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ABSTRACT 

The rapid availability of new services makes that network operators cannot exhaustively test their impact on the 

network or anticipate any capacity exhaustion. This situation will be worse with the imminent introduction of the 

5G technology and the kind of totally new services that it will support. In this paper, we present CURSA-SQ, a 

methodology to analyze the network behavior when the specific traffic that would be generated by groups of 

service consumers is injected. CURSA-SQ includes input traffic flow modelling with second and sub-second 

granularity based on specific service and consumer behaviors. The methodology allows to accurately study 

traffic flows at the input and outputs of complex scenarios with multiples queues systems, as well as other 

metrics such as delays. 

Keywords: o Service-based traffic generation, logistic queue model, aggregated traffic models 

1. INTRODUCTION 

The advent of 5G networks impose enormous challenges for network operators and vendors, since new services 

will require stringent quality of service (QoS) from the network. In fact, before 5G deployment and service 

commercialization, the impact on the traffic injected to Multiprotocol Label Switching (MPLS)-over-optical 

metro and core networks need to be considered so they can be adequately planned. Nonetheless, no real 

monitoring data is available for the targeted networking scenarios. Incipient services to be supported by 5G 

network technologies limit the availability of real monitoring data to only what it can be obtained from test-beds, 

which, in most of the cases, do not represent those realistic scenarios that autonomic networking pursues. To 

overcome the lack of real monitoring data, analyzing synthetically generated traffic data becomes a requirement 

to validate network design before they enter into operation.  

Trying to replicate the observed self-similarity and long-range dependency in packet network traffic, several 

theoretical models have been based on stochastic processes. These models can be used within discrete-event 

simulators to generate discrete random input (packet) traffic propagated by a queue system that models the 

network under study. However, traffic generation based on discrete stochastic processes requires a set of 

parameters to be fit, which entails having real traffic traces. In this paper, we propose a fast, accurate, attainable, 

and scalable service-centric traffic flow analysis methodology based on statistical flow characterization, named 

CURSA-SQ. Starting from the packet traffic generated by single service consumers, CURSA-SQ generates 

synthetic network traffic, as well as other related traffic variables resulting from the activity of consumers and 

providers of 5G services for a wide range of use cases. 

2. SERVICE-CENTRIC TRAFFIC FLOW ANALYSIS 

In this section, we present a general overview of the CURSA-SQ methodology. Without loss of generality, let us 

consider a scenario where a network operator provides connectivity between service consumers and service 

providers. Fig. 1 illustrates the scenario, where service is requested by the consumers; the upstream traffic 

arrives from service consumers in a network node that aggregates and forwards it toward the selected service 

provider, whereas in the downstream direction, such node forwards the traffic coming from a service provider (in 

response to service requests) to the specific service consumer.  

We are interested in studying and generating traces of the aggregated traffic flows as a function of consumers 

traffic flows (hereafter, input traffic) and the characteristics of the network node (e.g., link capacity). To reduce 

the number of input traffic flows, we group consumers of the same type of service and with the same 

characteristics. Finally, a consumer group can be served from one or more locations of the same provider. 

We will use different traffic flow generators for upstream and downstream traffic. Those generators will 

generate traffic flows, in terms of bitrate, with granularity T fine enough to study flows (in the order of hundreds 

of milliseconds) but several orders of magnitude higher than those typical times and sizes of packet-based traffic 

generation (Fig. 2a). In the upstream direction, one single flow generator per consumer group will be used to 

produce the traffic flow for all the active consumers in the group; this flow generator will be located at the 

consumer group location and will target one or more service provider’s sites. In the downstream direction, each 

service provider’s site will contain a flow generator to produce the traffic flows toward the consumer groups. 

The generation process is summarized in Fig. 2b; it is based on first characterizing each service (labeled 1 in 

Fig. 2b) to find the upstream and downstream traffic characteristics (2) for one single service consumer. Then, 

the traffic flow bitrate is generated by scaling the traffic characteristics to the number of active consumers 

forecasted for a given time period (3), while transforming the characteristics from the discrete to the continuous 

domain (4). The following groups of characteristics have been identified: 1) Consumer behavior: these 

characteristics capture the behavior of the consumers of a specific service. 2) Data exchange: these 



characteristics focus on how the service generates the data to be transferred according to consumers’ activity. 3) 

Consumer infrastructure: these allow adapting the data exchange to packet traffic since network infrastructure 

can impact the service. These service-related characteristics are not deterministic, but they follow statistical 

distributions. Therefore, by analyzing them, the packet traffic that every individual consumer introduces in the 

network can be modeled in terms of a few random variables capturing how bursts (and even packets) are 

generated by a single active consumer. The most relevant random variables are: i) inter-arrival burst rate, 

defined as the rate between consecutive bursts; ii) burst size, defined as the number of bytes transmitted in a 

burst; iii) inter-arrival packet rate, as the rate between consecutive packets in a burst; and iv) packet size, as the 

total amount of bytes (headers included) of a packet. 

Once input traffic flows are generated in terms of bitrate for every period and every direction, they are used to 

generate aggregated traffic flows. To this end, a number of upstream input upstream traffic flows are aggregated, 

and the resulting flow feeds a queue system (Fig. 2c). The reverse process is followed in the downstream 

direction; the input traffic flows are aggregated (not showed in the figure) and the resulting traffic flow enters a 

queue system; at the output, a disaggregator separates the resulting flow into the defined traffic flows.  
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Fig. 1. General overview of targeted scenarios 
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Fig. 2. Overview of the CURSA-SQ Methodology 

3. INPUT TRAFFIC FLOWS AND TRAFFIC ANALYSIS 

Since even simple studies entail generating input flows that aggregate many service consumers, a meaningful 

part of the CURSA-SQ methodology is devoted to reducing the computational effort of generating large amount 

of fine granular traffic flows while ensuring the required accuracy. Then, we first propose statistical and 

mathematical models to generate aggregated input flows feeding the queue systems in practical execution times, 

and next, the general CURSA-SQ methodology to generate traffic flows is detailed. 

From the perspective of a flow aggregating several individual active consumers, the effect of both packet size 

and inter-arrival packet rate variables can be neglected compared to burst size and burst inter-arrival rate. Since 

such traffic characteristics do not depend on the number of active consumers, the main source of input flow 

variations is precisely the evolution of consumers over time. Variations in the expected number of active 

consumers need to be modeled to capture any pattern, such as periodic behaviors (e.g., a daily pattern) or 

evolutionary trends (e.g., an annual increment). With these in mind, let us define the following random variables 

to model the traffic flow of a specific consumer group aggregating consumers of the same service: 

ibr Inter-arrival burst rate (s-1), defined as the rate of consecutive bursts. bs Burst size (bits) 

r Consumer maximum flow rate (b/s) γ Traffic burstiness degree 

x(t) Bitrate (b/s) generated by a consumer group or service provider site u(t) Number of active consumers 

at time t T Traffic generation granularity (s)  
 

Since bitrate is expressed in b/s units, let us consider T = 1sec. as a reference. We consider a modelling 

approach based on computing approximations of the expectation (E) and variance (V) of x(t) based on the 

expectation and variance of ibr, bs, and u(t); these can be easily obtained assuming prior knowledge on service 

traffic random variables distribution and active consumers models. Note that the product of ibr and bs results 

into a new random variable representing the bitrate generated by one single user. E(x(t)) can be approximated as 

the product of the expected number of users and the expected single user bitrate (eq. (1)). Regarding the variance 

and assuming that bs and ibr are independent, the variance of the individual user bitrate can be derived according 

to well-known expressions to estimate the variance of the product of two independent variables (eq. (2)). Then, 

V(x(t)) can be approximated as the sum of the variance of individual users. According to the definition of a 

consumer group and the independence assumption, V(x(t)) can be estimated (eq. (3)). The model in eq. (1) and 

eq. (3) allows generating random traffic flows with the selected T. To that aim, a pseudo-random generator 
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function ϕ following a given distribution, e.g., uniform, Gaussian, etc., can be used to generate random traffic 

x’(t) according to E(x(t)) and V(x(t)). See eq. (4), where u(t)·r is the maximum traffic that the consumer group 

can inject/receive due to access speed constraints. 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )E x t E u t E bs ibr E u t E bs E ibr   =    (1) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

V bs ibr V bs V ibr E bs V ibr E ibr V bs =  +  +   (2) 
 

( ) ( )( ) ( )( )V x t E u t V bs ibr    (3) 

( )( ) ( )( )( ) '( ) min ( ) , ,x t u t r E x t V x t=    (4) 
 

 

1 

bs r

bs r ibr


+
= . (5) 

 

( ) 1

0..

0..

min , '( ) , ''( , ) '( )

''( , )
0, ''( , ) '( )

j i

j i

u t r x t T x t j x t

x t i
T x t j x t

 −

=

=

    


= 
 






 

(6) 

 

Although eq. (4) works fine generating random traffic flows for T ≥ 1 sec. traffic flows with sub-second 

granularity need to be generated to estimate queuing delays. Such sub-second scale generation must reproduce 

the nature of a bursty traffic with on-off periods producing short intervals of high activity that fill queues up. 

To this aim, a flow x’’(t,i) with sub-second granularity is generated from x’(t); index i represents the i-th 

interval T within the one-second interval centered in t. To allow computing maximum expected delays, a worst 

case of traffic bursty behavior is considered, as sketched in Fig. 3. Specifically, the example of x’(t) flow in Fig. 

3a is used to produce the x’’(t,i) with T=100 ms. in Fig. 3b; every bitrate sample in x’(t) is transformed into 10 

samples in x’’(t,i). Within every one-second interval, a first on period where bitrate can exceed that of x’(t) is 

followed by an off period where bitrate is fixed to 0. Note that the summation of all samples in x’’(t,i) within 

one-second interval equals the bitrate in x’(t). The number and magnitude of samples in the on period depends on 

the degree of burstiness γ of the traffic of the consumer group, and it is computed as in eq. (5), where γ thus, 

represents the proportion of time within a second where traffic is actually generated. Then, the generation of 

random traffic samples with sub-second interval is defined as eq. (6) Finally, it is worth noting that, if T > 1 sec., 

x’(t) can be easily computed by averaging random samples and x’’(t,i) do not need to be computed. 
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Fig. 3. Traffic generated with second (a) and 

sub-second (b) granularity 
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Fig. 4. CURSA-SQ methodology applied to VoD traffic analysis 

4. NUMERICAL RESULTS  

For the subsequent studies, we will consider three 

different services, namely: VoD, Gaming, and Internet. 

According to the CURSA-SQ methodology, relevant 

studies available in the literature providing consumer 

and service-related random variables characterization 

were used to characterize traffic sourced by consumer 

groups. Table I summarizes the expectation and 

variance of ibr and bs for these services. 

TABLE I SERVICES TRAFFIC CHARACTERISTICS 

Service E(ibr) (s-1) V(ibr) (s-1) 
E(bs) 

(MB) 

V(bs) 

(MB) 

VoD 0.25 2.54e-5 3.84 1.21 

Gaming 1.33 0.19 0.14 0.02 

Internet 1.66 0.40 0.12 0.04 
 

Let us detail the characterization of the VoD; regarding consumer behavior, according to the study presented in 

[1], the idle time y that an active user spends (e.g., deciding which content to watch) follows the power law 

probability distribution p=α×y-β, with parameters α=0.43 and β=1.2. On the other hand, the duration of the 

content selected by a user approximates an exponential distribution with a typical mean around 30 minutes and a 

reasonable maximum of 4 hours [2]. However, users usually stop a reproduction before its completion time. 

Completion rate depends on the content duration; the longer the duration is, the smaller the completion rate. A 

Weibull distribution with scale and shape parameters around 75 and 0.8 fits with a large variety of contents’ 



duration. Regarding service-related VoD characteristics, we adopt a typical on-off pattern consisting of an initial 

10-20 sec transmission of media contents, followed by a number of 2 sec media segments, until the reproduction 

finishes. According to the previously defined statistical distributions, we simulated the activity of a single 

consumer and stored the time stamp and size of 10.000 traffic bursts. The analysis of this data lead to the VoD 

consumers traffic characteristics detailed in Table I, that indicates long spaced bursts of large number of bytes. 

A similar procedure was followed to characterize gaming and Internet consumers’ traffic from key statistical 

distributions detailed in [3]-[5]. The resultant traffic characteristics differ from that of VoD in both, the 

frequency of bursts (high ibr) and its size (small bs). Note that Internet traffic is the one that shows the highest 

variance in terms of ibr, which translates into a less regular traffic pattern. 

Aiming at validating the CURSA-SQ methodology including the aggregated input traffic flow model and the 

logistic queue model, we developed a packet-based simulation environment for benchmarking purposes. 

Specifically, a packet input traffic generator produces packets streams creating of a fixed size creating 1500-byte 

Ethernet frames, according to the specific mean and variance of ibr and bs; a packets stream is generated 

independently for each individual user. Then, the aggregated packets stream is sent to a simple queue system 

with one discrete queue, which processes packet by packet. This combination of packet-based traffic generation 

and discrete queue simulation provides the baseline performance for comparison purposes. 

The CURSA-SQ methodology and the 

discrete simulator were implemented in 

Python 2.7. For each defined service, we 

considered a scenario with a single consumer 

group configured with a constant number of 

users. We run several executions with 

incremental number of users. Every execution 

generated a random flow of one day long and 

T = 1sec. according to eq. (4) that was used for 

input flow comparison purposes. Then, a sub-

second flow with T = 50ms was generated 

according to eq. (6) to evaluate the 

performance of the logistic queue model; both 

discrete and logistic queues were configured 

with a 10 Gb/s server. 

Fig. 5 shows the average bitrate of the traffic 

flows of each consumer group against the  
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TABLE II RELATIVE ERRORS OF AGGREGATED TRAFFIC FLOWS 

 VoD Gaming Internet 

users mean max mean max mean max 

10 6% 57% 4% 14% 4% 15% 

50 5% 34% 2% 5% 3% 4% 

100 4% 15% 2% 2% 2% 3% 

200 4% 10% 1% 1% 2% 2% 
 

number of users, using flow-based and packet-based generation. As shown, flow-based generation accurately 

matches the correlation between generated bitrate and number of users that packet-based generation produced. A 

detailed accuracy analysis is presented in Table II, where mean and maximum errors of flow-based generation 

w.r.t. packet-based generation are detailed for every service and different number of users. Mean errors are not 

higher that 6%, whereas maximum error remarkably decreases with the number of users, reaching no more that 

15% in the worst case (for the VoD service) when 100 or more users are considered. Note that gaming and 

Internet services experience maximum errors not higher that 15% even with 10 users. In light of these results, the 

accuracy of the proposed statistical methodology to generate aggregated input flows is validated assuming 

scenarios with a medium/high number of consumers per group. 

5. CONCLUSIONS 

The CURSA-SQ methodology has been proposed to generate accurate synthetic traffic flows based on service 

characteristics and consumers behavior, and to analyze its impact on the network infrastructure. Input traffic 

flow modelling was statistically formulated aiming at producing traffic models of flows aggregating a number of 

consumers, where second and sub-second granularities were considered. 
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