which N(o) is the independent variable and a0,0, a0,1, b0,0, and b0,1 the dependent variables

are performed at this stage. This leads to equations of the type

ET (o) = (a0,0,0N(o)+a0,0,1)T (o)+(a0,1,0N(o)+a0,1,1))T+((b0,0,0N(o)+b0,0,1)T (o)+(b0,1,0N(o)+b0,1,1)).

(5.9)

At this phase, we achieve one single expression per architecture depending on T (o), T (o) and

N(o) to estimate ET (o) and RT (o). Table 5.4 presents the obtained expressions for ET (o)

and RT (o) per architecture.
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5. Greenfield planning

Table 5.4: Electrical layer estimations.

Architecture Estimation

Muxponders-based
ET (o) = 0.016T (o) + ((−0.002N(o) + 0.026)T (o) + (0.210N(o)− 0.252))

RT (o) =

⌈
(−0.006T (o)+(−0.002N(o)+0.204))T (o)+((0.003N(o)+0.003)T (o)+(2.718N(o)−4.654))

46

⌉
Non-blocking ET (o) = 0.022T (o) +

(
(−0.001N(o) + 0.039)T (o) + (0.304N(o)− 0.154)

)
EXC RT (o) =

⌈
(−0.001T (o)+(−0.001N(o)+0.066))T (o)+((−0.005N(o)+0.142)T (o)+(0.775N(o)−0.258))

46

⌉
Partial ET (o) = 0.024T (o) +

(
(−0.005N(o) + 0.075)T (o) + (0.423N(o)− 1.274)

)
non-blocking EXCs RT (o) =

⌈
(−0.001T (o)+(−0.001N(o)+0.076))T (o)+((−0.014N(o)+0.225)T (o)+(1.228N(o)−3.817))

46

⌉

Regarding the optical layer, a similar methodology is not necessary. First of all, the foot-

print required by the most efficient ROADM is always smaller than one rack, see Fig. 5.8.

Thus, in this case, the selection rules only depends on the power consumption of the architec-

ture. By simple inspection of the results, it can be seen that for low flexibility ROADMs (see

black and gray lines in Fig. 5.7), the fixed frequency and directionless architecture always offer

the most power efficient solution. However, for δ(i) = 2 and Pads(i) ≤ 18 all the architectures

present the same level of power efficiency. Considering high flexibility ROADM architectures

(see red and blue lines in Fig. 5.7), it can be observed that the colorless, directionless and

contentionless architecture is the most efficient if Pads(i) ≤ 10 or 21 ≤ Pads(i) ≤ 28, and

δ(i) < 8. Moreover, it is also the most power efficient ROADM if δ(i) = 8 and Pads(i) ≤ 18.

In the remaining scenarios the colorless and directionless ROADM using 1 × 20 WSS out-

performs the previous ROADM, i.e. if 11 ≤ Pads(i) ≤ 20 or Pads(i) ≥ 29, and δ(i) < 8,

or if δ(i) = 8 and Pads(i) ≥ 19. In summary, Table 5.5 presents the proposed rules. These

rules can be used to quickly optimize the overall network cost, depending on the estimated

requirements of each individual node. For instance, this simple optimization method can be

used as a first approach to estimate the most suitable electrical and optical layer architecture

for a given node. However, tools to perform the routing and wavelength assignment and the

regeneration placement optimization are still required for a more detailed planning.

As an example of the applicability of this method, we considered a backbone network

in Italy, with 31 nodes and 51 links with the same assumptions presented in the Section

5.3. In the following, we compare implementations where all the network nodes have the

same architecture (homogeneous network architecture) with the optimized solution, where

the architecture of each node is selected according to the optimized rules presented in Table

5.5 (optimized network architecture). Note that the rules are used to select the most efficient

architecture. Then, the planning is performed using the models presented in Chapter 4.

Figure 5.11 presents the relation between the obtained OpEx savings provided by using

the optimized method and the cost factor, α. Figure 5.11(a) presents the savings provided

by the optimized method in homogeneous networks with the electrical layer architectures

(black lines), low flexibility ROADMs (red lines), and high flexibility ROADMs (blue lines).
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Table 5.5: Node architecture selection rules.

Architecture Selection rules

Electrical layer
Select the architecture with minimum ET (o) + αRT (o)

(estimated using the equations presented in Table 5.4).

Low flexibility Any if δ(i) = 2 and Pads(i) ≤ 18.

ROADM Fixed frequency and directionless in the remaining scenarios.

Colorless, directionless and contentionless if Pads(i) ≤ 10 or 21 ≤ Pads(i) ≤ 28,

High flexibility and δ(i) < 8. Or if Pads(i) ≤ 18 and δ(i) = 8.

ROADM Colorless and directionless (1 × 20 WSS) if 11 ≤ Pads(i) ≤ 20 or Pads(i) ≥ 29,

and δ(i) < 8. Or if Pads(i) ≥ 19 and δ(i) = 8.

Figure 5.11(b) presents the minimum and the maximum total savings. Minimum savings are

calculated as the difference between the least expensive electrical layer architecture together

with the least expensive ROADM architecture, and the optimized solution. Maximum savings

are calculated using the most expensive electrical layer and ROADM architecture.
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Figure 5.11: Percentage of OpEx savings provided by using the optimized method in spite of a
homogeneous network architecture: (a) for the electrical layer and ROADM architectures alone and,
(b) for the minimum and maximum total network savings. The minimum and the maximum total
savings are calculated between the optimized solution and the most and least expensive homogeneous
network architecture, respectively. The optimized method achieve savings under all the considered
scenarios.

Considering only the electrical layer architectures (black lines), the optimized solution can

bring savings up to 47% of the OpEx related to the power consumption and floor space per

year. Regarding low flexibility ROADMs (red lines), the savings are smaller because only

the power consumption is taken into account. In this case, the optimized solution presents

savings between 0% and 25%. The fixed frequency and directionless architecture always
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5. Greenfield planning

presents the lower power consumption, therefore an homogeneous architecture employing

this type of ROADM achieves the same solution as an optimized one. Considering high flex-

ibility ROADMs (blue lines) the savings span between 0.1% and 15%. Note that the savings

depend on the homogeneous architecture used and on α. Considering each part alone, only

for muxponders-based architectures and α < 3.5, and for the fixed frequency and direction-

less architecture the optimized solution does not achieve any savings. For all the remaining

scenarios the heterogeneous network architecture presents lower OpEx. Considering the total

OpEx (electrical + optical), it can be observed that the minimum savings span between 0.1%

and 4% and that the maximum savings span between 15% and 45%. Hence, in all the sce-

narios the proposed optimization method achieves OpEx savings, which is a significant result

supporting the relevance of this type of analysis. It is worth to note that the presented results

depend on the distribution of the client traffic, network topology and routing algorithm.

5.5 Chapter summary

Using the developed dimensioning model and considering different factors that affect the

nodes performance we have evaluated and compared the CapEx, the power consumption and

the footprint requirements of the different node architectures. For the electrical layer, we

compare fixed grooming based on muxponder modules, with flexible grooming using non-

blocking EXC and partial non-blocking EXCs. Results show that the CapEx and the power

consumption are, in most cases, smaller for the muxponders-based architectures. Regarding

footprint requirements, EXC-based architectures tend to be more efficient. From the optical

layer point of view fixed frequency and fixed direction, fixed frequency and directionless,

colorless and fixed direction, and colorless and directionless using 1 × 9 WSS, and 1 × 20

WSS, and colorless, directionless and contentionless architectures are analyzed. In this type

of structure the most efficient architecture depends on a relation between the nodal degree and

the number of add/drop channels. A sensitivity analysis of the modules was also performed.

Results show that the line modules are the most influential parameter in the total network

CapEx and total network power consumption. Variations in the modules used in the ROADM,

in the client modules, and in the control modules have a smaller impact. Using the performed

analysis, we proposed an optimization method based on node architecture selection. Results

show that to optimize the network OpEx related to the power consumption and footprint

requirements, the architecture of each node should be selected depending on the amount and

pattern of the traffic, and on the number of pairs of fibers convergent to the node.
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CHAPTER 6

Multi-period planning

Usually the network deployment process span over multiple periods along a time horizon,

due to the constraints on CapEx and the gradual growth of traffic. During the network

operation time, changes in the equipment costs, technology available, and traffic may occur.

These potential changes influence the performance of the implemented architectures. Thus,

the development of optimization methods suitable for multi-period planning is mandatory in

the deployment of multilayer optical transport networks.

In a multi-period planning, the operation time horizon of the network is taken into con-

sideration. The network is dimensioned to support the client traffic requests up to the end

of the planning horizon. At each period, new client services are preferably installed in al-

ready deployed resources. New equipment is deployed only in the case that these resources

are not sufficient. Thus, deciding which client traffic should reuse installed equipment and

which one should use new equipment (if needed) is an important optimization problem in

a multi-period planning. Various multi-period planning approaches can be employed [1–5].

The major difference between the various approaches is the amount of forecasted informa-

tion that is required. One of the most influencing piece of information is the client traffic

requirements for all or a determined number of periods. However, nowadays, client traffic in

transport networks is very uncertain [4, 6]. Thus, changes in the predictions used for network

planning can lead to insufficient or over-provisioning of the network. In this chapter we fo-

cus on the incremental planning approach where dimensioning is performed successively and

separately for each period, one at a time, without having any knowledge about the traffic of

future periods. We present ILP models for multi-period planning using the three electrical

layer architectures, namely muxponders-based, non-blocking EXC and partial non-blocking

EXCs. Additionally, to take advantage of the flexibility enabled by EXC-based architectures,

the benefits of implementing hitless re-grooming are also evaluated. Hitless re-grooming is

defined has the ability to re-optimize the grooming configurations without traffic disruption.
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The remainder of this chapter is organized in five sections. In Section 6.1 the incremen-

tal approach for multi-period planning and the hitless re-grooming concept are presented.

After, Section 6.2 is devoted to the multi-period dimensioning model for muxponders-based

architectures, and Section 6.3 to the models for non-blocking EXC and partial non-blocking

EXCs architectures. In Section 6.4 the impact of the node architecture and traffic pattern in

the number of line interfaces, CapEx, power consumption, and footprint requirements over

multiple periods is assessed. Finally, in Section 6.5 the chapter is summarized.

6.1 Multi-period planning and hitless re-grooming

This section overview the major approaches for multi-period planning and introduces

the hitless re-grooming concept. There are mainly four approaches to perform multi-period

planning: all-periods planning, end-of-life planning, incremental planning, and begin-of-life

with forecast planning [1]. In the all-periods planning, end-of-life planning, and begin-of-life

with forecast planning, predictions of the client traffic is required for all (or some) periods

whereas in the incremental planning only traffic information of the period under planning is

needed. Figure 6.1 presents a schematic of the four approaches. Red lines mark the place

where planning is performed.

1 2 3 4 5

All-periods planning

1 2 3 4 5

End-of-life planning

1 2 3 4 5

Begin-of-life with 
forecast planning

1 2 3 4 5

Incremental planning

Figure 6.1: Approaches for multi-period planning. The all-periods, the end-of-life, and the begin-of-
life with forecast planning approaches requires information regarding all or a determined number of
periods. The incremental approach only requires information about the current period (adapted from
[7]).

In the all-periods planning the optimization is performed for all periods at the same time,

in one step. Thus, it demands the knowledge of the traffic for all periods under study. The

end-of-life planning also requires traffic predictions for all periods under study, however the

network is dimensioned to support the cumulative traffic existing in the last one. After, the

network is deployed in order to converge to the last period solution. In terms of planning

methodology, this approach is similar to the greenfield planning. These two approaches lead

to an optimal overall solution, as they have complete knowledge about the traffic in all periods

[1, 2]. However, they are also very sensitive to discrepancies between the forecasted traffic

and the real one. In the incremental planning and in the begin-of-life with forecast planning
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6.1. Multi-period planning and hitless re-grooming

approaches, the network optimization is performed in all or some periods. In the incremental

approach the planning is performed at every period. The inputs are the traffic of the period

under planning and the current status of the network. Finally, the begin-of-life with forecast

planning is a combination of the all-periods and the incremental planning. In this approach

the periods with traffic forecasted are planned using the all-periods approach whereas future

periods are planned using the incremental planning. The solutions obtained using these two

approaches are optimal for the periods where the calculation is performed, however the global

optimality is not guaranteed [1, 2].

In the following we focus on the incremental planning. Figure 6.2 presents a generic algo-

rithm for multi-period incremental planning. In the first period a greenfield dimensioning is

performed for the first set of client traffic. After, new sets of client traffic arises. Demands

can be added, dropped or changed destination. The equipment supporting dropped demands

is released. The added demands and the demands changing destination, are preferably sup-

ported by equipment already installed. If the resources are not enough to accommodate all the

traffic, new equipment needs to be added. At this stage, two approaches can be employed in

EXC-based architectures. The planning can allow (or not) the reconfiguration of established

demands, i.e. enabled or disabled hitless re-grooming. In the muxponders-based architec-

ture any reconfiguration requires the technician intervention on the site, thus any change

in the grooming configuration implies traffic disruption or previous re-routing of established

demands. Therefore, hitless re-grooming cannot be employed in this architecture.

First set 
of client traffic

Greenfield 
dimensioning

New set 
of client traffic

Release 
capacity

Reuse installed 
equipment

Add new 
equipment

New period

Re-grooming (optional)

Figure 6.2: Flowchart of a generic algorithm for multi-period incremental planning. The first period
dimensioning is the greenfield planning. After, demands are release and added in the next periods.
Installed equipment are reused by the new demands. If more equipment is required it needs to be
added. In the reuse/add equipment phase, hitless re-grooming can be employed in flexible architectures
allowing the rearrangement of established demands without traffic disruption.

As pointed before, flexible electrical layer node architectures enable remote reconfigura-

tion. Therefore, re-optimization of the grooming configurations can be performed whenever

traffic changes. Moreover, as ODU switching and rearrangement can be realized in several

milliseconds and with bit-loss-free, this re-optimization can be performed without traffic dis-

ruption [8–10]. Hitless re-grooming is then defined has the ability to re-optimize the grooming

configurations without traffic interruption [8–10]. It is worth to note that in a non-blocking

EXC architecture no constraints exist for the hitless re-grooming operation, whereas in a
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6. Multi-period planning

partial non-blocking EXCs architecture hitless re-grooming is restricted to client and line

signals installed in the same shelf (backplane).

Figure 6.3 presents an example of the potential benefits of enabling hitless re-grooming.

The modules presented at the top are client modules whereas the modules presented at the

bottom are line modules. Figure 6.3(a) presents the current status of a node. As can be seen,

three client signals are groomed into the line signal presented in blue, two client signals are

groomed into the line signal presented in red, and further two client signals are groomed into

the line signal presented in yellow. Note that the client signal presented in green is switched

between two line modules whereas all remaining client signals (blue, red, and yellow) are

switched between client and line modules. The line signals presented in blue and red have the

same destination node. In the next period, one client signal (in red) changed its destination

node, see Figs. 6.3(b) and (c). This client was previously groomed into the red line signal,

however in the next period it needs to be sent to the destination node of the yellow line

signal. In the case that hitless re-grooming is disabled, see Fig. 6.3(b), the line module with

the red line signal has to continue operating with only one client signal. However, if hitless

re-grooming is enabled, see Fig. 6.3(c), that client signal can be electronically switched to

the blue line signal (as they have the same destination node). In this case the line module

with the red line signal can be disconnected, shutted down, or relocated to other node.

Current period

Same destination

E
S

M

Next period

Hitless re‐grooming disabled

E
S
M

E
S

M

Same destination Same destination

Next period

Hitless re‐grooming enabled

(a) (b) (c)

Client/Line/ESM module

Client port

Line port

Backplane

Bidirectional client signal

Bidirectional backplane communication

Legend

Bidirectional line signal

Empty port

Figure 6.3: Hitless re-grooming concept example: (a) current status of the node, (b) node configu-
ration in the next period not enabling hitless re-grooming, and (c) node configuration in the next
period enabling hitless re-grooming. If hitless re-grooming is enabled re-optimization of the grooming
configurations without traffic disruption can be performed, leading to potential modules savings.

In the following, the proposed ILP models for dimensioning the electrical layer of the nodes

in multi-period scenarios are presented. For EXC-based architectures, extensions to perform

hitless re-grooming are also derived. In a multi-period planning each module needs to be

uniquely identified, thus in order to formulate the models the set of modules is introduced.

The set of modules, a, will be denoted by AC = {a}.

6.2 Muxponders-based architecture

This section presents the ILP models for the muxponders-based architecture. As in Chap-

ter 4 we assume a maximum of two stage grooming and that for all considered c∗ exists

a cascade of muxponders able to perform: c∗ → c → l. To formulate the ILP model two

variables are used. The muxponders have input and output ports in the same module, there-
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6.2. Muxponders-based architecture

fore the variable Oc
∗,ε
c (o, d, a) is the number of input ports with bit rate c∗ for the demands

between the nodes o and d in the muxponder module a generating an output signal with bit

rate c in the grooming configuration ε. The variable M ε
c (o, d, a) is a binary variable indicating

whether the muxponder module a generating an output signal with bit rate c in the grooming

configuration ε between the nodes o and d is used or not. In a multi-period planning, installed

capacity can be already in the field. Thus, the number of ports already in use is an input of

the model and is denoted by O
c∗,ε
c (o, d, a). Note that in the first period O

c∗,ε
c (o, d, a) is zero

as it corresponds to a greenfield scenario. The ILP model calculating the cumulative number

of modules in the first stage grooming for muxponders-based architecture is as follows

minimize
∑

c∈C\C∗

∑
ε∈X∗

∑
(o,d)∈Ec

∑
a∈AC

M ε
c (o, d, a) (6.1)

subject to

tc∗(o, d) ≤
∑
ε∈X∗

∑
a∈AC

Oc
∗,ε
c (o, d, a), ∀(o, d) ∈ Ec,∀c∗ ∈ C∗ (6.2)

∑
c∗∈C∗

c∗(O
c∗,ε
c (o, d, a) +Oc

∗,ε
c (o, d, a))

≤ cM ε
c (o, d, a), ∀(o, d) ∈ Ec,∀ε ∈ X∗, ∀a ∈ AC (6.3)∑

c∗∈C∗

∑
ε∈X∗

∑
a∈AC

(O
c∗,ε
c (o, d, a) +Oc

∗,ε
c (o, d, a))

≤
∑

c∈C\C∗

∑
ε∈X∗

∑
a∈AC

M ε
c (o, d, a), ∀(o, d) ∈ Ec (6.4)

Oc
∗,ε
c (o, d, a) ≤ Hc∗,ε

c , ∀(o, d) ∈ Ec,∀ε ∈ X∗, ∀a ∈ AC (6.5)

Oc
∗,ε
c (o, d, a) ∈ N0, ∀(o, d) ∈ Ec,∀ε ∈ X∗, ∀a ∈ AC (6.6)

M ε
c (o, d, a) ∈ {0, 1}, ∀(o, d) ∈ Ec,∀ε ∈ X∗, ∀a ∈ AC (6.7)

Objective function (6.1) intends to minimize the total number of muxponder modules used

in the first stage grooming. Constraint (6.2) guarantees that all client signals requiring

a two stage grooming between the nodes o and d, tc∗(o, d), have an input port with the

same bit rate in one muxponder module a generating an output signal with bit rate c in the

grooming configuration ε, Oc
∗,ε
c (o, d, a). Constraint (6.3) ensures that the bandwidth required

by all input ports with bit rate c∗ is smaller or equal than the bandwidth provided by the

output port with bit rate c, in each muxponder module. Note that the established demands,

O
c∗,ε
c (o, d, a), also need to be taken into account. Moreover, constraint (6.4) ensures that the

total bandwidth required for all client signals with bit rate c∗ between the nodes o to d is

smaller or equal to the bandwidth of all output signals with bit rate c in all muxponders with

the same origin and destination. Constraint (6.5) states that a maximum of Hc∗,ε
c ports with

bit rate c∗ can be used in the muxponder module generating an output signal with bit rate c

in the grooming configuration ε. Finally, constraint (6.6) define the variables Oc
∗,ε
c (o, d, a) as

non negative integer variables, and constraint (6.7) define the variables M ε
c (o, d, a) as binary.
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6. Multi-period planning

Each client port with bit rate c∗ requires a short-reach transceiver with the same bit-rate.

Thus, the total number of short-reach transceivers with bit rate c∗ required in node o for

muxponders-based architectures, Tsvmbc∗ (o) is calculated as

Tsvmbc∗ (o) =
∑
d∈V

∑
ε∈X∗

∑
a∈AC

(O
c∗,ε
c (o, d, a) +Oc

∗,ε
c (o, d, a)), ∀c∗ ∈ C∗,∀o ∈ V. (6.8)

The output signals generated in the first stage grooming are input signals of the muxponders

used in the second stage, thus tc(o, d) needs to be updated to t′c(o, d) by

t′c(o, d) = tc(o, d) +
∑
ε∈X∗

∑
a∈AC

M ε
c (o, d, a), ∀c ∈ C \ C∗,∀(o, d) ∈ Ec. (6.9)

The muxponders used in the second stage (or in a single stage grooming) receive input

signals with bit rate c and generate output line signals with bit rate l. The ILP for the second

stage grooming is similar to the one used in the first stage grooming but replacing Oc
∗,ε
c (o, d, a)

by Oc,εl (o, d, a), and M ε
c (o, d, a) by M ε

l (o, d, a). The variables Oc,εl (o, d, a) are the number of

input ports with bit rate c for the demands between the nodes o and d in the muxponder

module a generating an output signal with bit rate l in the grooming configuration ε. The

binary variables M ε
l (o, d, a) indicate whether the muxponder module a generating an output

signal with bit rate l in the grooming configuration ε between the nodes o and d is used

or not. As in the first stage grooming ILP, the parameter O
c,ε
l (o, d, a) holds the number of

ports already being used. Therefore is zero in the first period. The ILP for the second stage

grooming is as follows

minimize
∑
l∈L

∑
ε∈X

∑
(o,d)∈Ec

∑
a∈AC

M ε
l (o, d, a) (6.10)

subject to

t′c(o, d) ≤
∑
ε∈X

∑
a∈AC

Oc,εl (o, d, a), ∀(o, d) ∈ Ec,∀c ∈ C \ C∗ (6.11)

∑
c∈C\C∗

c(O
c,ε
l (o, d, a) +Oc,εl (o, d, a))

≤ lM ε
l (o, d, a), ∀(o, d) ∈ Ec,∀ε ∈ X,∀a ∈ AC (6.12)∑

c∈C\C∗

∑
ε∈X

∑
a∈AC

(O
c,ε
l (o, d, a) +Oc,εl (o, d, a))

≤
∑
l∈L

∑
ε∈X

∑
a∈AC

M ε
l (o, d, a), ∀(o, d) ∈ Ec (6.13)

Oc,εl (o, d, a) ≤ Hc,ε
l , ∀(o, d) ∈ Ec,∀ε ∈ X,∀a ∈ AC (6.14)

Oc,εl (o, d, a) ∈ N0, ∀(o, d) ∈ Ec,∀ε ∈ X,∀a ∈ AC (6.15)

M ε
l (o, d, a) ∈ {0, 1}, ∀(o, d) ∈ Ec,∀ε ∈ X,∀a ∈ AC (6.16)

110



6.3. Electrical cross connects based architectures

The output ports of the muxponders used in the first stage grooming, and the input ports of

the muxponders used in the second stage grooming require short-reach transceivers with bit

rate c. Therefore, the total number of transceivers with bit rate c in node o for muxponders-

based architectures is calculated as

Tsvmbc (o) =
∑
d∈V

∑
a∈AC

(∑
ε∈X∗

M ε
c (o, d, a)

+
∑
ε∈X

(O
c,ε
l (o, d, a) +Oc,εl (o, d, a))

)
, ∀c ∈ C \ C∗, ∀o ∈ V. (6.17)

The output ports of the muxponders used in the second stage grooming generate a line

signal, thus require long-reach transceivers with bit rate l. The total number of long-reach

transceivers with bit rate l in node o for muxponders-based architectures is calculated by

Tsvmbl (o) =
∑
d∈V

∑
a∈AC

∑
ε∈X

M ε
l (o, d, a), ∀l ∈ L,∀o ∈ V. (6.18)

In muxponders-based architectures the modules can be connected into any shelf, see Sec-

tion 4.1. The total number of slots at node o in muxponders-based architectures, Smbtot (o), is

achieved by

Smbtot (o) =
∑
a∈AC

(∑
ε∈X∗

M ε
c (o, a)Sεc +

∑
ε∈X

M ε
l (o, a)Sεl

)
, ∀o ∈ V. (6.19)

Therefore, the total number of shelves and of control modules is calculated using (4.16)

Mmb
sf (o) = Mmb

ctr (o) =

⌈
Smbtot (o)

Smbsf − Smbctr

⌉
, ∀o ∈ V. (4.16)

At this stage, O
c∗,ε
c (o, d, a) and O

c,ε
l (o, d, a) are updated for the next period. The parameter

O
c∗,ε
c (o, d, a) is updated by

O
c∗,ε
c (o, d, a) = O

c∗,ε
c (o, d, a) +Oc

∗,ε
c (o, d, a),∀(o, d) ∈ Ec, ∀ε ∈ X∗,∀a ∈ AC , (6.20)

and the parameter O
c,ε
l (o, d, a) by

O
c,ε
l (o, d, a) = O

c,ε
l (o, d, a) +Oc,εl (o, d, a), ∀(o, d) ∈ Ec,∀ε ∈ X,∀a ∈ AC . (6.21)

6.3 Electrical cross connects based architectures

The EXC-based architectures can be remotely reconfigurable, thus hitless re-grooming can

be employed. In the following the ILP models for non-blocking EXC and partial non-blocking
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EXCs architectures, enabling and disabling re-grooming, are presented.

6.3.1 Non-blocking electrical cross connect

The non-blocking EXC architecture do not have any constraint in the interconnection

between modules. Thus, to formulate the model four variables are required. The variables

Oc(o, d, a) and Ol(o, d, a) are the number of ports with bit rate c (and l respectively) required

for the demands between the nodes o and d located in module a. Note that each module can

have one or more ports. The variables Mc(o, a) and Ml(o, a) are binary variables indicating

whether the module a with bit rate c (and l respectively) is used in node o or not. Additionally,

the number of ports already in use in previous periods is an input of the model. We will denote

by Oc(o, d, a) and Ol(o, d, a) the number of ports with bit rate c (and l respectively) already

being used by the demands between the nodes o and d located in module a. It is worth to

note that in the first period Oc(o, d, a) and Ol(o, d, a) are zero. The ILP model calculates the

cumulative number of modules and is as follows

minimize
∑
o∈V

∑
a∈AC

(∑
c∈C

Mc(o, a) +
∑
l∈L

Ml(o, a)

)
(6.22)

subject to

tc(o, d) ≤
∑
a∈AC

Oc(o, d, a), ∀(o, d) ∈ Ec,∀c ∈ C (6.23)

c
∑
c∈C

∑
a∈AC

(
Oc(o, d, a) +Oc(o, d, a)

)
≤ l
∑
l∈L

∑
a∈AC

(
Ol(o, d, a) +Ol(o, d, a)

)
, ∀(o, d) ∈ Ec (6.24)

Mc(o, a) ≥
∑

d∈V
(
Oc(o, d, a) +Oc(o, d, a)

)
Pc

, ∀c ∈ C,∀o ∈ V,∀a ∈ AC (6.25)

Ml(o, a) ≥
∑

d∈V
(
Ol(o, d, a) +Ol(o, d, a)

)
Pl

, ∀l ∈ L,∀o ∈ V,∀a ∈ AC (6.26)

Oc(o, d, a) ∈ N0, ∀c ∈ C,∀(o, d) ∈ Ec, ∀a ∈ AC (6.27)

Ol(o, d, a) ∈ N0, ∀l ∈ L,∀(o, d) ∈ Ec, ∀a ∈ AC (6.28)

Mc(o, a) ∈ {0, 1}, ∀c ∈ C,∀o ∈ V,∀a ∈ AC (6.29)

Ml(o, a) ∈ {0, 1}, ∀l ∈ L,∀o ∈ V,∀a ∈ AC (6.30)

Objective function (6.22) intends to minimize the total number of client and line modules in

the network. Constraint (6.23) guarantees that the tc(o, d) client signals between the nodes o

and d with bit rate c have a client port in one of the modules a, Oc(o, d, a). Constraint (6.24)

ensures that the total bandwidth required for all client signals, in all periods, Oc(o, d, a) +

Oc(o, d, a), is smaller or equal than the total bandwidth provided by all line ports, Ol(o, d, a)+

Ol(o, d, a). Constraints (6.25) determines whether the client module a with bit rate c in node

o, Mc(o, a), is used or not. Note that each module with bit rate c has Pc available ports.
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Constraint (6.26) is similar to constraint (6.25) however regarding line modules with bit

rate l, Ml(o, a), and assuming that the line module with bit rate l has Pl ports. Finally,

constraints (6.27) and (6.28) define the variables Oc(o, d, a) and Ol(o, d, a) as non negative

integer variables, and constraints (6.29) and (6.30) define the variables Mc(o, a) and Ml(o, a)

as binary.

Client and line ports are equipped with short-reach and long-reach transceivers, respec-

tively. The number of short reach transceivers in node o with bit rate c for non-blocking EXC

architectures, Tsvnbec (o) is calculated as

Tsvnbec (o) =
∑
d∈V

∑
a∈AC

(
Oc(o, d, a) +Oc(o, d, a)

)
, ∀c ∈ C,∀o ∈ V, (6.31)

and the number of long reach transceivers in node o with bit rate l for non-blocking EXC

architectures, Tsvnbel (o) as

Tsvnbel (o) =
∑
d∈V

∑
a∈AC

(
Ol(o, d, a) +Ol(o, d, a)

)
, ∀l ∈ L,∀o ∈ V. (6.32)

The total number of slots for client and line modules in node o for non-blocking EXC archi-

tectures, Snbetot (o), is then achieved by

Snbetot (o) =
∑
a∈AC

(∑
c∈C

Mc(o, a)Sc +
∑
l∈L

Ml(o, a)Sl

)
, ∀o ∈ V. (6.33)

Bear in mind that only one shelf, one control module, and one ESM is required in this type

of architecture.

At this stage, Oc(o, d, a) and Ol(o, d, a) are updated to use in the next period. Regarding

Oc(o, d, a) is updated by

Oc(o, d, a) = Oc(o, d, a) +Oc(o, d, a), ∀c ∈ C,∀(o, d) ∈ Ec,∀a ∈ AC . (6.34)

Considering the updating of Ol(o, d, a) two cases are considered. If hitless re-grooming is

disabled, Ol(o, d, a) is updated in a similar way than Oc(o, d, a), thus guaranteeing that the

previous grooming configurations are maintained. Thus, for disabled hitless re-grooming

Ol(o, d, a) is updated as

Ol(o, d, a) = Ol(o, d, a) +Ol(o, d, a), ∀l ∈ L,∀(o, d) ∈ Ec, ∀a ∈ AC . (6.35)

In the scenarios that hitless re-grooming is enabled, Ol(o, d, a) is set as zero. In this way the

grooming configurations can be changed. Thus, for enabled hitless re-grooming Ol(o, d, a) is

updated as

Ol(o, d, a) = 0, ∀l ∈ L,∀(o, d) ∈ Ec,∀a ∈ AC . (6.36)
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6.3.2 Partial non-blocking electrical cross connects

The partial non-blocking EXCs architecture introduce restrictions in the interconnection

between modules. Particularly, only client and line modules connected to the same backplane

can switch traffic. Four variables are also required in this case, however the shelf in which the

modules are connected needs to be considered. The variables Oc(o, d, a, s) and Ol(o, d, a, s)

are the number of ports with bit rate c (and l respectively) required for the demands between

the nodes o and d located in module a and shelf s, and the variables Mc(o, a, s) and Ml(o, a, s)

are binary variables indicating whether the module a with bit rate c (and l respectively) is

used in node o and shelf s or not. As in the previous ILP, the parameters Oc(o, d, a, s) and

Ol(o, d, a, s) hold the number of ports with bit rate c (and l respectively) already being used.

Once again Oc(o, d, a, s) and Ol(o, d, a, s) are set as zero in the first period. The ILP model

for partial non-blocking EXC architectures is as follows

min
∑
o∈V

∑
s∈S

( ∑
a∈AC

(∑
c∈C

Mc(o, a, s) +
∑
l∈L

Ml(o, a, s)

)

+ B(o, s)

)
(6.37)

subject to

tc(o, d) ≤
∑

a∈AC

∑
s∈S

Oc(o, d, a, s), ∀(o, d) ∈ Ec,∀c ∈ C (6.38)

c
∑
c∈C

∑
a∈AC

(
Oc(o, d, a, s) +Oc(o, d, a, s)

)
≤ l
∑
l∈L

∑
a∈AC

(
Ol(o, d, a, s) +Ol(o, d, a, s)

)
, ∀(o, d) ∈ Ec,∀s ∈ S (6.39)

Mc(o, a, s) ≥
∑

d∈V

(
Oc(o, d, a, s) +Oc(o, d, a, s)

)
Pc

, ∀c ∈ C, ∀o ∈ V,∀a ∈ AC ,∀s ∈ S (6.40)

Ml(o, a, s) ≥
∑

d∈V

(
Ol(o, d, a, s) +Ol(o, d, a, s)

)
Pl

, ∀l ∈ L,∀o ∈ V,∀a ∈ AC ,∀s ∈ S (6.41)∑
c∈C

∑
a∈AC

Mc(o, a, s)Sc +
∑
l∈L

∑
a∈AC

Ml(o, a, s)Sl

≤ Spbe
sf B(o, s), ∀o ∈ V,∀s ∈ S (6.42)

Oc(o, d, a, s) ∈ N0, ∀c ∈ C, ∀(o, d) ∈ Ec,∀a ∈ AC ,∀s ∈ S
(6.43)

Ol(o, d, a, s) ∈ N0, ∀l ∈ L,∀(o, d) ∈ Ec,∀a ∈ AC ,∀s ∈ S
(6.44)

Mc(o, a, s) ∈ {0, 1}, ∀c ∈ C, ∀o ∈ V,∀a ∈ AC ,∀s ∈ S (6.45)

Ml(o, a, s) ∈ {0, 1}, ∀l ∈ L,∀o ∈ V,∀a ∈ AC ,∀s ∈ S (6.46)

B(o, s) ∈ {0, 1}, ∀o ∈ V,∀s ∈ S (6.47)

Objective function (6.37) minimizes the total number of client modules, line modules, and

shelves in the network. Constraint (6.38) ensures that all tc(o, d) client signals between the
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nodes o and d have a client port with bit rate c in one module a located in one of the shelves

s. Constraints (6.39), (6.40) and (6.41) are similar to constraints (6.24), (6.25) and (6.26),

thus guaranteeing that exist enough bandwidth to accommodate all client traffic and that the

number of client, Mc(o, a, s), and line, Ml(o, a, s), modules are sufficient to accommodate all

the required ports. However, note that in this case the client ports and line ports switching

traffic are located in the same shelf s. Constraint (6.42) guarantees that in each node o the

number of slots required for client and line modules located in the same shelf, B(o, s), does

not exceeds its maximum number of slots, Spbesf . Finally, constraints (6.43) and (6.44) define

the variables Oc(o, d, a, s) and Ol(o, d, a, s) as non negative integer variables, and constraints

(6.45), (6.46) and (6.47) define the variables Mc(o, a, s), Ml(o, a, s) and B(o, s) as binary.

The number of short-reach transceivers with bit rate c in node o for partial non-blocking

EXCs architectures is then calculated by

Tsvpbec (o) =
∑
d∈V

∑
a∈AC

∑
s∈S

(
Oc(o, d, a, s) +Oc(o, d, a, s)

)
, ∀c ∈ C,∀o ∈ V, (6.48)

and the number of long-reach transceivers with bit rate l in node o for partial non-blocking

EXCs architectures by

Tsvpbel (o) =
∑
d∈V

∑
a∈AC

∑
s∈S

(
Ol(o, d, a, s) +Ol(o, d, a, s)

)
, ∀l ∈ L,∀o ∈ V. (6.49)

The total number of shelves, control modules, and ESMs are outputs of the ILP model and

are calculated using (4.40),

Mpbe
sf (o) = Mpbe

ctr (o) = Mpbe
esm(o) =

∑
s∈S

B(o, s), ∀o ∈ V. (4.40)

Once again, at the end of each period, Oc(o, d, a, s) and Ol(o, d, a, s) needs to be updated.

The parameter Oc(o, d, a, s) is updated by

Oc(o, d, a, s) = Oc(o, d, a, s) +Oc(o, d, a, s), ∀c ∈ C,∀(o, d) ∈ Ec,∀a ∈ AC ,∀s ∈ S. (6.50)

Considering the updating of Ol(o, d, a), it depends on whether hitless re-grooming is disabled

or not. If hitless re-grooming is disabled Ol(o, d, a) is updated by

Ol(o, d, a, s) = Ol(o, d, a, s) +Ol(o, d, a, s), ∀l ∈ L,∀(o, d) ∈ Ec,∀a ∈ AC , ∀s ∈ S, (6.51)

if hitless re-grooming is enabled, Ol(o, d, a, s) is set to zero, allowing the rearrangement of

client signals within each shelf. Thus, for enabled hitless re-grooming
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Ol(o, d, a, s) = 0, ∀l ∈ L,∀(o, d) ∈ Ec,∀a ∈ AC ,∀s ∈ S. (6.52)

6.4 Impact of node architecture

The results obtained using the models presented in Sections 6.2 and 6.3 are reported in

this section. We analyze the cumulative number of line interfaces, the CapEx, the power

consumption, and the footprint requirements of a node. As in Chapter 5, we assume a single

source node exchanging traffic with a set of destination nodes, four client bit rates (1.25

Gbit/s, 2.5 Gbit/s, 10 Gbit/s, and 40 Gbit/s) and a single line bit rate of 100 Gbit/s. The

traffic is distributed following an uniform distribution, using the same methodology presented

in Section 5.1. The modules specifications are the ones presented in Table 5.1. Regarding

non-blocking EXC architecture the 128 slots shelf is deployed whereas for partial non-blocking

EXCs is the 16 slots shelf, see Table 5.1. Two different number of destination nodes (five and

ten), and two traffic patterns (pattern 1 and pattern 4 presented in Table 5.2) are considered.

The initial total traffic is of 200 Gbit/s, increasing 10% in each of the 20 periods considered,

thus being of 1.2 Tbit/s in the last period. Additionally, and in order to evaluate the impact

of traffic variability, three scenarios were used for each combination of destination nodes and

traffic pattern. In the first scenario only added traffic exist. In the remaining two scenarios,

apart of the added traffic, some of the established traffic is forced to change its destination.

One considers that 20% of the traffic change its destination, and the other considers 40%

of traffic changing destination. For each combination of number of destination nodes, traffic

pattern, and traffic variability, 100 independent runs were performed.

The obtained average values for the number of line interfaces are presented in Figs. 6.4 and

6.5. The obtained results for the cumulative CapEx can be found in Figs. 6.6 and 6.7 whereas

the results for cumulative power consumption are presented in Figs. 6.8 and 6.9. Finally,

the results for the footprint requirements are shown in Figs. 6.10 and 6.11. Additionally, for

the number of line interfaces, an analysis to the standard deviation obtained among the 100

simulations are also reported. The number of line interfaces is analyzed in more detail as it

is the most influential parameter in the CapEx and OpEx (as observed in Section 5.3), and

affects the cost of the ROADMs. In all cases, the results for muxponders-based architectures

are presented as gray lines; for non-blocking EXC as black lines; for non-blocking EXC with

hitless re-grooming as red lines; for partial non-blocking EXCs as blue lines; and for partial

non-blocking EXCs with hitless re-grooming as light blue lines.

6.4.1 Number of line interfaces

Figure 6.4 presents the average values of the cumulative number of line interfaces in

scenarios where the traffic is distributed according to pattern 1. The figures on the left

(see Figs. 6.4(a), 6.4(c), and 6.4(e)) are related to 5 destination nodes and the figures on the

right (see Figs. 6.4(b), 6.4(d), and 6.4(f)) to 10 destination nodes. Moreover, Figs. 6.4(a) and
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6.4(b) consider only added traffic, Figs. 6.4(c) and 6.4(d) consider 20% of traffic changing

destination, and Figs. 6.4(e) and 6.4(f) consider 40% of traffic changing destination.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0  M u x p o n d e r s - b a s e d
 N o n - b l o c k i n g  E X C
 N o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )
 P a r t i a l  n o n - b l o c k i n g  E X C
 P a r t i a l  n o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )

Cu
mu

lat
ive

 nu
mb

er 
of 

line
 in

ter
fac

es

P e r i o d
(a)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0  M u x p o n d e r s - b a s e d
 N o n - b l o c k i n g  E X C
 N o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )
 P a r t i a l  n o n - b l o c k i n g  E X C
 P a r t i a l  n o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )

Cu
mu

lat
ive

 nu
mb

er 
of 

line
 in

ter
fac

es

P e r i o d
(b)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0  M u x p o n d e r s - b a s e d
 N o n - b l o c k i n g  E X C
 N o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )
 P a r t i a l  n o n - b l o c k i n g  E X C
 P a r t i a l  n o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )

Cu
mu

lat
ive

 nu
mb

er 
of 

line
 in

ter
fac

es

P e r i o d
(c)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0  M u x p o n d e r s - b a s e d
 N o n - b l o c k i n g  E X C
 N o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )
 P a r t i a l  n o n - b l o c k i n g  E X C
 P a r t i a l  n o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )

Cu
mu

lat
ive

 nu
mb

er 
of 

line
 in

ter
fac

es

P e r i o d
(d)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0  M u x p o n d e r s - b a s e d
 N o n - b l o c k i n g  E X C
 N o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )
 P a r t i a l  n o n - b l o c k i n g  E X C
 P a r t i a l  n o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )

Cu
mu

lat
ive

 nu
mb

er 
of 

line
 in

ter
fac

es

P e r i o d
(e)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0  M u x p o n d e r s - b a s e d
 N o n - b l o c k i n g  E X C
 N o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )
 P a r t i a l  n o n - b l o c k i n g  E X C
 P a r t i a l  n o n - b l o c k i n g  E X C  ( r e - g r o o m i n g )

Cu
mu

lat
ive

 nu
mb

er 
of 

line
 in

ter
fac

es

P e r i o d
(f)

Figure 6.4: Cumulative number of line interfaces for 20 periods, pattern 1 and: (a) 5 destination
nodes; (b) 10 destination nodes; (c) 5 destination nodes and 20% of traffic changing destination; (d)
10 destination nodes and 20% of traffic changing destination; (e) 5 destination nodes and 40% of traffic
changing destination; and (f) 10 destination nodes and 40% of traffic changing destination.

As can be observed, enhancing node flexibility tends to imply a decrease in the number of
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6. Multi-period planning

line interfaces required, under all scenarios. As expected, the full non-blocking EXC always

requires less number of line interfaces, whereas in the opposite side is the muxponders-based

architecture. The partial non-blocking EXCs architecture relies in between. Moreover, the

results suggest that hitless re-grooming only enables savings for the partial non-blocking

EXCs, and in particular scenarios. In non-blocking EXC there are no restrictions in the

interconnection between client and line modules, thus the bandwidth is almost always well

exploited and hitless re-grooming cannot bring significant benefits. Considering 5 destination

nodes (see Figs. 6.4(a), 6.4(c), and 6.4(e)), it can be observed that the differences in number of

line interfaces required between the non-blocking EXC and the partial non-blocking EXCs are

not significant. Moreover, this gap decreases with the increase of traffic variability, requiring

almost the same number of line interfaces, in all the periods, in the scenarios where traffic

is forced to change its destination, see Figs. 6.4(c) and 6.4(e). Therefore for pattern 1

and 5 destination nodes, the savings provided by enabling hitless re-grooming are negligible.

When the number of destination nodes is small, the partial non-blocking EXCs can behave

as a non-blocking EXC because with an optimized planning all the client and line modules

switching traffic can fit in the same shelf. Moreover, traffic variability gives more chances

to re-optimize the available ports, as the amount of client signals that can be optimized at

each period increases. With the increase on the number of destination nodes, the differences

between the architectures performance widens. As can be observed in Figs. 6.4(b), 6.4(d),

and 6.4(f), for 10 destination nodes, the partial non-blocking EXCs tend to require more line

interfaces than the non-blocking EXC, in all periods and scenarios. Moreover, in the case that

traffic is only added the amount of additional line interfaces is significant, see Fig. 6.4(b).

For 10 destination nodes, the partial non-blocking EXCs architecture only requires almost

the same number of line interfaces than the non-blocking EXC in the last period of the case

where 40% of traffic is forced to change its destination, and enabling hitless re-grooming, see

Fig. 6.4(f). With the increase of the number of destination nodes, the probability of existing

enough slots in the same shelf for all client and line modules switching traffic decreases,

impacting negatively the number of line interfaces required. However, for 10 destination

nodes the savings provided by enabling hitless re-grooming increase. Although, these savings

are not significant. A detailed analysis on the number of line interfaces percentage increase

due to the decrease in the node flexibility will be presented later on.

To analyze the dependence between the node architecture flexibility and the distribution of

the traffic among the destination nodes, Table 6.1 presents the standard deviation obtained in

the 20th period. We analyze the last period because the standard deviation tends to increase

with the increase in the number of periods, thus the 20th period corresponds to the worst

case. As can be seen, the muxponders-based architecture is the one with the highest standard

deviation, for all cases. The standard deviation presented by this type of architecture can be

more than 5 times greater than of the EXC-based architectures. Additionally, partial non-

blocking EXCs tend to have a higher standard deviation than non-blocking EXC. Moreover,

it is worth to note that the standard deviation increases, in all the architectures, from 5

to 10 destination nodes. Hence, the number of line interfaces is more predictable and less
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6.4. Impact of node architecture

dependent on the traffic distribution and number of destination nodes as more flexibility the

node offers. Regarding the influence of the re-grooming, it can be observed that for non-

blocking EXC architectures, the hitless re-grooming tend to increase the standard deviation.

However, the opposite happens in the partial non-blocking EXCs where hitless re-grooming

tend to decrease the standard deviation. Regarding traffic variability, it has an irregular

impact in the standard deviation. There are cases where traffic variability increases the

standard deviation and other cases where it decreases (see Table 6.1).

Table 6.1: Standard deviation of the number of line interfaces in the 20th period for pattern 1.

Only added 20% changing 40% changing

traffic destination destination

5 nodes 10 nodes 5 nodes 10 nodes 5 nodes 10 nodes

Muxponders-based 3.91 4.33 4.63 12.04 3.81 4.26

Non-blocking EXC 0.71 0.77 0.69 0.94 0.71 0.92

Non-blocking EXC
0.73 0.90 0.70 0.99 0.63 0.94

(re-grooming)

Partial non-blocking EXCs 0.95 1.91 0.81 1.87 0.66 1.45

Partial non-blocking EXCs
0.97 1.28 0.61 2.07 0.66 1.12

(re-grooming)

Figure 6.5 presents the average number of line interfaces for 5 and 10 destinations nodes

with traffic distributed according to pattern 4. As in the previous case, the figures on the

left (see Figs. 6.5(a), 6.5(c), and 6.5(e)) are related to 5 destination nodes and the figures

on the right (see Figs. 6.5(b), 6.5(d), and 6.5(f)) to 10 destination nodes. Moreover, Figs.

6.5(a) and 6.5(b) consider only added traffic, Figs. 6.5(c) and 6.5(d) consider 20% of traffic

changing destination, and Figs. 6.5(e) and 6.5(f) consider 40% of traffic changing destination.

As presented in Fig. 6.5, and in line with the results presented for pattern 1 in Fig. 6.4,

the muxponders-based architecture is the one requiring more line interfaces, followed by the

partial non-blocking EXCs architecture. Once again, and as expected, the non-blocking EXC

architecture is the most efficient one. However, for pattern 4 the differences between the

architectures performance are greater. Regarding the utilization of hitless re-grooming, the

gains are greater than in pattern 1. In pattern 4, the bit rate of the client traffic is closer to

the bit rate of the line signal. Thus, the number of client signals that need to be re-arranged

in order to save a line interface is much smaller than when the majority of the client traffic bit

rate presents very low granularity as in pattern 1. However, the savings provided by enabling

hitless re-grooming are only visible in the partial non-blocking EXCs architecture. In partial

non-blocking EXCs, some line interfaces have wasted bandwidth due to the lack of available

client ports in their shelf. This is particularly relevant when the number of destination nodes

is high or when the bit rate of the client traffic is close to the line bit-rate. In this case,

hitless re-grooming enables an optimization of the relation between the client and line ports
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Figure 6.5: Cumulative number of line interfaces for 20 periods, pattern 4 and: (a) 5 destination
nodes; (b) 10 destination nodes; (c) 5 destination nodes and 20% of traffic changing destination; (d)
10 destination nodes and 20% of traffic changing destination; (e) 5 destination nodes and 40% of traffic
changing destination; and (f) 10 destination nodes and 40% of traffic changing destination.

in each shelf. In spite of the bigger differences between the partial non-blocking EXCs and

the non-blocking EXC when compared to the pattern 1 results, the utilization of hitless re-

grooming still enables partial non-blocking EXCs to attain almost the same performance as
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that of a non-blocking EXC, when traffic variability is large (see Figs. 6.5(c), 6.5(d), 6.5(e)

and 6.5(f)).

Table 6.2 presents the standard deviation obtained in the 20th period when using traffic

distributed according to pattern 4. The behavior is the same as observed in Table 6.1, i.e., the

muxponders-based is the architecture with higher standard deviation, followed by the partial

non-blocking EXCs. Moreover, the standard deviation increases from 5 to 10 destination

nodes, in all the architectures. Comparing the results with the ones obtained for the pattern

1 (see Tables 6.2 and 6.1) it can be seen that the standard deviation tends to increase in

the pattern 4. Traffic variability continues having a small impact in the standard deviation,

especially in EXC-based architectures.

Table 6.2: Standard deviation of the number of line interfaces in the 20th period for pattern 4.

Only added 20% changing 40% changing

traffic destination destination

5 nodes 10 nodes 5 nodes 10 nodes 5 nodes 10 nodes

Muxponders-based 4.27 7.24 2.70 8.27 1.64 3.79

Non-blocking EXC 0.68 0.98 0.72 0.87 0.66 1.12

Non-blocking EXC
0.67 0.97 0.63 0.87 0.62 0.91

(re-grooming)

Partial non-blocking EXCs 1.30 3.62 1.36 1.46 1.54 1.64

Partial non-blocking EXCs
1.16 2.26 0.78 1.37 0.71 1.17

(re-grooming)

In order to summarize the obtained results, Table 6.3 presents the percentage of line

interface increase compared to the non-blocking EXC with hitless re-grooming, in the 20th

period. The increase in the number of line interfaces due to the lack of node flexibility tends

to decrease from pattern 1 to pattern 4. As can be seen, there are only 3 exceptions out

of 24 cases. The partial non-blocking EXCs architecture for 5 destination nodes, in both

scenarios that traffic changes destination, and the non-blocking EXC architecture for 10

destination nodes and 20% of traffic changing destination. Comparing the results obtained

for the different number destination nodes, it can be seen that the percentages raised from 5

to 10 destination nodes. The unique exceptions are the muxponders-based in pattern 1, and

the non-blocking EXC architecture in pattern 1 and in scenarios where traffic is only added

and 20% of the traffic is changing destination. These observations suggest that enhanced

node flexibility produce more relative savings in scenarios where the majority of the client

traffic is much smaller than the line bit rate and the number of destination nodes is high.

Regarding the hitless re-grooming, it tends to present more relative savings in pattern 4 than

in pattern 1. In the pattern 4 the majority of the client traffic is close to the line signal

bit rate, therefore just a few demands need to be re-allocated in order to save a line signal.

The opposite happens in pattern 1, where the majority of the client signals is of very low
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granularity. In this type of pattern the line signal carries a huge number of small demands,

therefore the amount of demands that needs to be re-optimized in order to save a line signal

is much higher than in pattern 4.

Table 6.3: Excess of line interfaces in percentage after 20 periods compared to the non-blocking EXC
with hitless re-grooming.

Only added 20% changing 40% changing

traffic destination destination

Pattern 1 Pattern 4 Pattern 1 Pattern 4 Pattern 1 Pattern 4

5 destination nodes

Muxponders-based 454.51 % 79.39 % 491.46 % 62.19 % 535.02 % 55.06 %

Non-blocking EXC 1.17 % 0.00 % 0.80 % 0.41 % 1.27 % 0.87 %

Partial non-blocking EXCs 28.34 % 20.61 % 8.64 % 16.03 % 4.69 % 16.31 %

Partial non-blocking EXCs
25.74 % 11.80 % 3.61 % 3.52 % 1.58 % 1.32 %

(re-grooming)

10 destination nodes

Muxponders-based 447.86 % 143.93 % 485.09 % 115.62 % 474.75 % 81.27 %

Non-blocking EXC 0.00 % 0.00 % 0.00 % 0.48 % 2.30 % 1.24 %

Partial non-blocking EXCs 210.73 % 60.65 % 44.35 % 33.15 % 31.08 % 29.55 %

Partial non-blocking EXCs
193.70 % 42.28 % 27.73 % 9.83 % 8.03 % 5.29 %

(re-grooming)

6.4.2 Capital expenditures

Figure 6.6 presents the average values of the cumulative CapEx in scenarios where the

traffic is distributed according to pattern 1 whereas Fig. 6.7 presents the results in scenarios

where traffic distributed according to pattern 4. In both cases, the figures on the left are

related to 5 destination nodes and the figures on the right to 10 destination nodes. Moreover,

Figs. (a) and (b) consider only added traffic, Figs. (c) and (d) consider 20% of traffic changing

destination, and Figs. (e) and (f) consider 40% of traffic changing destination.

As can be seen in Figs. 6.6 and 6.7, and aligned with the results presented in Section 5.1.1,

the muxponders-based architecture is the most cost efficient architecture in the firsts periods.

In the opposite is the non-blocking EXC, being the partial non-blocking EXCs architecture

in between. However, with the increase in the number of periods, the flexibility provided by

the EXC-based architectures start bringing cost benefits in some scenarios. Considering the

results obtained for pattern 1 (see Fig. 6.6), the non-blocking EXC architecture is the most

cost efficient one, after 20 periods, for four out of the six analyzed scenarios. Moreover, in

the remaining two scenarios, the non-blocking EXC is only outperformed by the partial non-

blocking EXC architecture with hitless re-grooming (see Figs. 6.6(c) and 6.6(e)). Regarding

the results for pattern 4 (see Fig. 6.7), it can be observed that, even with lack of flexibility, the
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Figure 6.6: Cumulative CapEx for 20 periods, pattern 1 and: (a) 5 destination nodes; (b) 10 destination
nodes; (c) 5 destination nodes and 20% of traffic changing destination; (d) 10 destination nodes and
20% of traffic changing destination; (e) 5 destination nodes and 40% of traffic changing destination;
and (f) 10 destination nodes and 40% of traffic changing destination.

muxponders-based architecture is the less expensive one during the 20 periods for four out of

the six scenarios. Moreover, for 10 destination nodes and 20% of traffic changing destination,

the muxponders-based architecture is the most cost efficient one in the last period (see Fig.
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Figure 6.7: Cumulative CapEx for 20 periods, pattern 4 and: (a) 5 destination nodes; (b) 10 destination
nodes; (c) 5 destination nodes and 20% of traffic changing destination; (d) 10 destination nodes and
20% of traffic changing destination; (e) 5 destination nodes and 40% of traffic changing destination;
and (f) 10 destination nodes and 40% of traffic changing destination.

6.7(d)). This can be explained by the use of a single stage grooming for the majority of the

traffic and the lower cost of the muxponder modules compared to the modules for EXC-based

architectures. Regarding the most expensive architectures at the end of the 20 periods, it can
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6.4. Impact of node architecture

be seen that for pattern 1 the muxponders-based architecture turns into the most expensive

architecture for five out of the six scenarios (see Fig. 6.6). In the remaining scenario, is

the partial non-blocking EXCs the architecture with the higher cumulative CapEx (see Figs.

6.6(b)). Considering the pattern 4, the partial non-blocking EXC architecture is the most

expensive one in all the scenarios. This is mainly explained by the cost with the various

required shelves.

As observed in Section 6.4.1, traffic variability tends to improve the performance of the

muxponders-based and partial non-blocking EXCs. The same behavior was observed regard-

ing the CapEx. Table 6.4 summarizes the relative increase/decrease in percentage of CapEx

when compared with the non-blocking EXC with hitless re-grooming in the last period. With

the increase in traffic variability, the CapEx of the partial non-blocking EXCs suffers an huge

decrease, especially for 10 destination nodes and pattern 1. However, in spite of the sav-

ings provided by the traffic variability being higher with 10 destination nodes, only for 5

destination nodes the CapEx of partial non-blocking EXCs outperforms the CapEx of the

non-blocking EXC with hitless re-grooming, see Table 6.4. The muxponders-based architec-

ture also decreases the CapEx with traffic variability, however this savings are more visible

in pattern 4. In this case, even for 10 destination nodes the CapEx of the muxponders-based

architecture is smaller than the CapEx of the non-blocking EXC with hitless re-grooming,

see Table 6.4.

Table 6.4: Percentage of CapEx increase/decrease after 20 periods compared to the non-blocking EXC
with hitless re-grooming.

Only added 20% changing 40% changing

traffic destination destination

Pattern 1 Pattern 4 Pattern 1 Pattern 4 Pattern 1 Pattern 4

5 destination nodes

Muxponders-based 121.87 % -21.40 % 133.83 % -28.94 % 149.18 % -32.05 %

Non-blocking EXC 0.78 % 0.01 % 0.88 % 0.31 % 1.45 % 0.67 %

Partial non-blocking EXCs 13.58 % 12.05 % 0.23 % 8.75 % -2.56 % 8.40 %

Partial non-blocking EXCs
11.34 % 5.18 % -3.42 % -1.53 % -4.64 % -3.40 %

(re-grooming)

10 destination nodes

Muxponders-based 125.44 % 11.55 % 145.15 % -2.07 % 136.62 % -18.85 %

Non-blocking EXC 0.00 % 0.09 % 0.00 % 0.43 % 2.17 % 1.12 %

Partial non-blocking EXCs 142.57 % 43.19 % 26.55 % 22.15 % 16.78 % 18.90 %

Partial non-blocking EXCs
127.28 % 27.80 % 14.35 % 4.38 % 0.69 % 0.89 %

(re-grooming)
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6.4.3 Power consumption

Figure 6.8 presents the average values of the cumulative power consumption in scenarios

where the traffic is distributed according to pattern 1 whereas Fig. 6.9 presents the results

in scenarios where traffic distributed according to pattern 4. In both cases, the figures on

the left are related to 5 destination nodes and the figures on the right to 10 destination

nodes. Moreover, Figs. (a) and (b) consider only added traffic, Figs. (c) and (d) consider

20% of traffic changing destination, and Figs. (e) and (f) consider 40% of traffic changing

destination.

As expected by the analysis performed in Section 5.1.2, the muxponders-based architecture

is the most power efficient one in the first periods, followed by the partial non-blocking EXCs

architecture. The non-blocking EXC is the architecture presenting higher power consumption.

In order to behave as a non-blocking EXC, the shelf size and respective control modules need

to be large enough to accommodate and support all the required modules, during all the

periods. Thus, the higher power required by the larger shelves and respective control modules

have a negative impact in the node power consumption at the early periods. With the increase

of the number of periods the power consumption of the non-blocking EXC architecture starts

being lower than of the partial non-blocking EXCs, evidencing the benefits of an initial

higher investment in power consumption. However, in spite of the power consumption of

non-blocking EXC being almost always smaller than of the partial non-blocking EXCs, it

only outperforms the muxponders-based architecture in the pattern 1. In this pattern a

two stage grooming is required for the majority of the traffic, thus increasing the power

consumption of the muxponders-based architecture. When traffic is distributed according

to pattern 4 (see Fig. 6.9), the muxponders-based architecture requires less modules, and

consequently shelves and control modules. Therefore, under pattern 4, the muxponders-based

architecture is the most power efficient architecture in the 20 periods considered and for all

the analyzed scenarios. Regarding the hitless re-grooming, it only produces significant power

consumption savings for the partial non-blocking EXCs architecture in pattern 4. Regarding

the architectures with the highest power consumption at the last period, it can be observed

that for pattern 1 the muxponders-based architecture is the one requiring more power for five

out of the six analyzed scenarios. In the remaining scenario (see Fig. 6.8(b)) is the partial

non-blocking EXCs the architecture with higher power consumption. Considering the pattern

4, it can be seen that the partial non-blocking EXCs is the architecture requiring more power

under all the scenarios.

Table 6.5 presents the relative increase/decrease in power consumption when compared

to the non-blocking EXC with hitless re-grooming, after 20 periods. As can be observed,

traffic variability tends to decrease the power consumption of the partial non-blocking EXCs

and muxponders-based architectures, under pattern 4. Moreover, the gains provided by

the muxponders-based architecture in pattern 4 increase with the traffic variability. The

reduction in power consumption observed in the partial non-blocking EXCs due to the traffic

variability is not enough to outperform the non-blocking EXC, however it is significant for
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Figure 6.8: Cumulative power consumption for 20 periods, pattern 1 and: (a) 5 destination nodes;
(b) 10 destination nodes; (c) 5 destination nodes and 20% of traffic changing destination; (d) 10
destination nodes and 20% of traffic changing destination; (e) 5 destination nodes and 40% of traffic
changing destination; and (f) 10 destination nodes and 40% of traffic changing destination.

10 destination nodes. Nevertheless, for 5 destination nodes and pattern 1, the differences

between the partial non-blocking EXCs and the non-blocking EXC architectures are below

10%.
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Figure 6.9: Cumulative power consumption for 20 periods, pattern 4 and: (a) 5 destination nodes;
(b) 10 destination nodes; (c) 5 destination nodes and 20% of traffic changing destination; (d) 10
destination nodes and 20% of traffic changing destination; (e) 5 destination nodes and 40% of traffic
changing destination; and (f) 10 destination nodes and 40% of traffic changing destination.
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Table 6.5: Percentage of power consumption increase/decrease after 20 periods compared to the non-
blocking EXC with hitless re-grooming.

Only added 20% changing 40% changing

traffic destination destination

Pattern 1 Pattern 4 Pattern 1 Pattern 4 Pattern 1 Pattern 4

5 destination nodes

Muxponders-based 76.33 % -50.99 % 81.68 % -54.81 % 91.98 % -56.50 %

Non-blocking EXC 0.43 % 0.01 % 1.33 % 0.22 % 2.14 % 0.55 %

Partial non-blocking EXCs 15.22 % 15.26 % 6.93 % 12.77 % 4.96 % 11.50 %

Partial non-blocking EXCs
12.91 % 9.50 % 4.23 % 3.68 % 3.67 % 2.05 %

(re-grooming)

10 destination nodes

Muxponders-based 79.11 % -32.38 % 85.73 % -39.49 % 85.10 % -47.89 %

Non-blocking EXC 0.00 % 0.12 % 0.20 % 0.45 % 2.55 % 1.20 %

Partial non-blocking EXCs 97.65 % 38.43% 23.11 % 22.55 % 16.46 % 19.20 %

Partial non-blocking EXCs
81.99 % 24.11 % 14.74 % 9.16 % 6.83 % 6.57 %

(re-grooming)

6.4.4 Footprint requirements

Figure 6.10 presents the average values of the cumulative footprint requirements in sce-

narios where the traffic is distributed according to pattern 1 whereas Fig. 6.11 presents the

results in scenarios where traffic distributed according to pattern 4. In both cases, the figures

on the left are related to 5 destination nodes and the figures on the right to 10 destination

nodes. Moreover, Figs. (a) and (b) consider only added traffic, Figs. (c) and (d) consider

20% of traffic changing destination, and Figs. (e) and (f) consider 40% of traffic changing

destination.

Contrariwise of what was observed for the cumulative CapEx and power consumption, no

interceptions between the footprint requirements of the various architectures exist, among the

20 periods. The muxponders-based architecture tend to require more slots than EXC-based

architectures, independently of the traffic pattern and number of destination nodes, see Figs.

6.10 and 6.11. Nevertheless, the differences are higher in pattern 1 and tend to increase

with the increase of the number of destination nodes. Regarding EXC-based architectures, it

can be seen that the non-blocking EXC architecture requires less slots than the partial non-

blocking EXCs architecture. This difference widens from 5 to 10 destination nodes and tend

to be higher under pattern 4. Considering the gains provided by enabling hitless re-grooming,

they are smaller than the ones reported for the CapEx and power consumption. Moreover,

they are only significative for 10 destination nodes and pattern 4.

Table 6.6 presents the relative increase in footprint requirements when compared to the

non-blocking EXC with hitless re-grooming, after 20 periods. As observed, traffic variability
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Figure 6.10: Cumulative footprint requirements for 20 periods, pattern 1 and: (a) 5 destination
nodes; (b) 10 destination nodes; (c) 5 destination nodes and 20% of traffic changing destination; (d)
10 destination nodes and 20% of traffic changing destination; (e) 5 destination nodes and 40% of traffic
changing destination; and (f) 10 destination nodes and 40% of traffic changing destination.

tends to decrease the footprint requirements, especially for partial non-blocking EXCs and 10

destination nodes. However, in this case the improvements in terms of footprint requirements

are not enough to outperform the non-blocking EXC architecture in any scenario. Moreover,
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Figure 6.11: Cumulative footprint requirements for 20 periods, pattern 4 and: (a) 5 destination
nodes; (b) 10 destination nodes; (c) 5 destination nodes and 20% of traffic changing destination; (d)
10 destination nodes and 20% of traffic changing destination; (e) 5 destination nodes and 40% of traffic
changing destination; and (f) 10 destination nodes and 40% of traffic changing destination.

considering the partial non-blocking EXCs with hitless re-grooming, only for 5 destination

nodes the increase in number of slots is smaller than 10%.
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Table 6.6: Percentage of footprint requirements increase after 20 periods compared to the non-blocking
EXC with hitless re-grooming.

Only added 20% changing 40% changing

traffic destination destination

Pattern 1 Pattern 4 Pattern 1 Pattern 4 Pattern 1 Pattern 4

5 destination nodes

Muxponders-based 530.27 % 83.05 % 541.88 % 67.66 % 573.18 % 60.53 %

Non-blocking EXC 0.44 % 0.02 % 1.18 % 0.20 % 1.94 % 0.52 %

Partial non-blocking EXCs 19.22 % 20.72 % 11.96 % 18.32 % 10.11 % 17.02 %

Partial non-blocking EXCs
17.26 % 15.17 % 9.51 % 8.65 % 9.11 % 6.84 %

(re-grooming)

10 destination nodes

Muxponders-based 544.78 % 159.39 % 567.25 % 130.17 % 558.06 % 95.96 %

Non-blocking EXC 0.00 % 0.13 % 0.20 % 0.44 % 2.28 % 1.18 %

Partial non-blocking EXCs 95.58 % 43.95% 27.03 % 27.70 % 20.70 % 24.34 %

Partial non-blocking EXCs
80.20 % 29.32 % 19.13 % 14.67 % 11.82 % 12.07 %

(re-grooming)

6.5 Chapter summary

In this chapter the various approaches for multi-period planning are briefly presented, and

the differences in terms of required information and level of optimality highlighted. Moreover,

the hitless re-grooming concept, that can be employed in flexible architectures, is explained.

After, dimensioning models based on ILPs to use in multi-period planning are presented.

The models consider the three electrical layer architectures namely, muxponders-based, non-

blocking EXC, and partial non-blocking EXCs. Additionally, for EXC-based architectures,

both disabled and enabled hitless re-grooming are considered. Using the developed models

and considering different traffic patterns, number of destination nodes, and levels of traffic

variability, an evaluation and comparison for the cumulative number of line interfaces, CapEx,

power consumption and footprint requirements is performed. Results show that non-blocking

EXC architectures tend to require less line interfaces than architectures with less flexibility.

In the opposite is the muxponders-based architecture. Moreover, the line interfaces increase

in muxponders-based architectures tend to be higher when the majority of the client traffic

requires a two stage grooming. Regarding the gains provided by the hitless re-grooming,

significant savings were only observed in the partial non-blocking EXCs. Moreover, the

benefits of hitless re-grooming are higher when the majority of the client traffic bit rate is

closer to the bit rate of the line signal. Additionally, this savings tend to increase with the

increase in the traffic variability. Regarding the CapEx, power consumption and footprint

requirements, results show that non-blocking EXC architectures tend to have higher CapEx

and power consumption at the early periods. However, with the network evolution and traffic

132



REFERENCES

increase, the flexibility provided by this type of architecture starts bringing significant cost

benefits. In the contrary, the muxponders-based architecture offers a cost and power efficient

solution in the firsts periods. However, the lack of flexibility increases the CapEx and power

consumption considerably, in the forthcoming periods. Regarding the footprint requirements,

non-blocking EXC always offers the most compact solution in terms of number of slots whereas

the muxponders-based architecture is the one requiring more space. The partial non-blocking

EXCs evolves in a more scalable way being usually in between of the two above mentioned

architectures. However, hitless traffic re-grooming can assist in mitigating the impact of

grooming limitations that arise when deploying the more scalable partial non-blocking EXCs.
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CHAPTER 7

Conclusions and future directions

In the framework of this PhD thesis, optimization models for the various planning stages

of a multilayer transport network were developed. The thesis starts by proposing a genetic

algorithm for the design of physical topologies with minimum CapEx for links. After, ILP

models for the nodes dimensioning in both greenfield and multi-period scenarios are also

developed. The models take into account the several hardware implementation constraints

and limitations. Using the developed models, a methodology to perform detailed techno-

economic analysis is proposed, focusing on the CapEx, power consumption and footprint

requirements of a node. In the following, we overview the developed work and summarize

the main conclusions obtained. Finally, in Section 7.2 some suggestions for future work are

presented.

7.1 Conclusions

This thesis starts by overviewing the opaque, transparent and translucent transport modes,

in Chapter 2. Moreover, the grooming schemes that can be used in each of the transport

modes are also reported. Multilayer optical transport networks comprise a set of nodes con-

nected by bidirectional links. Thus, the links and nodes architectures are explained in detail

in Chapter 2. The links architecture is composed by one or more transmission systems which

comprises the optical fiber and optical amplifiers. Nodes are complex systems assembled with

multiple types of modules. Therefore, the building blocks used in a general node architec-

ture are explained before the detailed presentation of the various modules, constraints, and

limitations involved in the nodes dimensioning. Later, fixed and flexible architectures for

the electrical and the optical layer of a node are discussed. Considering the architectures

for the electrical layer, a fixed architecture based on muxponders, and a flexible architecture

based on EXCs are presented in detail. Muxponders-based architectures require the tech-
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nician visit to the site for reconfiguration whereas in flexible architectures reconfiguration

can be performed by remote action. Regarding the optical layer, the building blocks used in

the various ROADM architectures are explained, before the presentation of ROADMs with

different levels of flexibility. Thus, ROADMs with fixed frequency, fixed direction, colorless,

directionless and contentionless capabilities are described.

After the detailed study of the hardware constraints and limitations of the various con-

sidered architectures, optimization methods for planning multilayer networks are proposed.

The first stage of the overall network planning process is the physical topological design. At

this stage the links to be implemented are chosen. As transport networks are responsible to

support massive amounts of data, the physical topology should guarantee the survivability

of the client signals. Therefore, in Chapter 3 a genetic algorithm for the design of minimum

CapEx survivable topologies is proposed. The chapter starts by presenting a dimensioning

model for the links, and for the network topology.. After, and as the convergence of the

genetic algorithm depends on the used genetic operators, an analysis to their impact on the

quality of the obtained solutions is performed. To do that, an ILP model is also presented.

The performance of two initial population generators, two selection methods, two crossover

operators, and two population sizes are compared and benchmarked using the ILP model

and a set of node locations of real-world transport networks. Computational results showed

that initial populations generated using a method that preserves the main characteristics of

real optical networks improves the quality of the obtained solutions. Regarding the selection

method, results suggest that selection methods that give preference to the fittest individuals

tend to improve the quality of the obtained solutions. Moreover, crossover operators that

do not preserve large blocks of the genetic code increase the diversity of the population and

the probability of finding better solutions. Hence, the quality of the obtained results and

the saved processing time encourage the use of this kind of heuristic within the survivable

topological design problem.

After the deployment of the network physical topology, the nodes are planned. Chapter

4 is dedicated to the presentation of the dimensioning model for nodes. The novel models

can be used in greenfield scenarios and to calculate the number and type of modules required

at each node, considering the hardware implementation constraints of the different architec-

tures. The inputs of the models are the client traffic, the network topology, and the type of

modules available. Regarding the electrical layer, the models are based on ILP formulations

and intend to optimize the grooming of the client signals minimizing the number of mod-

ules involved. Different node architectures were considered with distinct levels of flexibility.

The muxponders-based architecture introduces constraints in the client signals that can be

connected to the same muxponder module. Moreover, not all mixture of client signals can

be groomed as the grooming configuration is fixed by the module itself. On the opposite,

EXC-based architectures enable the connection of a client signal into any module that can

accept it, and all grooming configurations are allowed. However, as the switching of the

electrical signals is done using backplane communications, only modules connected to the

same backplane can interact. In this context, models for non-blocking EXC and for partial
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non-blocking EXCs architectures are proposed. Regarding the optical layer, a set of equa-

tions are proposed to dimension a ROADM. Depending on the architecture, the ROADM

can be fixed or have different degrees of flexibility. In a colorless architecture the wavelength

assigned to any add/drop port can be changed remotely, and in a directionless ROADM any

add/drop channel can be remotely redirected to any transmission system that converges to

the node. Additionally, contentionless ROADM allows the use of multiple copies of the same

wavelength in the same add/drop structure, as long as they follow different transmission sys-

tems. As a result, models for fixed frequency and fixed direction, colorless and fixed direction,

fixed frequency and directionless, colorless and directionless, and colorless, directionless and

contentionless ROADMs are developed.

Using the models presented in Chapter 4 for greenfield scenarios, and a consolidated

database for the modules specifications, a techno-economic analysis is presented in Chapter

5. The analysis focuses in the CapEx, power consumption, and footprint requirements of

the various architectures for the electrical and the optical layer. The proposed methodology

assumes a single node, varying the factors that impact the node costs. For the electrical layer

architectures, different traffic loads, client traffic patterns, and number of nodes to/from

which traffic is exchanging are considered. Results show that the CapEx and the power

consumption are, in most cases, smaller for the muxponders-based architectures. Regarding

the footprint requirements, EXC-based architectures tend to be more efficient. However,

the cost of muxponders-based architectures tend to be more dependent on the number of

destination nodes than the cost of EXCs-based architectures. Regarding the optical layer

architectures, different number of add/drop channels and of convergent fibers are considered.

In this type of structure the most efficient architecture depends on a relation between the

nodal degree and the number of add/drop channels. After, a sensitivity analysis of the

modules was also performed. Results show that the line modules are the most influential

parameter in the total network cost. Variations in the modules used in the ROADM part

of the node have a residual impact. As a result of the detailed techno-economic study, an

optimization method based on node architecture selection is proposed. The optimization

method is based on statistical and simple rules, identifying the scenarios where a determined

architecture brings cost benefits. At the end, the applicability of the proposed optimization

method is demonstrated with a network. Results show that to optimize the network OpEx

related to the power consumption and footprint requirements, an heterogeneous network

should be deployed.

Finally, in Chapter 6 the multi-period planning problem is addressed. The various ap-

proaches for multi-period planning as well as the re-grooming concept are presented. Later,

dimensioning models based on ILPs for the dimensioning of the muxponders-based, non-

blocking EXC, and partial non-blocking EXCs architectures are proposed. Regarding the

EXC-based architectures, the models consider both enable and disable hitless traffic re-

grooming. At the end, a techno-economic analysis is performed assuming a single source

node, different client traffic patterns, levels of traffic variability, and number of nodes to/from

which traffic is exchanged. The analysis focused on the cumulative number of line interfaces,
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CapEx, power consumption and footprint requirements. Results show that besides the ex-

pected decrease in cost when adopting more flexible architectures, these savings are greater

when the client traffic bit rate has very low granularity, and the number of destination nodes

is high. Moreover, traffic re-grooming can assist in mitigating the limitations that arise when

deploying the more scalable partial non-blocking EXCs. In fact, when traffic variability is

large, the utilization of re-grooming enables partial non-blocking EXCs to attain almost the

same performance as that of a non-blocking EXC. This is particularly evident when the client

traffic bit rate is close to the line bit rate.

7.2 Future directions

From the work developed during this PhD, the following topics are suggested as future

work:

� The models developed in this thesis, in spite of being vendor independent, are restricted

to circuit switching technologies. Therefore, a first step to continue this work is the

extension of the models for packet switching technologies (e.g., MPLS-TP). In this

way, detailed techno-economic comparisons between packet and circuit switches can be

performed, leading to the identification of the traffic conditions where circuit or packet

switching has advantages. Moreover, from the models for circuit and packet switching,

the mixture of the two types of traffic can also be evaluated. For instance comparing

the three alternatives presented in Fig. 2.8, namely parallel, layered, and hybrid.

� The developed models for the electrical layer, in spite of allowing a mixed line rate

dimensioning, consider single bit rate transponders. Thus, one possible future direction

is the extension of the models to support bandwidth variable transponders. Regarding

the optical layer, the models assume fixed-grid transponders. When flexi-grid transpon-

ders are used the number of channels that can be added/dropped at a node depends

on the respective spectral width of the optical channels. Hence, extending the optical

layer models to support flexi-grid transponders is another suggestion to continue this

work.

� The dimensioning models presented in this thesis rely on ILPs. Thus, scalability limita-

tions may arise depending on the size of the problem and on the computational resources

available. In this context, the development and benchmarking of heuristic algorithms

to use in large networks is also a direction that can be pursued from this thesis. The

benchmarking of the heuristics can be realized using the presented ILP models. Af-

ter, the heuristics can be used to perform techno-economic analysis considering several

networks with different topological characteristics.

� The last topic addressed in this thesis regards the multi-period planning using the

incremental approach. In the incremental approach the dimensioning is performed

without having any knowledge about the traffic of future periods. Hence, one possible
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future work could consider other approaches such as the end-of-life and the begin-of-life

with forecast planning approaches, and evaluate the impact that erroneous information

can have. This type of study can be particularly interesting when using bandwidth

and spectral variable transponders, and taking into account the OpEx savings with

technicians, whenever reconfiguration is needed.
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