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ABSTRACT 
This paper examines the reduction in brown power consumption of transport networks and data centres 

achieved by caching Video-on-Demand (VoD) contents in solar-powered fog data centers with Energy Storage 
Devices (ESDs). A Mixed Integer Linear Programming (MILP) model was utilized to optimize the delivery from 
cloud or fog data centres. The results reveal that for brown-powered cloud and fog data centres with same Power 
Usage Effectiveness (PUE), a saving by up to 77% in transport network power consumption can be achieved by 
delivering VoD demands from fog data centres. With fully renewable-powered cloud data centres and partially 
solar-powered fog data centres, savings of up to 26% can be achieved when considering 250 m2 solar cells. 
Additional saving by up to 14% can be achieved with ESDs of 50 kWh capacity. 
Keywords: Video-on-Demand (VoD), IP over WDM networks, Cloud Data Centres, Fog Data Centres, 
Renewable Energy, Energy Efficiency, Energy Storage Device (ESD), Mixed Integer Linear Programming 
(MILP). 

1. INTRODUCTION 
The video traffic is estimated to have a Compound Annual Growth Rate (CAGR) of 54% from 2016 to 2021 

[1]. As a result, the power consumption of transport networks linking cloud data centres and end users is expected 
to massively increase. As these systems are typically brown-powered, this also leads to steep rise in CO2 emission 
and operational costs due to high utilization and cooling requirements against thermal dissipation [2]. To overcome 
both issues, several greening approaches were considered in the last decade such as improving the hardware, 
optimizing the routing and workload scheduling, and using renewable power sources [3]. The authors of [2] 
considered lightpath bypassing in IP over WDM core networks to reduce the power consumption of the non-bypass 
approach. As part of the outcomes of GreenTouch, a leading Information and Communication Technology (ICT) 
research consortium with 50 industrial and academic collaborators, the work in [4]-[16] investigated a combination 
of greening approaches for IP over WDM networks. Those included optical bypassing, topology optimizations, 
Mixed Line Rates (MLRs), efficient protection and sleep modes, in addition to considering two improvement 
schemes for hardware which are the Business-As-Usual (BAU) improvement in equipment due to CMOS 
technology advances, and BAU with further GreenTouch improvements. The former indicated 4.23× energy 
efficiency improvements compared to 2010 networks while the later indicated 20× improvements. 

Optimizing the workloads and content placement to reduce the traffic and hence the power consumption was 
also considered to green core networks as in [17]–[19]. In [17], the authors focused on data centre and popular 
contents placement strategies and found that placing the data centres at the centre of the network and replicating 
the contents on multiple data centres according to popularity minimized the power consumption by 28%. In [18] 
and [19], the caching of Video-on- Demand (VoD) contents is optimized to reduce storage and transport energy 
consumption while considering sizes of the caches, contents popularity at different hours and dynamic cache 
contents replacement. To reduce the CO2 emission coupled with the rise in brown power consumption, the use of 
renewable resources was considered to power different networking and data centre elements [20]-[23].  

Different implementations such as Mobile Edge Computing (MEC), Fog Computing (FC), and cloudlet 
Computing (CC) were recently introduced to reduce the latency of cloud computing [24] and improve the energy 
efficiency of transport networks [25]-[28]. Nano Data Centres (NaDa) were introduced in [29] as a Peer-to-peer 
(P2P) computing and storage infrastructure and energy consumption reductions by 20-30% were obtained. Using 
fog data centres for smart cities was discussed in [30] to reduce core networks power consumption. The 
performance and power consumption tradeoffs of using different data centre topologies for big data computations 
in fog environments was discussed in [31]. In [32], the concept of integrating micro data centre (Micro-DC) into 
Optical Line Terminals (OLTs) of Passive Optical Networks (PONs) was discussed to partially reduce core 
networks traffic. To enhance the use of interrupted renewable sources such as solar power for data centres, 
optimizing the use of Energy Storage Devices (ESDs) was suggested [33].  

This work utilizes a MILP model to reduce the brown power consumption of transport networks when 
delivering VoD contents by maximizing the use of solar energy in fog data centres with ESDs in the access 
network. The rest of this paper is organized as the following: Section 2 elaborates on the system model and the 
parameters used in the MILP model. The results are presented in Section 3, while, the conclusions and future work 
are given in Section 4. 



 
Figure 1: Fog data centre caching model to assist cloud VoD services. 

2. SYSTEM MODEL FOR OPTIMIZING VOD DELIVERY FROM CLOUD OR FOG DATA CENTRES 
An IP over WDM network with NSFNET topology was utilized for the core network as shown in Figure 1. 

Core nodes are equipped with MLR IP router and transponder ports and the links have adequate EDFAs and 
regenerators. All devices have power consumption values taken from [5] for 2020 equipment. Cloud data centers 
(CDCs) are pre-located in nodes 2, 3, 7, 8, and 9. In each core node, a metro network, composed of edge routers 
and Ethernet switches (C9500-32QC [34]), is utilized to provide connection to the access networks. The access 
network is composed of OLTs [35] connecting the metro network with Fog Data Centres (FDCs), in addition to 
splitters and ONUs connecting to end users. For CDCs and FDCs, networking equipment power consumption is 
assumed to be 30% of the servers’ power [36]. The content server in [23] which has a maximum capacity of 1.8 
Gbps was considered, which allows FDCs to maximally provide 160 Gbps via about 88 servers. We considered 
solar renewable energy for its suitability in fog environments within cities. The solar irradiance values in all 14 
nodes were collected from [37] and an efficiency of 26.3% was considered [38]. Each FDC is powered by brown 
sources, and directly by solar cells with areas between 50 and 250 m2, or additionally by stored solar energy in an 
ESD (e.g. Li-ion battery) with capacities between 20 and 50 kWh [39]. Power Usage Effectiveness (PUE) values 
between 1.25 and 1.1 for FDCs and of 1.1 for CDCs were considered. Consumer video traffic based on Cisco 
Visual Network Index (VNI) forecast [5] was considered for the demands.  

Table 1. Key Parameters for the MILP Model. 

Power consumption of a metro Ethernet switch 40 Gbps port [34] 50 W 
Power consumption of a content server per Gbps [23] 221.1 W 
Capacity of a content server [23] 1.8 Gbps 
PUE of cloud data centre (ܷܲܧ௖) 1.1 

PUE of fog data centre (ܷܲܧ௙) 1.25 to1.1 

Ratio to account for networking equipment power consumption [36] 1.3 
Power consumption of an OLT [35] 904 W 
Total capacity of links between OLT and metro network 160 Gbps 
Total capacity of links between OLT and fog data center 160 Gbps 
Size of solar cell per OLT (ܵܵܥ) 250 ,200 ,150 ,100 ,50 ݉ଶ 
Battery maximum capacity (ܧ௠௔௫) [39] 20-50 kWh 
Charging percentage per hour and Discharging percentage per hour [33] 72.25%, and 90.25% 
Self-discharging per day [33] 3% 

3. RESULTS  
A. Power consumption with brown-powered data centres: 
We start by evaluating the brown power consumption (ܲܥ௕) required to optimally deliver VoD demands in terms 
of power consumption efficiency from brown-powered CDCs and FDCs. Figure 2 shows the total ܲܥ௕ per day for 
different ܲ  .௙ of 1.25, delivering fully from CDCs is the most efficientܧܷܲ ௙ values. The results show that forܧܷ
As ܲ  ௖, it becomesܧܷܲ ௙ is equivalent toܧܷܲ ௙ improve, the model starts to deliver partially from FDCs. Whenܧܷ
more efficient to fully stream from FDCs as the required power consumption to deliver from FDCs and CDCs will 
be equivalent, and the transport network consumption will be the factor determining the differences in ܲܥ௕. 



 
Figure 2: ܲܥ௕ under different ܷܲܧ௙ values. 

B. Power consumption with fully renewable-powered CDCs and renewable-powered FDCs: 
We now consider fully renewable-powered CDCs and FDCs with ܷܲܧ௙ of 1.1 and solar cells. Figure 3a shows 
the total ܲ  The results indicate that savings .(ܥܵܵ .i.e) ௕ per day when considering different sizes for the solar cellsܥ
by up to 26% can be achieved in the transport network relative to case A when fully delivering from the CDCs. 
 

C. Power consumption with fully renewable-powered CDCs and caching in renewable-powered FDCs with ESDs: 
In this case we consider optimizing the streaming of VoD from cloud or fog data centers with ܷܲܧ௙ of 1.1 and ܵܵܥ of 250 ݉ ଶ while optimizing ESDs usage. Figure 3b shows the total ܲܥ௕ per day when considering different 
capacities for Li-ion batteries. The results indicate that additional savings by up to 14% can be achieved in the 
transport network relative to case B for solar cell size of 250 m2. The increase in power savings values is due to 
optimizing the direct use of solar power in the FDC or charging the ESD for the use when it is not available.  
 

        
Figure 3: (a) ܲ  ,௕ with renewable-powered CDCs and partially solar-powered FDCs with different SSC valuesܥ
(b) ܲ  .௕ with renewable-powered CDCs and partially solar-powered FDCs with ESDsܥ

4. CONCLUSIONS AND FUTURE WORK 
 This paper addressed the optimization of delivering VoD services from cloud or fog data centres with solar cells 
and ESDs. With brown-powered data centres, the results indicate that with ܷܲܧ௙ higher than ܲ  ௖, it is moreܧܷ
energy efficient to deliver partially or fully from CDCs. When ܷܲܧ௙ is equivalent to ܷܲܧ௖, it is more efficient to 
deliver from FDCs. As many cloud providers utilize renewable power, we also examined the optimization when 
CDCs are fully renewable powered and the FDCs are partially solar powered. Savings by up to 26% can be 
achieved when considering 250 m2 solar cells and additional saving by up to 14% can be achieved when also 
considering ESDs with capacity of 50 kWh. Future work includes considering the actual networking power 
consumption of different topologies for FDCs, and the storage requirements and popularity of VoD contents. 

ACKNOWLEDGEMENTS 
The authors would like to acknowledge funding from the Engineering and Physical Sciences Research Council 

(EPSRC) for the INTERNET (EP/H040536/1), and STAR (EP/K016873/1). All data are provided in full in the 
results section of this paper.  

REFERENCES 
[1] "Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021," White Paper, 

Cisco, March 2017. 
[2] G. Shen and R. Tucker, "Energy-Minimized Design for IP Over WDM Networks," Optical 

Communications and Networking, IEEEIOSA Journal of, vol. 1, no. 1, pp. 176-186, June 2009. 

0
200
400
600
800

1000
1200
1400
1600

1.1 1.15 1.2 1.25

P
C

b
(M

W
)

PUEf

P(CDC)

P(FDC)

P(access)

P(metro)

P(IPoverWDM)

0
20
40
60
80

100
120

50 100 150 200 250

P
C

b 
(M

W
)

SSC (m2)

Access

Metro

WDM 0
20
40
60
80

100
120

20 25 35 50

P
C

b 
 (M

W
)

Emax (kWh)

Access

Metro

WDM

(a) (b) 



[3] Y. Zhang, P. Chowdhury, M. Tornatore, and B. Mukherjee, "Energy Efficiency in Telecom Optical 
Networks," Communications Surveys Tutorials, IEEE, vol. 12, no. 4, pp. 441-458, Fourth 2010. 

[4] J. M. H. Elmirghani, L. Nonde, A. Q. Lawey, T. E. H. El-Gorashi, M. O. I. Musa, X. Dong, K. Hinton, and 
T. Klein, "Energy efficiency measures for future core networks," in 2017 Optical Fiber Communications 
Conference and Exhibition (OFC), March 2017, pp. 1-3. 

[5] J. M. H. Elmirghani, T. Klein, K. Hinton, L. Nonde, A. Q. Lawey, T. E. H. El-Gorashi, M. O. I. Musa, and 
X. Dong, "GreenTouch GreenMeter core network energy-efficiency improvement measures and 
optimization," IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 2, pp. A250-
A269, Feb 2018. 

[6] M. Musa, T.E.H. El-Gorashi and J.M.H. Elmirghani, “Bounds on GreenTouch GreenMeter Network 
Energy Efficiency,” IEEE/OSA Journal of Lightwave Technology, vol. 36, No. 23, pp. 5395-5405, 2018. 

[7] H.M.M., Ali, A.Q. Lawey, T.E.H. El-Gorashi, and J.M.H. Elmirghani, “Future Energy Efficient Data 
Centers With Disaggregated Servers,” IEEE/OSA Journal of Lightwave Technology, vol. 35, No. 24, pp. 
5361 – 5380, 2017. 

[8] X. Dong, T.E.H. El-Gorashi and J.M.H. Elmirghani, “On the Energy Efficiency of Physical Topology 
Design for IP over WDM Networks,” IEEE/OSA Journal of Lightwave Technology, vol. 30, pp.1931-1942, 
2012. 

[9] B. Bathula, M. Alresheedi, and J.M.H. Elmirghani, “Energy efficient architectures for optical networks,” 
Proc IEEE London Communications Symposium, London, Sept. 2009. 

[10] M. Musa, T.E.H. El-Gorashi and J.M.H. Elmirghani, “Bounds for Energy-Efficient Survivable IP Over 
WDM Networks with Network Coding,” IEEE/OSA Journal of Optical Communications and Networking, 
vol. 10, no. 5, pp. 471-481, 2018. 

[11] B. Bathula, and J.M.H. Elmirghani, “Energy Efficient Optical Burst Switched (OBS) Networks,” IEEE 
GLOBECOM’09, Honolulu, Hawaii, USA, November 30-December 04, 2009. 

[12] X. Dong, T.E.H. El-Gorashi and J.M.H. Elmirghani, “Green Optical OFDM Networks,” IET 
Optoelectronics, vol. 8, No. 3, pp. 137 – 148, 2014. 

[13] M. Musa, T.E.H. El-Gorashi and J.M.H. Elmirghani, “Energy Efficient Survivable IP-Over-WDM 
Networks With Network Coding,” IEEE/OSA Journal of Optical Communications and Networking, vol. 
9, No. 3, pp. 207-217, 2017. 

[14] A. Lawey, T.E.H. El-Gorashi, and J.M.H. Elmirghani, “BitTorrent Content Distribution in Optical 
Networks,” IEEE/OSA Journal of Lightwave Technology, vol. 32, No. 21, pp. 3607 – 3623, 2014. 

[15] A.M. Al -Salim, A. Lawey, T.E.H. El-Gorashi, and J.M.H. Elmirghani, “Energy Efficient Big Data 
Networks: Impact of Volume and Variety,” IEEE Transactions on Network and Service Management, vol. 
15, No. 1, pp. 458 - 474, 2018. 

[16] A.M. Al-Salim, A. Lawey, T.E.H. El-Gorashi, and J.M.H. Elmirghani, “Greening big data networks: 
velocity impact,” IET Optoelectronics, vol. 12, No. 3, pp. 126-135, 2018. 

[17] X. Dong, T. El-Gorashi, and J. Elmirghani, "Green IP Over WDM Networks With Data Centers," 
Lightwave Technology, Journal of, vol. 29, no. 12, pp. 1861-1880, June 2011. 

[18] N. I. Osman and T. El-Gorashi and J. M. H. Elmirghani, "The impact of content popularity distribution on 
energy efficient caching," in 2013 15th International Conference on Transparent Optical Networks 
(ICTON), June 2013, pp. 1-6. 

[19] N. I. Osman, T. El-Gorashi, L. Krug, and J. M. H. Elmirghani, "Energy Efficient Future High-Definition 
TV," Journal of Lightwave Technology, vol. 32, no. 13, pp. 2364-2381, July 2014. 

[20] X. Dong, T. El-Gorashi, and J. Elmirghani, "IP Over WDM Networks Employing Renewable Energy 
Sources," Lightwave Technology, Journal of, vol. 29, no. 1, pp. 3-14, Jan 2011. 

[21] L. Nonde, T. E. H. El-Gorashi, and J. M. H. Elmirgahni, "Virtual Network Embedding Employing 
Renewable Energy Sources," in 2016 IEEE Global Communications Conference (GLOBECOM), Dec 
2016, pp. 1-6. 

[22] L. Nonde, T.E.H. El-Gorashi, and J.M.H. Elmirghani, “Energy Efficient Virtual Network Embedding for 
Cloud Networks,” IEEE/OSA Journal of Lightwave Technology, vol. 33, No. 9, pp. 1828-1849, 2015. 

[23] A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani, "Renewable energy in distributed energy 
efficient content delivery clouds," in 2015 IEEE International Conference on Communications (ICC), June 
2015, pp. 128-134. 

[24] A. C. Riekstin, B. B. Rodrigues, K. K. Nguyen, T. C. M. de Brito Carvalho, C. Meirosu, B. Stiller, and M. 
Cheriet, "A Survey on Metrics and Measurement Tools for Sustainable Distributed Cloud Networks," IEEE 
Communications Surveys Tutorials, vol. 20, no. 2, pp. 1244-1270, Second quarter 2018. 

[25] F.  Jalali, K.  Hinton, R.  Ayre, T.  Alpcan, and R.  S.  Tucker,  "Fog computing may help to save energy 
in cloud computing," IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1728-1739, 
May 2016. 

[26] A.N. Al -Quzweeni, A. Lawey, T.E.H. El-Gorashi, and J.M.H. Elmirghani, “Optimized Energy Aware 5G 
Network Function Virtualization,” IEEE Access, vol. 7, 2019. 



[27] M.S. Hadi, A. Lawey, T.E.H. El-Gorashi, and J.M.H. Elmirghani, “Patient-Centric Cellular Networks 
Optimization using Big Data Analytics,” IEEE Access, vol. 7, 2019. 

[28] M.S. Hadi, A. Lawey, T.E.H. El-Gorashi, and J.M.H. Elmirghani, “Big Data Analytics for Wireless and 
Wired Network Design: A Survey, Elsevier Computer Networks, vol. 132, No. 2, pp. 180-199, 2018. 

[29] V. Valancius, N. Laoutaris, L. Massoulie, C. Diot, and P. Rodriguez, "Greening the Internet with Nano 
Data Centers," in Proceedings of the 5th International Conference on Emerging Networking Experiments 
and Technologies, ser. CoNEXT '09.     New York, NY, USA: ACM, 2009, pp. 37-48. 

[30] S. Igder, S. Bhattacharya, and J. M. H. Elmirghani, "Energy Efficient Fog Servers for Internet of Things 
Information Piece Delivery (IoTIPD) in a Smart City Vehicular Environment," in 2016 10th International 
Conference  on  Next Generation  Mobile  Applications,  Security  and Technologies (NGMAST), Aug 
2016, pp. 99-104. 

[31] S. H. Mohamed, T. E. H. El-Gorashi, and J. M. H. Elmirghani, "Energy Efficiency of Server-Centric PON 
Data Center Architecture for Fog Computing," in 2018 20th International Conference on Transparent 
Optical Networks (ICTON), July 2018, pp. 1-4. 

[32] B. Yang, Z. Zhang, K. Zhang, and W. Hu, "Integration of micro data center with optical line terminal in 
passive optical network," in 2016 21st OptoElectronics and Communications Conference (OECC) held 
jointly with 2016 International Conference on Photonics in Switching (PS), July 2016, pp. 1-3. 

[33] C. Gu, K. Hu, Z. Li, Q. Yuan, H. Huang, and X. Jia, “Lowering Down the Cost for Green Cloud Data 
Centers by Using ESDs and Energy Trading,” in 2016 IEEE Trustcom/BigDataSE/ISPA, Aug 2016, pp. 
1508–1515. 

[34] Cisco       Catalyst       9500       series       switches       data       sheet. (Cited on          2018,          Apr).          
[Online].          Available:https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-9500-series-
switches/datasheet-c78-738978.html 

[35] ZXA10    C300: The    Industry’s    First    Future-proof    Optical    Access platform. (Cited on 2018, Apr). 
[Online]. Available: http://www.zte.com.cn/global/products/access/xpon/PON-OLT/424194 

[36] M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Consumption Modeling: A Survey,” IEEE 
Communications Surveys Tutorials, vol. 18, no. 1, pp. 732–794, Firstquarter 2016. 

[37] NREL:      MIDC/NREL      Solar      Radiation      Research      Laboratory (BMS).     (Cited     on     
2018,     Feb).     [Online].     Available: https://midcdmz.nrel.gov/apps/go2url.pl?site=BMS 

[38] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. 
Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts 
for a photo- conversion efficiency over 26%,” Nature Energy, vol. 2, p. 17032, 2017. 

[39] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in electrical energy storage system: 
A critical review,” Progress in Natural Science, vol. 19, no. 3, pp. 291 – 312, 2009. 

 

https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-
http://www.zte.com.cn/global/products/access/xpon/PON-OLT/424194
https://midcdmz.nrel.gov/apps/go2url.pl?site=BMS

