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ABSTRACT 

We assess, through numerical simulation, the dependence of the variance of the inter-core crosstalk (ICXT) and 

the maximum allowable ICXT level on the design parameters of coherent detection MCF systems. The analysed 

design parameters are the order of the quadrature amplitude modulation (QAM) signals, roll-off factor, time 

misalignment between the signal in different cores and skew between cores. The results show that, when the roll-

off factor is 0, the maximum allowable ICXT level is independent of the skew and decreases for higher QAM 

orders. For a roll-off factor of 1, the maximum allowable ICXT level depends on the skew and time misalignment 

of core signals. In this case, the maximum allowable ICXT level increases by 3.6 dB relative to the case of roll-

off factor of 0 with null skew, and by 2 dB, when the skew is much higher than the symbol period.  

Keywords: coherent detection, inter-core crosstalk, Monte-Carlo simulation, multicore fiber. 

1. INTRODUCTION 

The multi-core fiber (MCF) has been studied as a transmission media for space division multiplexing in order to 

overcome the ever-increasing demand for transmission capacity in telecommunication networks [1]. MCF is 

composed of several spatially separated cores, that can be weakly or strongly coupled [2]. The performance of the 

optical networks using weakly-coupled MCFs can be highly impaired by inter-core crosstalk (ICXT) [1],[2]. The 

influence of the ICXT on the performance of MCF systems has been studied in several works [3-4]. In [3] is 

proposed a theoretical model of the behaviour of ICXT. This model allows to study the influence of ICXT on the 

performance degradation of MCF systems, and for different modulations formats as those that are typically used 

in coherent detection, as studied in [3] and [4]. In [5], the ICXT model presented in [3] is improved by considering 

the dual-polarization ICXT and its dependence on the group velocity dispersion and skew between cores. Despite 

the influence of the QAM order on the performance of coherent detection MCF system is studied in [4] and [5], 

the impact on the optical signal-to-noise (OSNR) penalty due to the roll-off factor and the time misalignment 

between the signals transmitted in the MCF cores is still to be assessed.  

In this work, we numerically study through Monte-Carlo (MC) simulation, the variance of the coherently detect 

ICXT and the influence of ICXT on the OSNR penalty of the coherent detection MCF system, considering different 

orders of quadrature amplitude modulation (QAM) signals with raised-cosine (RC) pulse shape, roll-off factors, 

fiber core skews and with time misalignments between the signals transmitted in each MCF core, thereby, 

extending the results of [4].  

  

 

Figure 1. Equivalent simulation model of the MCF system used in this work. 

2. SYSTEM SIMULATION MODEL  

Figure 1 depicts the simulation model used to assess the dependence of the ICXT on the design parameters of the 

coherent detection MCF system. The core n is the tested core and the interfering core is core m. Both cores are fed 

by the corresponding dual polarization-transmitter (DP-TX). Each DP-TX produces, in the data generator, a 

polarization-division multiplexing (PDM)-M-QAM symbol sequence. Then, each sequence is filtered by a root 

raised-cosine (RRC) filter, HRRC(ω), with transfer function √HRC(ω), where HRC(ω) denotes the transfer function 

of the RC filter, presented in [6], and ω is the angular frequency. The in-phase (I) and quadrature (Q) modulator 

converts the M-QAM electrical signal to the optical domain. These optical signals are transmitted in the 
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corresponding MCF core. To simulate the time difference between the transmission of the optical signals at the 

MCF input, a τmn delay is considered in the electrical signal of the DP-TX launched in core m. 

The propagation of the signal in core n is modelled by the transfer function Hn(ω) = e-jβ̅n
(ω)L, where β̅

n
(ω) is the 

average of the propagation constants of core n and L is the length of the MCF. A Taylor series expansion up to the 

2nd order of β̅
n
(ω) is considered. In weakly-coupled MCF operating in the phase-matching region, the ICXT signal 

field in each polarization direction is generated by filtering the signal transmitted in each polarization direction of 

core m by the transfer function Fa,b(ω) defined as [5] 
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where a,b ∈ {x,y}, N is the number of phase-matching points (PMPs), K̅nm is the average of the discrete coupling 

coefficient over the two polarization directions, and Δβ̅mn(ω) is the difference between the propagation constant 

averages of cores m and n given by Δβ̅mn(ω) = ∆β̅0,mn+dmnω+(∆Dmnλ2ω2)/(4πc), where ∆β̅0,mn is the difference of 

propagation constant averages at zero frequency, 𝑑mn is the walkoff parameter between cores m and n, ∆Dmn is the 

difference of the dispersion parameters of core m and core n, c is the speed of light in a vacuum, and λ is the 

wavelength [7]. In this work, ∆β̅0,mn and ∆Dmn are 0. The skew, Smn, between the cores m and n is given by dmnL. 

The angle ϕ
a,b

(k)
 represents the k-th random phase-shift that occurs between two consecutive PMPs, and is a 

uniformly distributed random variable between 0 and 2π. zk is the k-th random coordinate that is uniformly 

distributed between (k-1)L/N and kL/N. Eq. (1) assumes that the MCF realizations are obtained at time instants, 

separated by intervals much longer than the correlation time. The transfer functions Fx,x(ω) and Fy,x(ω) model the 

ICXT from polarizations x and y of core m to the polarization x of the interfered core n, respectively, whereas 

Fx,y(ω) and Fy,y(ω) model the ICXT from polarizations x and y of core m to the polarization y of the interfered 

core n. The amount of ICXT can be quantified by the ICXT level, Xc, which is related to the parameters of Eq. (1) 

by Xc=N|K̅nm|2. 

We assume that the core loss is compensated by optical amplification. Still, the amplification also adds amplified 

spontaneous emission (ASE) noise to the signal. This noise field is modelled as additive white Gaussian noise for 

each polarization direction. The coherent receiver detects the PDM-M-QAM signal and ideally compensates the 

chromatic dispersion. The detected signal is filtered by HRRC(ω), to produce a RC signal at the decision circuit 

input. The model of the coherent receiver is the same as the one presented in Fig. 9 of [8]. 

The system performance is assessed through MC simulation and the bit error rate (BER) is estimated using direct 

error counting. The MC simulation starts with the random generation of two different M-QAM symbol sequences 

for the optical signal transmitted in core m, one for each polarization direction. Then, in each realization of ICXT 

in the MCF, four different functions Fa,b(ω) are used as filters to obtain the ICXT field in each polarization 

direction, as shown in Fig. 1. The resulted ICXT fields are added to the transmitted signal in the tested core. In 

addition, an ASE noise sample function is added to the optical signal in each polarization direction. Then, the 

resulting signal is passed by the coherent receiver and the BER corresponding to the MCF realization is estimated. 

3. RESULTS AND DISCUSSION 

In this section, the variance of the coherently detected ICXT, for 4, 16 and 64-QAM formats, different roll-off 

factors, time misalignments between signals and skew between fiber cores is analysed. In order to quantify the 

impact of the ICXT on the performance, we estimate the BER, the OSNR penalty and the maximum allowable 

ICXT level, Xc,max, which is the Xc that leads to a 1 dB OSNR penalty. The OSNR penalty is defined as the ratio 

between the required OSNR with ICXT and without ICXT, OSNRR, to achieve a specific target BER [4]. A hard 

decision FEC with a target BER of 10-3 is assumed [4]. 

Table 1 shows the MC simulation parameters used to assess the performance of MCF system with coherent 

receiver impaired by ICXT and ASE noise. The OSNRR, shown in Table 1, agrees with the theoretical OSNRR [6]. 

Two roll-off factors (0 and 1) of the RC signals are used in the simulation results. 

 

Table 1. MC simulation parameters. 

Parameter Value 

Bit rate (Rb) [Gbps] 112 

Order of the M-QAM 4 16 64  

Symbol rate (Rs)/polarization [Gbaud] 28 14 9.3 

Required OSNR for a BER=10-3 [dB] 10.3 14.2 18.3 

Roll-off factor (β)  0 and 1 

Skew (Smn) Variable 

Normalized time misalignment (τmn
.Rs) 0 and 0.5 

Number of PMPs 500 

Number of generated symbols per realization 212 



3.1 Detected ICXT Variance  

In this subsection, we study the influence of the modulation format, roll-off factor, skew and time misalignment 

on the variance of the detected ICXT. Fig. 2 depicts the variance of the ICXT normalized to its maximum value 

as a function of the skew, Smn, for 4, 16 and 64-QAM formats and  of 0 and 1. 

Figs. 2(a) and 2(b) correspond to a normalized time misalignment to the symbol period, respectively, of 0 and 

0.5. In Fig. 2, it can be observed that, when β = 0, the variance of the ICXT is practically constant as a function of 

the skew and is also independent of the QAM order. In Fig. 2(a), for RC signals with β = 1 and τmn
.Rs = 0, the 

variance of the ICXT decreases until a minimum for skews of 25, 50 and 75 ps, respectively, for the 4, 16 and 64-

QAM signals. These values of skew correspond to 0.7/Rs. For higher skew values, the variance of the ICXT shows 

an oscillatory behaviour and tends to 0.75 for higher skews, regardless the QAM order.  

In Fig. 2(b), for τmn
.Rs = 0.5 and β = 1, the minimum variance of ICXT occurs at skews of zero for 4, 16 and 64-

-QAM. Then, the variance increases until it reaches its maximum value at 25, 50 and 75 ps for 4,16 and 64-QAM, 

respectively. From Fig. 2, it can be concluded that the time misalignment between the signals in different cores, 

leads to a substantial variation of the ICXT variance that can reach one half of the maximum value.  

3.2 Bit error rate estimation  

In this subsection, we estimate the influence of the ICXT generated in each MCF realization on the BER, which 

we define as BERr, and obtain the average BER. Fig. 3 depicts the BERr and the average BER as a function of the 

number of MCF realizations for different values of skew, time misalignments and roll-off factors, considering the 

16-QAM with OSNR of 14.2 dB and an ICXT level of -23 dB. Figs. 3(a)-(c) consider τmn
.Rs = 0, while, in                 

Figs. 3(d)-(f), the τmn
.Rs is set to 0.5. Figs. 3(a) and (d) consider β = 0 and Smn = 0, Figs. 3(b) and (e) consider            

β = 0 and Smn = 0 and Figs. 3(c) and (f) consider β = 0 and Smn = 160 ps. The analysis of Fig. 3 shows that the 

random nature of the ICXT in each MCF realization leads to considerable differences of the BER in each MCF 

realization. The BER can vary between -1.7 to -3.5. Moreover, as it can be noticed in Fig. 3, the average BER can 

be considered stable after 200 realizations for all the scenarios of Fig. 3.  

 

  

 

Figure 2. Normalized variance of the ICXT as a function of the skew, roll-off factor of 0 and 1 and (a) 

τmn
.Rs=0, (b) τmn

.Rs=0.5. 4-QAM (blue), 16-QAM (red) and 64-QAM (green). 

   

   

Figure 3: Average BER (red) and BER per MCF realization (blue) as a function of the MCF realization 

considering 16-QAM with ICXT level =–23 dB and τmn
.Rs=0 (a)-(c) and τmn

.Rs=0.5 (d)-(f). 



3.3 Maximum allowable ICXT level 

In this subsection, we study the influence of the skew, time misalignment between signals, modulation format 

orders and signal roll-off factors on the maximum allowable ICXT level in coherent detection MCF systems. Fig. 

4 depicts the maximum allowable ICXT level, as a function of the skew for 4, 16 and 64-QAM signals, the roll-

off factors of the RC signals and the time misalignment. Fig. 4(a) refers to τmn
.Rs = 0, while, in Fig. 4(b), τmn

.Rs = 

0.5. From Fig. 4, it can be noticed that, when  = 0 and τmn
.Rs of 0 or 0.5, the maximum allowable ICXT level is 

practically constant as a function of the skew. The Xc,max for RC signals with β = 0 is 16.7, 23.5 and 30 dB for 

4, 16 and 64-QAM, respectively. These results agree with the ones found in [4] and [5]. In Fig. 4(a), it can be 

observed that, if β = 1 and skew of 150 ps, the allowable ICXT level improves by 0.7, 1.5 and 2 dB respectively, 

for 4, 16 and 64-QAM, in comparison to the Xc,max values obtained for null skew. In Fig. 3(b), for τmn
.Rs=0.5 and  

β = 1 shows that with a null skew, the Xc,max is 2.4, 3 and 3.6 dB higher than the ones obtained in Fig. 3(a) for the 

same skew, as the Xc,max obtained are 14.3, 20.5 and -26.4 dB for 4, 16, and 64-QAM, correspondingly. For 

higher skews, it is noticed a Xc,max improvement of about 2 dB, regardless the QAM order.  

 

  

 

Figure 4: Maximum allowable ICXT level as a function of the skew for 4-QAM, 16-QAM and 64-QAM 

signals with roll-off factors of  = 0 and  = 1 and (a) τmn
.Rs=0, (b) τmn

.Rs=0.5. 
 

 

 

4. CONCLUSIONS 

A MC simulator has been developed to estimate the variance of the ICXT and the maximum allowable ICXT level 

of coherent detection MCF system for 4, 16 and 64-QAM RC signals with different roll-off factors and different 

time misalignments as a function of the skew. It has been shown that the roll-off factor of 0 leads to a maximum 

allowable ICXT level independent of the skew and decreases for higher QAM orders. For a roll-off factor of 1, the 

maximum allowable ICXT level depends on the skew and on the time misalignment of core signals. In this case, 

the maximum allowable ICXT level increases by 3.6 dB in comparison to the case of roll-off factor of 0 with null 

skew. When the skew is much higher than the symbol period, the maximum allowable ICXT level increases only 

by 2 dB. Those results show that, for signals with high roll-off factors, the time misalignment between the 

transmitted signals maybe used as an ICXT mitigation technique.  
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