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We demonstrate a fiber-integrated quantum optical circulator that is operated

by a single atom and that relies on the chiral interaction between emitters and

transversally confined light. Like its counterparts in classical optics, our cir-

culator exhibits an inherent asymmetry between light propagation in the for-

ward and the backward direction. However, rather than a magnetic field or a

temporal modulation, it is the internal quantum state of the atom that controls

the operation direction of the circulator. This working principle is compati-

ble with preparing the circulator in a coherent superposition of its operational

states. Such a quantum circulator may thus become a key element for routing

and processing quantum information in scalable integrated optical circuits.

Moreover, it features a strongly nonlinear response at the single-photon level,

thereby enabling, e.g., photon number-dependent routing and novel quantum

simulation protocols.

1

ar
X

iv
:1

60
9.

02
49

2v
1 

 [
qu

an
t-

ph
] 

 8
 S

ep
 2

01
6



In the same way as their electronic counterparts, integrated optical circuits require nonre-

ciprocal elements, like diodes and circulators, for signal routing and processing. Bulk optical

implementations of such components are readily available and rely mostly on nonreciprocal

polarization rotation via the Faraday effect (1). However, this mechanism cannot straight-

forwardly be translated to integrated optics because nano-optical structures are typically bire-

fringent. Demonstrations of integrated nonreciprocal devices therefore rather employed, e.g.,

nonlinear optical effects (2–4), time-modulation of the waveguide (5–7), or magneto-optical

effects in conjunction with the extraordinary polarization properties of strongly confined light

fields (8–11). Still, none of these approaches could, so far, simultaneously realize strong non-

reciprocity, low loss, and compatibility with low light levels. However, these characteristics

are crucial when it comes to quantum applications, like quantum communication (12), quantum

information processing (13), and quantum simulation (14). There, information is encoded in

individual photons and their loss must be avoided as much as possible. This condition narrows

down the scope of quantum-compatible nonreciprocal optical elements to nonreciprocal phase

shifters and circulators.

Here, we experimentally realize a fiber-integrated circulator that is capable of routing in-

dividual photons for quantum applications. It is operated by a single atom that is coupled to

the evanescent field of a whispering-gallery-mode (WGM) microresonator which is interfaced

with two coupling fibers (15, 16), thereby realizing a four-port device, see Fig. 1A. Most dis-

tinctively, it is the internal quantum state of the atom that controls the operation direction of the

circulator. Thus, the circulator can in principle be prepared in a coherent superposition of its

operational states, thereby turning it into an intrinsically quantum device. The corresponding

nonreciprocal unitary quantum operation provided by these devices may become a key ingredi-

ent for processing quantum information in scalable integrated optical circuits. Moreover, being

operated by a single atom, our circulator features a strongly nonlinear response at the single-
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photon level. We demonstrate that this allows us to perform photon number-dependent routing

which has applications in, e.g., novel quantum simulation protocols.

In the following, we describe the operation principle of the circulator: In order to achieve

efficient routing, the coupling rates, κa and κb, between the resonator field and the field in the

respective coupling fiber, a or b, are adjusted such that both fibers are approximately critically

coupled to the empty resonator, i.e., κa ≈ κb � κ0, where κ0 is the intrinsic resonator field

decay rate. When no atom is coupled to the resonator mode, this then realizes an add–drop fil-

ter (15,16) where light that is launched into one fiber will be transferred to the other fiber via the

resonator. Due to its strong transverse confinement, the evanescent field of the clockwise (cw)

propagating resonator mode is almost fully circularly polarized (17). Its electric field vector

rotates counterclockwise in the plane orthogonal to the resonator axis (z-axis), corresponding

to σ−-polarization, see Fig. 1B. Time-reversal symmetry then implies that the evanescent field

of the counterclockwise (ccw) propagating mode is almost fully σ+-polarized (17). Coupling

these ‘spin–orbit-locked’ evanescent fields of WGMs to a single atom recently enabled the

implementation of an optical switch that is controlled by a single photon (18). Moreover, an

optical isolator was realized which either transmits or dissipates fiber-guided light depending

on its propagation direction (19). For the circulator, we resonantly couple a single 85Rb atom to

the resonator. It is prepared in the outermost Zeeman sublevel mF = +3 of the 5S1/2, F = 3

hyperfine ground state and, thus, the counter-propagating resonator modes couple to an effec-

tive V -level system, see Fig. 1C. Importantly, the strength of the transition to the 5P3/2, F ′ = 4,

mF ′ = +4 excited state is 28 times stronger than that to the F ′ = 4, mF ′ = +2 state (20). As

a consequence, light in the ccw mode interacts strongly with the atom with a coupling strength

gccw. In contrast, light in the cw mode exhibits much weaker coupling gcw � gccw. This chiral

light–matter interaction breaks Lorentz reciprocity (19, 21–23), and the presence of the atom

changes the resonator field decay rate from κtot = κ0 + κa + κb to κtot + Γcw/ccw, where
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Γcw/ccw = g2cw/ccw/γ is the direction-dependent atom-induced loss rate (24) and γ = 2π × 3

MHz is the dipole decay rate of Rb. For light in the cw mode, Γcw is small and the field decay

rate is not significantly modified by the atom, while for the ccw mode, Γccw can become com-

parable to or even exceed κtot. Consequently, the add–drop functionality is maintained when

light is launched into those fiber ports for which it couples to the cw mode, i.e., input ports 2

and 4 in Fig. 1D. However, for the two other input ports (1 and 3 in Fig. 1D), the light couples

to the ccw mode and the resonator–atom system operates in the undercoupled regime,

κa, κb � Γccw. (1)

In this case, the incident light field remains in its initial fiber. Overall, the device thus realizes

an optical circulator that routes light from the input port i to the adjacent output port i+ 1 with

i ∈ {1, 2, 3, 4}, see Fig. 1D. Preparing the atom in the opposite Zeeman ground state, F = 3,

mF = −3, exchanges the roles of the cw and ccw mode and thus yields a circulator with

reversed operation direction. Hence, the circulator is programmable and its operation direction

is defined by the internal state of the atom.

For near perfect circular polarization of the modes and our experimental parameters (gccw ≈

2π × 12 MHz), the ratio between Γccw ≈ 2π × 48 MHz and Γcw ≈ 2π × 1.7 MHz is finite.

Concerning the performance of the circulator, there is, thus, a trade-off between efficient light

transfer from one fiber to the other via the cw mode, which implies κa, κb � κ0 + Γcw, and the

condition that the presence of the atom should significantly influence the field decay rate, see

equation (1). To find the optimum working point in our experiment, we measure the circulator

performance as a function of the fiber–resonator coupling strengths, κa and κb, which can be

adjusted by changing the distance between the respective fiber and the resonator surface. We

impose the constraint that fiber a is critically coupled to the empty resonator which is loaded

with fiber b: κa = κb+κ0 (24). For each setting, we measure the transmissions Ti,j to all output
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ports j when sending a weak coherent probe field into the four different input ports i (24).

Figures 2A and B show the relevant transmissions as a function of κtot, where the solid lines

are the theoretical prediction for our system (24).

To evaluate the performance of the circulator, we compare the measured transmission matrix

(Ti,j) to the transmission matrix (T id
i,j) expected from the ideal circulator which is given in

Fig 3A. In order to quantify the overlap with the ideal device, we define the operation fidelity

of our circulator by

F = 1− 1

8

∑
i,j

|Ti,j
ηi
− T id

i,j| . (2)

Here, ηi =
∑

k Ti,k is the survival probability of a photon entering port i, i.e., the probability

that the photon is recovered at any of the four output ports. The minimum fidelity is F = 0,

whileF = 1 is reached for an ideal operation. For any reciprocal device (Ti,j = Tj,i) the fidelity

is bound by F ≤ 0.5. In Fig. 2C and D, we plot F and the average photon survival probabil-

ity η =
∑

i ηi/4 as a function of κtot. The results show an optimum circulator performance

for κtot/2κ0 = 2.2, where F = 0.72 ± 0.03 and, at the same time, η = 0.73 ± 0.04. The

transmission matrix (Ti,j) for the optimum working point is plotted in Fig. 3B and shows good

qualitative agreement with that of an ideal circulator, see Fig. 3A. In order to demonstrate that

the chiral atom–light coupling is at the origin of the nonreciprocal behavior, we also measure

the transmission matrix without coupled atom and obtain a symmetric matrix, see Fig. 3D. The

circulator performance can also be quantified by the isolations, Ii = 10 log(Ti,i+1/Ti+1,i), of

the four optical diodes formed between adjacent ports. For the optimum working point, we

obtain (Ii) = (10.9 ± 2.5, 6.8 ± 1.3, 4.7 ± 0.7, 5.4 ± 1.1) dB and an average insertion loss of

−10 log η = 1.4 dB.

In order to reverse the operation direction of the circulator, we now prepare the atom in the

opposite Zeeman ground state, F = 3, mF = −3 (24). This results in a complementary V -type

level scheme, see dashed arrows in Fig. 1C. For this case, we obtain the transmission matrix
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shown in Fig. 3C, again measured for the optimum fiber–resonator coupling rate. Here, we

observe a fidelity with respect to the reversed circulator of F = 0.70± 0.02, a photon survival

probability of η = 0.69 ± 0.02, and optical isolations (Ii) = −(8.3 ± 0.8, 4.9 ± 0.7, 3.7 ±

0.4, 5.6± 0.5) dB. Taking into account the sign change, these results agree well with the values

obtained for the atom in the F = 3, mF = +3 state.

Finally, we expect a strongly nonlinear optical response of the circulator down to the level

of single photons since, in the regime of strong coupling, a single photon already saturates the

atom (16, 18, 25). In particular, the transmission properties for the case of two photons simul-

taneously impinging on the circulator should strongly differ from the single-photon case. In

order to demonstrate this quantum nonlinearity, we measure second-order correlation functions

for all input–output configurations when the atom is prepared in F = 3, mF = +3. Figure 4

shows exemplarily those second-order correlation functions which yield the strongest signals.

As expected, they occur for the cases where the photons couple into the ccw resonator mode.

We observe photon antibunching when the photons remain in the initial fiber (forward direction

of the circulator: 1→ 2, 3→ 4). When the photons are transmitted to the other fiber (backward

direction of the circulator: 1 → 4, 3 → 2), we observe clear photon bunching. This behaviour

illustrates the photon number-dependent routing capability: while individually arriving photons

remain in their original fiber, simultaneously arriving photons are preferentially transferred to

the other fiber.

The demonstrated circulator concept is per se useful for the processing and routing of clas-

sical signals at ultra-low light levels in integrated optical circuits and networks. Beyond that,

and in contrast to dissipative nonreciprocal devices, a circulator that is controlled by a single

quantum system also enables operation in coherent superposition states of routing light in one

and the other direction, thereby paving the way towards its application in future photonic quan-

tum protocols. The demonstrated operation principle is universal in the sense that it can be
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straightforwardly implemented with a large variety of different quantum emitters provided that

they exhibit circularly polarized optical transitions and that they can be spin-polarized. Using

state-of-the-art WGM microresonators (26), one could realize a circulator with optical losses

below 6% and close-to-unit operation fidelity (24). This would then allow one to almost de-

terministically process and control photons in an integrated optical environment. Moreover,

networks of such quantum circulators are potential candidates for implementing lattice-based

quantum computation (27). And finally, such networks would allow one to implement artificial

gauge fields for photons (28–30) where a nonlinearity at the level of single quanta allows for the

flux to become a dynamical degree of freedom that interacts with the particles themselves (31).
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Figure 1: Operation principle of the circulator. (A) Schematic of the experimental system. A
single rubidium 85 atom is coupled to the whispering-gallery-mode of a bottle microresonator
which is interfaced by two tapered fiber couplers with subwavelength-diameter waists. (B) The
polarization of the evanescent field of the modes, σ− and σ+, depends on their propagation
direction, clockwise (cw) or counterclockwise (ccw) and, hence, on the direction in which the
light is launched through the coupling fiber. (C) When a 85Rb atom is prepared in the F = 3,
mF = +3 Zeeman state, the transition strength for σ+ polarized light (i.e., for the ccw mode)
is 28 times larger than for σ− polarized light (i.e., for the cw mode). This situation is reversed
if the atom is prepared in mF = −3, where σ− polarized light couples much more strongly to
the atom. (D) Routing behaviour of the circulator for the atom prepared in mF = +3. Light is
redirected from input port 1 to output port 2, port 2 to port 3, 3 to 4, and 4 to 1.
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Figure 2: Circulator performance. (A) & (B) Port-to-port transmissions as a function of
the normalized field decay rate of the fiber-coupled resonator, κtot/2κ0, in the presence of an
atom prepared in the F = 3, mF = +3 Zeeman state. Here, κ0 = 2π × 5 MHz is the
intrinsic field decay rate of the resonator. The solid lines in both panels are the predictions of
our theoretical model (24) with the atom-resonator coupling strength gccw = 2π × 12 MHz.
(C) & (D) Operation fidelity F and photon survival probability η of the circulator, calculated
from the data in A and B. The solid lines are the predictions of the above model for the same
value of gccw. The vertical error bars indicate ±1σ statistical errors while the horizontal error
bars represent an estimate of the variation of κtot due to drifts of the distances between the fiber
couplers and the resonator during the corresponding measurement.12



Figure 3: Transmission matrices (Ti,j). The rows correspond to the input ports i and the
columns to the output ports j. (A) Transmission matrix for an ideal cirulator. The broken
symmetry with respect to the dashed line indicates the nonreciprocal character of the device.
(B) Transmission matrix measured for the atom prepared in the F = 3, mF = +3 state. (C)
Transmission matrix if the operation direction of the circulator is reversed by preparing the atom
in the F = 3, mF = −3 state. For comparison, (D) shows the transmission matrix of the system
measured without atom. Here, the symmetric matrix indicates reciprocal operation. For B, C,
and D the fiber–resonator coupling was set to the optimal working point κtot/2κ0 = 2.2. In all
panels, the four highest transmission values are given in the respective block.
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Figure 4: Quantum nonlinearity of the circulator. Second-order correlation, g(2)(τ), as a
function of the detection time delay τ between pairs of photons, normalized such that g(2)(τ) =
1 for τ � 1/κtot. The labels i → j indicate the input and output ports for the respective
measurement. The solid lines are guides to the eye. The error bars indicate the ±1σ statistical
error. For the settings 1 → 2 and 3 → 4, we observe photon antibunching which is more
pronounced in the former case due to the unequal fiber couplings, κa > κb. Photon bunching of
similar amplitude is apparent for the settings 1→ 4 and 3→ 2. This agrees with the theoretical
expectation because, here, both measurements amount to probing the photon statistics of the
intra-resonator field. We note that the fact that g(2)(0) does not reach zero for the settings 1→ 2
and 3 → 4 is not due to experimental imperfections but is theoretically expected as the light
fields at output ports 2 and 4 are in a coherent superposition between the (bunched) resonator
light field that couples back into the fiber and the stronger coherent state of the probe laser field.
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Materials and Methods

Experimental procedure

The experimental sequence starts with an atomic fountain delivering a cloud of laser-cooled

85Rb atoms to the resonator. In order to detect the presence of a single atom in the resonator

mode in real time, we critically couple fiber a to the resonator which is loaded with fiber b

(κa = κ0 + κb). We send a detection light field into port 1 that is resonant with the empty res-

onator mode and with the D2 transition of 85Rb. When an atom enters the resonator mode, the

interaction with the detection light field optically pumps the atom into the |F = 3,mF = +3〉

hyperfine ground state and the transmission through fiber a increases by two orders of mag-

nitude. Single-photon-counting modules (SPCM) that are connected to output port 2 record

the transmission of the detection light field through fiber a (port 1 → 2). Using a field pro-

grammable gate array-based real-time detection and control system, we react to the transmis-

sion increase within approximately 150 ns: the detection light is switched off and a probe light

field, resonant with the |F = 3,mF = +3〉 → |F ′ = 4,mF = +4〉-transition, is sent into port

i (mean photon flux (8, 6, 11, 6) photons/µs) for 400 ns. Subsequently, a 1µs long re-detection

interval ensures that the atom is still coupled to the resonator mode. A full experimental cycle

consists of four of the described sequences where the input port number i for the probe light

field is incremented consecutively (i ∈ {1, 2, 3, 4}).

We select the first 200 ns of the probing window for analysis since for longer probing times

the 2→ 3 and 4→ 1 performance of the circulator is affected by optical pumping effects due to

the finite coupling of the atom to the clockwise propagating resonator mode, gcw 6= 0. In future

applications this optical pumping could always be counteracted by employing an external or

an additional fiber-guided light field that permanently pumps the emitters towards the desired

internal state. Choosing this light to be resonant to a different optical transition than the one
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used for the operation of the isolator would then enable continuous operation of the circulator.

For the measurement of reversed operation direction of the circulator, the detection light

field was sent from port 2 → 1 through fiber a, thereby optically pumping the atom into the

|F = 3,mF = −3〉 hyperfine ground state. In order to realize efficient optical pumping, a small

bias magnetic field of 1.5 G is applied along the resonator axis for both cases.

Transmission measurements

For the transmission measurements in Figs. 2A and 2B, we scan κtot/2κ0 by scanning the dis-

tance between fiber b and the resonator surface. For each step, we subsequently position fiber

a such that κa fulfills the critical coupling condition for the empty resonator which is loaded

with fiber b. We determine the intrinsic field decay rate, κ0, from the empty resonator line width

without fiber b. For each scan point, the two fiber–resonator coupling rates, κa and κb, are then

inferred from the respective line width of the empty resonator which is loaded with both fibers,

a and b.

A direct measurement of the circulator transmissions is not possible because of the a priori

unknown input and output losses imposed by the auxiliary fiber network that is used to feed the

probe light into and out of the tapered fiber couplers as well as the a priori unknown efficiencies

of the photo-detectors. We therefore devise the following measurement strategies for three

different groups of input–output port combinations:

(i) The light is forward-transmitted through a given coupling fiber (T1,2 , T2,1 , T3,4 , T4,3):

We measure the corresponding output signal of the circulator including the auxiliary fiber net-

work and normalize this value to the same output signal of the network when the WGM bottle

microresonator is far detuned from the probe light frequency. This directly yields the corre-

sponding transmissions which are plotted in Fig. 2A.

(ii) The light is transferred from a given input port to the adjacent output port of the other
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coupling fiber (T1,4 , T2,3 , T3,2 , T4,1): We measure the corresponding output signal of the circu-

lator including the auxiliary fiber network and normalize this value to the same output signal of

the network when no atom is coupled to the WGM bottle microresonator. We then multiply this

normalized value by the theoretically predicted on-resonance transmission through the empty

resonator, which is given by Tcross = 1− 2κ0/κtot, cf. Eq. (7) for g = ∆rl = 0. This yields the

corresponding transmissions which are plotted in Fig. 2B.

(iii) The light changes its propagation direction (Ti,i and Ti,i+2 with i ∈ {1, 2, 3, 4}): We

measure the corresponding output signal of the circulator including the auxiliary fiber network.

From the design of the optical setup, we know that the output losses are approximately identical

for ports 1 and 4. Taking advantage of this fact and using only the normalization measurements

carried out for points (i) and (ii) above, we can then derive the corresponding transmissions.

Their values do not exceed a few percent. For the optimal working point of the circulator of

κtot/2κ0 = 2.2, they can be read from Fig. 3 and are explicitly listed in section ”Transmission

matrices” below.

Modeling the circulator transmission
Simplified model

When light is sent into one of the input ports of fiber a (b) of our system, it is partially transmitted

through the fiber and partially cross-coupled to fiber b (a) via the resonator. The respective

output fields are given by
〈âtrans

out 〉 = 〈âin〉 − i
√

2κa/b 〈â〉

〈âcross
out 〉 = −i

√
2κb/a 〈â〉 .

(3)

where 〈âin〉 is the amplitude of the input field and 〈â〉 is the expectation value of the photon an-

nihilation operator for the resonator field. The latter is obtained by solving the master equation

of the atom-resonator system
dρ̂

dt
= − i

~
[Ĥ, ρ̂] + Lρ̂ , (4)
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where Ĥ is the Hamiltonian of the system and L is the Lindblad superoperator (32). The

operation principle of the circulator can be best understood when making the approximation

that the two counter-propagating resonator modes have almost perfect circular polarization,

and thus are orthogonally polarized. We can then decompose the atomic V -type level system

into two independent two-level systems, each of which couples to only one of the resonator

modes with a direction-dependent coupling strength gcw/ccw. In this case, both directions of

the circulator (forward and backward) can be described by the Jaynes-Cummings Hamiltonian

which, in rotating wave approximation, is given by

Ĥ/~ = ∆rlâ
†â+ ∆alσ̂+σ̂− + g(â†σ̂− + âσ̂+) +

√
2κa/b(εâ− ε∗â†)

where ∆rl (∆al) is the resonator-light (atom-light) detuning, σ̂+ (σ̂−) the atomic excitation (de-

excitation) operator, ε = 〈âin〉 and the last term describes the pumping of the resonator via fiber

a or b, respectively. The corresponding Lindblad superoperator is given by

L = κtot(2âρ̂â
† − â†âρ̂− ρ̂â†â) + γ(2σ̂−ρ̂σ̂+ − σ̂+σ−ρ̂− ρ̂σ̂+σ−) (5)

where κtot = κ0 + κa + κb is the total field decay rate of the fiber-coupled empty resonator.

In the low saturation limit, this model yields the power transmissions for all input-output port

constellations:

T trans
cw/ccw =

∣∣∣∣〈atrans
out 〉
〈ain〉

∣∣∣∣2 =
|Γcw/ccw + i∆rl + κi + κb(a) − κa(b)|2

|Γcw/ccw + i∆rl + κtot|2
(6)

T cross
cw/ccw =

∣∣∣∣〈âcross
out 〉
〈âin〉

∣∣∣∣2 =
4κaκb

|Γcw/ccw + i∆rl + κtot|2
(7)

where we introduced the atom-induced field decay rates

Γcw/ccw =
g2cw/ccw

γ + i∆al
. (8)
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T trans
cw/ccw describes the transmission through fiber a (b) and T cross

cw/ccw the cross-coupling from both

fiber a to fiber b and fiber b to fiber a via the resonator. In this model, the ratio gccw/gcw is de-

termined by the difference of the transition strengths of the two independent two-level systems.

Coupling to both resonator modes

In the previous model, we made the assumption of perfect chiral coupling, i.e., each resonator

mode couples exclusively to a single atomic transition. However, for our experimental system,

this situation is not fully realized as the evanescent field of the resonator is not fully circularly

polarized. In order to describe this situation and to obtain an analytical solution, we model

our system as a two-level atom with a circular dipole transition (here σ+), i.e., we neglect the

coupling of the resonator fields to the weaker transition in the atom. Using this approximation,

the Hamiltonian is given by

Ĥ/~ = ∆rlâ
†â+ ∆alσ̂+σ̂− + αg(â†σ̂− + âσ̂+) + βg(b̂†σ̂− + b̂σ̂+) +

√
2κa/b(εâ− ε∗â†)

and the corresponding Lindblad superoperator reads

L = κtot(2âρ̂â
†−â†âρ̂−ρ̂â†â)+κtot(2b̂ρ̂b̂

†− b̂†b̂ρ̂−ρ̂b̂†b̂)+γ(2σ̂−ρ̂σ̂+−σ̂+σ−ρ̂−ρ̂σ̂+σ−). (9)

Here, â and b̂ (â† and b̂†) are the annihilation (creation) operators for a photon in the ccw and

cw resonator mode, respectively, and α = |Eccw · eσ+ |/|Eccw| (β = |Ecw · eσ+|/|Ecw|) is the

overlap of the evanescent field Eccw (Ecw) of the ccw (cw) mode with the σ+-polarization, eσ+ ,

of the atomic transition. This model gives an accurate description for most physical situations

because, typically, the coupling strength to the weak atomic transition is significantly smaller

than the residual coupling to the strong atomic transition due to imperfect circular polarization.

From this model, we obtain the theoretical transmission curves depicted in Fig. 2, taking into

account the actual polarization properties of our resonator modes (α =
√

0.97, β =
√

0.03).
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Solving this model, one obtains analytical expressions for the photon survival probability in

forward and backward direction:

ηfw = 1− 2(κtot − κ0) (γ2κ0κ
2
tot + g4κ0α

2 + g2γκtot (α2(2κ0 − κtot) + 2κtot))

κ2tot (γκtot + g2)2
(10)

ηbw =
1

κ2tot (γκtot + g2)2

[
(γ2(κtot − κ0)2 +

(
γκ0 + g2

)2
)κ2tot

−2g2(κtot − κ0)(1− α2)
(
γκtot (2κ0 − κtot) + g2κ0

) ]
. (11)

From this, we obtain the process fidelity and photon survival probability of the circulator

F =

1
ηbw

(κtot − κ0)2 (α2g2 + γκtot)
2

+ 1
ηfw

(g2 (κ0 + α2 (κtot − κ0)) + γκ0κtot)
2

2κ2tot (g2 + γκtot)
2 (12)

η =
ηfw + ηbw

2
= 1− (κtot − κ0)

2γ2κ2totκ0 + g4κ0 + γg2κtot(κtot + 2κ0)

κ2tot(γκtot + g2)2
. (13)

Here, we made the assumption that both fibers are equally well coupled to the resonator, i.e.,

κa = κb = κ. Interestingly, the photon survival probability is independent of the polarization

overlap α. For parameters achievable with state-of-the-art WGM resonators (17, 26) (κ0 =

2π × 0.5 MHz, g = 2π × 30 MHz, α =
√

0.97) one reaches η = 0.94 and F = 0.94 for an

optimum fiber-resonator coupling rate κ = 2π × 7.5 MHz. For this case, the process fidelity is

mainly limited by the non-unit overlap of the evanescent field with σ+ polarization (α2 < 1).

Second order correlation functions

In Fig. 5 we plot the full set of second-order correlation functions. For those pairs of ports not

shown, i.e., i→ i and i→ i+ 2), the total number of transmitted photons is too small to derive

a meaningful second-order correlation function.

Transmission matrices

The transmission values Ti,j are presented with their error bars indicating the ±1σ statistical

error. The rows correspond to the respective input ports and the columns to the respective
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output ports. The transmissions are measured for κtot/2κ0 = 2.2. TmF=+3 is the transmission

matrix for the case where the atom is prepared in the F = 3, mF = +3 state, TmF=−3 for the

atom prepared in the F = 3, mF = −3 state and Tno atom for the case where the atom is not

present.

TmF=+3 =


0.03± 0.015 0.46± 0.044 0.024± 0.011 0.133± 0.03
0.037± 0.022 0.057± 0.021 0.486± 0.059 0.038± 0.022
0.011± 0.011 0.101± 0.028 0.068± 0.022 0.698± 0.083
0.463± 0.055 0.039± 0.014 0.234± 0.027 0.055± 0.019

 (14)

TmF=−3 =


0.063± 0.01 0.072± 0.013 0.021± 0.007 0.394± 0.025
0.487± 0.028 0.045± 0.01 0.122± 0.017 0.016± 0.005
0.029± 0.007 0.379± 0.029 0.066± 0.012 0.274± 0.021
0.108± 0.011 0.005± 0.001 0.647± 0.029 0.02± 0.005

 (15)

Tno atom =


0.± 0. 0.014± 0.008 0.± 0. 0.572± 0.061

0.012± 0.012 0.008± 0.008 0.533± 0.062 0.025± 0.018
0.± 0. 0.539± 0.063 0.075± 0.023 0.252± 0.052

0.583± 0.06 0.016± 0.009 0.183± 0.025 0.027± 0.014

 (16)
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Figure 5: Second-order correlation function measurements in all relevant output ports for all
four input directions including a Lorentzian fit as a guide to the eye.
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