
Interfaces for Monitoring and Data Analytics systems

Lluís Gifre1, Marc Ruiz2, and Luis Velasco2*
1Universidad Autónoma de Madrid (UAM), Spain

2Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. Optical Communications Group (GCO)

*e-mail: lvelasco@ac.upc.edu

ABSTRACT

Software defined networks (SDN) represents one of the most relevant innovations in recent years for the telecom

industry. Major operators are planning to progressively migrate their transport networks, including optical, to

such paradigm to take advantage of the programmability of connectivity services. In SDN, resources are

abstracted at the networking level and exposed via a north-bound interface to management systems. On the other

hand, Monitoring and Data Analytics (MDA) systems can collect monitoring data and make them accesible to

external systems, such as billing platforms, to accurately charge users for the services they consume. In addition,

in dynamic scenarios, where resources could be created, modified and removed on demand, MDA systems can

also facilitate autonomic networking, and thus coordination between SDN and MDA is strictly required. In this

paper, we present two monitoring interfaces for MDA systems: the Monitoring (M)-Control, Orchestration, and

Management (COM) interface, an east-west interface that enables MDA systems to gather and synchronize

operational and telemetry information from multiple COM modules, e.g., an SDN controller or a cloud resource

manager, and issue recommendations to the COM modules as a result of data analysis; and the IO4 interface, a

MDA north-bound interface that facilitates exporting monitored data to external systems. Functionality of each

interface is described from the conceptual viewpoint and relevant operational workflows are proposed.

Keywords: Autonomic networking, Cognitive networking, Monitoring and data analytics

1 INTRODUCTION

With the advent of Software Defined Networks (SDN) and the stringent constraints demanded by new 5G-

based applications and services, network automation became primordial. New applications such as remote

surgery, vehicle driving engines or virtual/augmented reality require, not only a higher bitrate and throughput,

but also stringently reduced latencies, jitter and packet loss. In that regard, the only possibility available for

network operators to fulfill those requirements is to deploy autonomous networking platforms that keep track of

the state of the network resources and, when possible, reconfigure the network in a proactive manner to

minimize service disruptions.

Network automation [1], in fact, requires of an agile interaction between the Control, Orchestration, and

Management (COM) systems [2], e.g., SDN Controllers, and those Monitoring and Data Anlytics (MDA)

platforms in charge of collecting and analysing network equipment state. In that regard and aiming to enable

correlation between the network devices and the monitoring data collected from them, the MDA platform must

have access to the operational databases in the COM, e.g., the Traffic Enginering Database (TED) and the Label

Switched Path Database (LSP-DB) containing, respectively, the network topology and the connections

established in the network. In addition, a new database, named as Monitoring Database (MDB), needs to be

defined in the MDA to manage the locations originating monitoring data, e.g., the Observation Points (OP), in

the network. A network OP can be defined as the location in a network equipment where a sample containing

some kind of device state information ins taken. An additional requirement for network automation includes

bringing access to Operation/Business Support Systems (OSS / BSS) to the monitored data for different

purposes, such as traffic forecasting, billing, etc. Given the complexity of the network, it makes sense to define a

new simplified interface to facilitate access to monitoring data.

In this paper, we present the M-COM and IO4 monitoring interfaces and their integration in a distributed

MDA platform like CASTOR [3], to provide means for synchronizing the operational databases of related COM

modules, issue recommendations to those COM modules based on monitored data, and collect/configure

telemetry for those network/IT devices with that capability. Note that this concepts can be extended to any

network/IT equipment; however, in this paper, we will insight in network equipment.

2 MONITORING AND DATA ANALYTICS ARCHITECTURE

Despite of the fact that internal details of COM modules are, in general, hidden by interfaces, it is important to

understand the internals of the monitoring module to help separation of functionalities between M-COM and IO4

interfaces. Figure 1 overviews a simplified view of the architecture of the MDA controller of CASTOR [1], a

distributed MDA platform, extended with the M-COM and IO4 monitoring interfaces. CASTOR is composed of

different modules according to a monitoring hierarchy with different levels of visibility, i.e., node-wide and

network-wide. To this respect, we only consider the centralized network-wide module, which is actually the one

interfacing both M-COM and IO4. From Figure 1, we can clearly define the expected functionalities supported

by each interface.

The MDA controler offers two South Bound

Interfaces (SBI) to interact with MDA Agents,

i.e., monitoring nodes placed in a Central Office

(CO) to collect, aggregate and pre-analyze

samples from multiple, possibly disagregated,

network devices and forward processed data to

the MDA controller. When data (IPFIX Samples

or RESTConf notifications) is received at the

MDA controller, the Data Manager block is in

charge of storing them in the Collected Data

Repository, a scalable multi-master database

Op. DBsIPFIX

Speaker

RESTCONF

Client

MDA Controller

Data

Collector

COM

M-COM

(M)

Service

NBI

IO4 Server KDD

Manager

ProcessKDD

Process

KDD API

Collected

Repo.

API
M-COM

(COM)Data

Manager

IO4 ClientOSS/BSS

Figure 1. Architectural diagram

such as Apache Cassandra, through the Data Collector API. The KDD Manager block serves as a container for

running user-defined KDD processes in charge of processing incoming samples and notifications. To do so,

KDD processes can subscribe to triggering events issued by the Data Collector API upon the reception of new

samples and notifications. To support operation of the KDD processes, an Operational Databases block has

been included. This block stores a clone of the operational databases in the connected COM modules, e.g., the

network topology and connections databases of an SDN controller or the Virtual Network Functions (VNFs) and

service chains in a Network Function Virtualization (NFV) orchestrator.

Additional monitoring interfaces have been defined in the context of network/IT telemetry, enabling not only

data monitoring itself but also simple remote configuration of the data collection, collation and correlation

processes, as well as possible decision-making or, at least, feedback to the COM modules. The M-COM and IO4

interfaces abstract a set of functionalities related to these tasks. Specifically, to facilitate the interaction between

the MDA and COM systems, the M-COM interface has been defined to provide means for synchronizing the

Operational Databases from the COM to the MDA controller, issuing recommendations for network/IT

reconfiguration from the MDA controller and, optionally, receiving monitoring samples directly from the COM

module. Similarly, the IO4 interface has been defined to enable external systems, such as an OSS/BSS, to

retrieve monitoring samples from the MDA controller for different purposes that could include, amobg others,

billing and service forecasting.

3 M-COM INTERFACE

The M-COM interface is devoted to synchronize information from operational databases from the COM

module to the monitoring platform. This information can be correlated with monitoring data and enable issuing

notifications to the COM module about different events, even providing recommended actions. The M-COM

interface can also be used to manage telemetry functionalities from monitorable network/IT devices; in that

regard, the M-COM offers methods to create/modify/delete OPs referring to telemetry streams in network/IT

devices thus, configuring them to export telemetry data to the appropriate MDA platform components.

SDN Controller

REST API

NBI

Recommend.

Service

Drivers

Dispatchers

(ThreadPool)

Topology Event

Connection Event

Recommend.

ObsPoint Event

Other app

Listener

Topo. & Conn.

ListenersS
u

b
s
c
rib

e
rs

MDA Controller

REST API

Client

Handler

Events Dispatcher

Send Recommend.

Manage Subscrip.

Manage ObsPoints

REST API

Listener

Oper. DBs

TED

LSPDB

MDB

M-COM

interface
M-COM

application

MDB

OPs

Samples

Listener

Samples

Service

Figure 2. Components of the M-COM interface

Figure 2 illustrates the components belonging to the M-COM interface at both, the MDA controller and SDN

controller sides. At the COM module side, the M-COM interface is implemented as a pluggable application and

consists of: i) the REST API NBI block publishes M-COM management commands on the COM North Bound

Interface (NBI) to receive control commands, ii) the Subscribers block keeps track of the subscribers that

requested to receive database updates from the COM module and distributes events to them, iii) the Dispatchers

block is implemented as a thread pool and integrates the logic to process M-COM – related events, iv) the

Recommendation Service provides a means for other applications in the SDN controller to subscribe to messages

received from the MDA controller, v) the Topology & Connection Listeners are in charge of capturing events

from the COM operational databases and triggering the execution of appropriate tasks in the Dispatcher block,

vi) the MDB block keeps track of the OPs requested by the MDA controller and configures the COM Drivers to

enable telemetry and send the collected samples directly to the MDA controller, vii) the Samples Service enables

Drivers to push their telemetry data to be received by those Sample Listeners connected to the service, and viii)

the Samples Listener collects the telemetry samples issued by the COM Drivers and, if configured, forwards

them to the subscribers of the MDB database.

SDN CtrlMDA Ctrl

Get DB List

DB List: TED, LSP-DB, MDB

Get TED

TED

Get LSP-DB

LSP-DB

Get MDB

MDB

Subscribe TED (ip,port,url,[credent])

TED subscription Id

Subscribe LSP-DB (ip,port,url,[credent])

LSP-DB subscription Id

Subscribe MDB (ip,port,url,[credent])

MDB subscription Id

Notify(event)

OK

MDA Ctrl

M-COM iface

MCOM app

Topo/Conn-Listeners

event

MCOM app

Dispatcher

ManageOP(opId,

devId, rsrcId,

period, active)

OP

MDA Ctrl

M-COM iface

operation

Send(opId, sample)

OK

MDA Ctrl

M-COM iface

M-COM app

Samples Listener

sample

M-COM app

Dispatcher

Device

Driver

sample

e) Send Samples to MDA Controller

d) Create/Delete/Activate/Deactivate OP

b) DB change notificationa) Initial DB sync and subscription

Notify(message)

OK

MDA Ctrl

M-COM iface

MCOM app

Recomm. Service

message

c) Message notification

M-COM app

Samples Service

sample

Device

Driver

M-COM app

MDB

MCOM app

Dispatcher

Driver

Service

driver

Get(devId)

sample

M-COM app

MDB

Figure 3. Operations supported by M-COM interface

At the MDA controller side, the M-COM interface consists of: i) a REST API Client that serves as a gateway

to issue RPC commands to the COM module, ii) a REST API Listener that receives asynchronous messages from

the COM module, such as database change events, and iii) a Handler block that integrates the logic of the M-

COM interface. The latter, in turn, consists of four sub-blocks: i) the Operational Databases stores a clone of the

operational databases in the COM module and is updated by database change events from the REST API

Listener, ii) the Manage Subscriptions block deals with subscriptions handling to receive database changes from

the COM, iii) the Manage ObsPoints block provides an interface to (de)configure OPs at the COM from the

MDA controller, and iv) the Send Recommendation block enables the MDA controller to issue messages to feed

applications in the COM module. Figure 3 illustrates the workflows for the functionalities related to the M-COM

interface; these are:

• Get list of databases (Get DB List in a): returns the list of identifiers for those operational databases

managed by a COM module.

• Get database (Get TED / Get LSP-DB / Get MDB in a): returns the contents of the operational database

instance identified by the provided input(s).

• Subscribe to database changes (Subscribe TED / Subscribe LSP-DB / Subscribe MDB in a): subscribes the

MDA controller to asynchronous notifications of database changes to avoid periodic polling processes. The

requests should carry the endpoint (IP address, port, and URL) as well as the credentials that the M-COM

application will use to issue the database change notifications. Similarly, there are unsubscribe methods to

remove existing subscriptions.

• Notify database change (b): notifies about changes in a resource within a database. Operational database

change events are collected using topology and connection listeners.

• Notify message (c): notifies messages from the MDA controller to the COM by means of Recommendation

Service that distributes the message to listeners, i.e., other COM applications, subscribed to this service.

• Manage observation points (d): Creates/gets/updates/removes OPs in the COM module and triggers the

appropriate operations in the related network/IT devices through COM device drivers.

• Send Samples (e): when this functionality is available at a device driver, the driver periodically collects

telemetry samples from the device and issues them to the Samples Service from the M-COM application.

Since M-COM application implements a Samples Listener, each sample will be received, processed by the

MDB block and forwarded to the MDA controller through the M-COM interface. In case this functionality is

not available in the driver, the device needs to be configured to forward the samples to some component in

the MDA platform, e.g., an MDA agent or the MDA controller.

4 IO4 INTERFACE

The IO4 interface is designed to enable an external system, such as an OSS/BSS, to access the collected data

repository at the MDA controller to retrieve raw data from network/IT devices, i.e., for monitoring, billing, or

analysing different scenarios. Figure 4 illustrates the components belonging to the IO4 interface. From the MDA

controller side, the interface consists of a REST API server that receives commands from the external system and

triggers the execution of tasks in a Requests Dispatcher. The Requests Dispatcher accesses to the MDB to

retrieve OPs and validate the requests, and to the Samples Repository to retrieve the samples according to the

request parameters, i.e., the time frame and the OP identifier.

MDA Controller

Requests

Dispatcher

REST API

Server

Oper. DBs

MDB

IO4

interface

Samples

Repo

OSS / BSS

Monitoring consumer

application

REST API

Client

Monitoring

Handler

MDB

Samples

Figure 4. Components of the IO4 interface

MDA CtrlOSS/BSS

Get OP List (entity, sampleType)

OP List [<opId, period, entity, sampleType>]

Get OP Data(opId, timeFrame)

Sample List [<opId, timeStamp, {values}>]

Figure 5. Operations of the IO4 interface

In a generalist way, an external system willing to use the IO4 interface only needs to implement a simple

REST API client and a Monitoring Handler block responsible for managing the monitoring entities in the MDA

controller. That Monitoring Handler needs to implement two databases: an MDB to store the attributes retrieved

for each OP requested to the MDA controller, and a Samples database to store the samples belonging to these

OPs. Note that when an OP is requested, the attributes should carry OP’s sampling period; the Monitoring

Handler at the external system should schedule sample requests with that specific periodicity to prevent flooding

the MDA controller with unneeded/redundant requests.

Figure 5 illustrates the workflows defined for the functionalities related to the IO4 interface; these

functionalities are briefly described below:

- Get list of OPs (Get OP List): returns the list of OPs that fulfill a set of optional input criteria, i.e., entity

name and sample type.

- Get OP data (Get OP Data): returns the list of available samples for a specific OP. Optionally, a time

frame can be defined for filtering purposes.

5 CONCLUSIONS

East-west interface M-COM and NBI IO4 for MDA platforms have been presented in this paper. While the M-

COM interface enables interaction between a COM module, such as an SDN controller, to synchronize the

operational databases, issue recommendations and configure/collect monitoring samples, the IO4 is provided to

export collected monitoring samples to external systems, such as an OSS/BSS, needing to consume monitoring

data for other purposes including, among others, billing and infrastructure forecasting. A conceptual explanation

and requirements for them, as well as relevant workflows related to each funcionality have been described.

ACKNOWLEDGEMENTS

This work was partially supported by the EC through the METRO-HAUL project (G.A. nº 761727), from the

AEI/FEDER TWINS project (TEC2017-90097-R), and from the Catalan ICREA Institution.

REFERENCES

[1] D. Rafique and L. Velasco, “Machine Learning for Optical Network Automation: Overview, Architecture and

Applications,” IEEE/OSA J. of Optical Communications and Networking (JOCN), vol. 10, pp. D126-D143, 2018.

[2] L. Velasco et al., “A Control and Management Architecture Supporting Autonomic NFV Services,” Springer Photonic

Network Communications, vol. 37, pp. 24-37, 2019.

[3] Ll. Gifre et al., “Autonomic Disaggregated Multilayer Networking,” IEEE/OSA J. of Optical Communications and

Networking (JOCN), vol. 10, pp. 482-492, 2018.

[4] L. Velasco et al., “An Architecture to Support Autonomic Slice Networking [Invited],” IEEE/OSA J. of Lightwave

Technology (JLT), vol. 36, pp. 135-141, 2018.

