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ABSTRACT 

Cooperative Localization has received extensive interest from several scientific communities including Robotics, 

Optimization, Signal Processing and Wireless Communications. It is expected to become a major aspect for a 

number of crucial applications in the field of Connected and (Semi-) Autonomous vehicles (CAVs), such as 

collision avoidance/warning, cooperative adaptive cruise control, safely navigation, etc. 5G mobile networks will 

be the key to providing connectivity for vehicle to everything (V2X) communications, allowing CAVs to share 

with other entities of the network the data they collect and measure. Typical measurement models usually deployed 

for this problem, are absolute position information from Global Positioning System (GPS), relative distance to 

neighbouring vehicles and relative angle or azimuth angle, from Light Detection and Ranging (LIDAR) or Radio 

Detection and Ranging (RADAR) sensors. In this paper, we provide a cooperative estimation approach that 

performs multi modal-fusion between interconnected vehicles. This method is based on a Graph Signal Processing 

tool, known as Laplacian Graph Processing, and significantly outperforms existing method both in terms of 

attained accuracy and computational complexity. 
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1. INTRODUCTION 

Localization is one of the main pillars of Intelligent Transportation Systems (ITS). Although, Global Navigation 

Satellite Systems (GNSSs), e.g. GPS, provide absolute position information, their accuracy is limited and 

deviations up to 10m or higher may arise, especially in harsh environments such as urban canyons. Since the 

localization error in autonomous driving should be no greater than 5m in the worst case, accurate localization 

methods should be developed. In recent years, there is a growing interest in Cooperative Localization (CL) as a 

means to improve GPS accuracy. CL is based on the 5G communication technology V2X, allowing the vehicles 

of a Vehicular-Ad-hoc-NETwork (VANET) to share information. Useful information could be absolute position 

from GPS, relative distance or angle (shown in Fig. 2) to neighbouring vehicles from LIDAR/RADAR. Thus, CL 

relies on 5G for the fusion of different measurement modalities used in VANET, in order to improve the position 

accuracy.  

Recent approaches of CL on VANETs, include [2] where an objective function, based on absolute positions, 

relative distances and relative angles measurements of the vehicles, is minimized by employing Alternating 

Direction Method of Multipliers (ADMM). In [3], vehicles share absolute position, relative position and motion 

state measurements and CL is performed by a covariance intersection filter (CIF). The VANET of [4], fuses 

absolute position and range measurements, using Extended Kalman Filter (EKF) and CIF. In [5], a CL method in 

tunnels, that fuses V2X measurements using particle filtering, is presented. Finally, in [1], CL approaches in 

Wireless Sensor Networks are categorized as Non-Bayesian, where the relative or self-measurements depend only 

on the locations of nodes or location of self-node involved, and Bayesian, where the location of node depends only 

on the measurements of that node. The former relies on Maximum Likelihood Estimation (MLE) and the latter on 

Maximum A Posteriori (MAP) Estimation.  

The previously discussed methods focus only on the pair-wise measurements of the interconnected vehicles. 

To the best of our knowledge, the method proposed here is the first one which, apart from the measurement models, 

it also considers the connectivity properties of the underlying graph formed by the involved vehicles. Moreover, 

we integrate these properties in our location estimation approach. Our main contributions can be summarized as 

follows: 

• A novel method for efficient CL in VANETs is proposed. The method performs cooperative multi-modal 

fusion exploiting the intrinsic geometric properties. This is achieved by encoding each vehicle's position, 

relative to its neighbouring vehicles. 

• The new method is implemented in a centralized fashion, assuming the existence of a fusion centre. 



• As shown via extensive experiments, the new method outperforms existing state-of-the-art method in terms 

of both accuracy and execution time. The gain in execution time is as high as 2 orders of magnitude. Note that 

the method chosen for comparison is the one in [2] because it exploits the same type of measurements. 

The rest of the paper is organized as follows: section 2 provides the background of traditional CL in VANETs; 

section 3 presents the proposed method, while section 4 is dedicated to the experimental setup and simulation 

results and section 5 concludes our work. 

 

2. COOPERATIVE NETWORK LOCALIZATION 

Consider a 2-D region where N connected vehicles collect measurements while moving. An example of such a 

VANET, is shown in Fig. 1. The location of the 𝑖-th vehicle at 𝑘-th time instant is given by 𝒙𝒊
(𝑘)

 = [𝑥𝑖
(𝑘)

𝑦𝑖
(𝑘)]

𝑇
.  

 

 

 

 

 

 

 

Figure 1. Example of VANET  Figure 2. Angle measurements           Figure 3. NLOS  

Each vehicle knows its absolute position from GPS and measures its relative distances and angles with respect 

to neighbouring vehicles using LIDAR or RADAR. The true relative distance 𝑧𝑑,𝑖𝑗
(𝑘)

 between connected vehicles  

𝑖 and 𝑗 is given by 𝑧𝑑,𝑖𝑗
(𝑘)

 = ‖𝒙𝒊
(𝑘)

− 𝒙𝒋
(𝑘)

‖, where ‖ ⋅ ‖ is the l2 norm. The true angle (shown in Fig. 2) 𝑧𝑎,𝑖𝑗
(𝑘)

 between 

neighbouring vehicles 𝑖 and 𝑗 is given by 𝑧𝑎,𝑖𝑗
(𝑘)

 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦𝑗

(𝑘)
−𝑦𝑖

(𝑘)

𝑥𝑗
(𝑘)

−𝑥𝑖
(𝑘) . The acquired measurements are assumed to be 

described by the following models: 

• Relative distance measurement: 𝑧̃𝑑,𝑖𝑗
(𝑘)

 = 𝑧𝑑,𝑖𝑗
(𝑘)

 + 𝑤𝑑
(𝑘)

,   𝑤𝑑
(𝑘)

∼ 𝒩(0, 𝜎𝑑
2)       (1) 

• Relative angle measurement: 𝑧̃𝑎,𝑖𝑗
(𝑘)

 = 𝑧𝑎,𝑖𝑗
(𝑘)

 + 𝑤𝑎
(𝑘)

,   𝑤𝛼
(𝑘)

∼ 𝒩(0, 𝜎𝑎
2)       (2) 

• Absolute position measurement: 𝑧̃𝑝,𝑖
(𝑘)

 = 𝒙𝒊
(𝑘)

 + 𝒘𝒑
(𝑘)

,   𝒘𝒑
(𝑘)

∼ 𝒩(0, 𝚺𝒑)       (3) 

Covariance matrix 𝚺𝒑 is a diagonal matrix equal to diag (𝜎𝑥
2, 𝜎𝑦

2). A typical approach in CL is to formulate an 

objective cost function 𝒞(𝒙) (according to MLE [1], [2]) and to minimize it with respect to locations 𝒙𝒊 in order 

to reduce the error of absolute position measurement. The likelihood function of the measurement models can be 

written as: 

ℒ(𝒙) = ∏ 𝒫(𝑧̃𝑑,𝑖𝑗
(𝑘)

|𝒙𝒊
(𝑘)

, 𝒙𝒋
(𝑘)

)𝑖∈𝑁,𝑗∈𝑁(𝑖) ∏ 𝒫(𝑧̃𝑎,𝑖𝑗
(𝑘)

|𝒙𝒊
(𝑘)

, 𝒙𝒋
(𝑘)

)𝑖∈𝑁,𝑗∈𝑁(𝑖) ∏ 𝒫(𝑧̃𝑝,𝑖
(𝑘)

|𝒙𝒊
(𝑘)

)𝑖∈𝑁       (4) 

where N(𝑖) denotes the set of neighbours of the 𝑖-th vehicle and 𝒫(⋅) are the probability density functions of the 

measurement models. If we take the logarithm of Eq. (4), then the objective cost function (same as in [2] and 

similar to that of [1]) is given by:  

𝒞(𝒙)(𝑘) = ∑ (𝑧̃𝑑,𝑖𝑗
(𝑘)

− 𝑧𝑑,𝑖𝑗
(𝑘)

)
2

/𝑖∈𝑁,𝑗∈𝑁(𝑖) 2𝜎𝑑
2    + ∑ (𝑧̃𝑎,𝑖𝑗

(𝑘)
− 𝑧𝑎,𝑖𝑗

(𝑘)
)

2
/𝑖∈𝑁,𝑗∈𝑁(𝑖) 2𝜎𝑎

2   + ∑
1

2𝑖∈𝑁  [(𝑧̃𝑝,𝑖
𝑥,(𝑘)

− 𝑥𝑖
(𝑘)

)
2

/𝜎𝑥
2 +

 (𝑧̃𝑝,𝑖
𝑦,(𝑘)

− 𝑦𝑖
(𝑘)

)
2

/𝜎𝑦
2 ]           (5) 

For the minimization of Eq. (5), interior point methods (e.g., those provided by CVX software) can be applied. 

The noise in range measurements is assumed to be Gaussian (as in [3], [4]) under the hypothesis of Line-of-Sight 

(LOS) between the vehicles (Fig. 1). However, in a highly complex environment, it is probable that between two 

vehicles, an occluding object (e.g. building, vehicle etc.) also exists (Fig. 3), and therefore, LIDAR/RADAR 

cannot provide an accurate range estimation. This effect is known as Non-LOS (NLOS) and it is a serious challenge 

of autonomous driving. The work in [7], tackles with detecting hidden objects (e.g. hidden around corners), using 

LIDAR confocal scanning. Under these assumptions, the noise in range measurements can be modelled as: w~ 

(1 − ϵ) ⋅ 𝒩(0, σ𝑤
2 ) + ϵ ⋅ ℋ, where ℋ a heavy-tailed Gaussian Distribution and ϵ ∈ [0,1] the probability that the 

current measurement is NLOS affected. 



3. SPARSE LAPLACIAN BASED LOCALIZATION 

The method that will be derived in this section is based on a proper extension of the Laplacian Processing technique 

[6]. The motivation was that by modelling a VANET as an undirected graph, one can exploit not only the different 

measurement modalities between connected vehicles, but also the connectivity representation of involved vehicles. 

Let 𝒢 = (𝒱, ℰ) be an undirected graph, where 𝒱 is the set of vertices and ℰ the set of edges. Each vertex 𝑣𝑖 is 

represented by absolute cartesian coordinates as 𝒗𝒊  =  [𝑥𝑖 𝑦𝑖]. The differential coordinates 𝛅𝒊 for each vertex 𝒗𝒊 

are defined as 𝛅𝒊 = [δ𝑖
(𝑥)

δ𝑖
(𝑦)] = 𝒗𝒊 −

1

𝑑𝑖
∑ 𝒗𝒋𝑗∈𝑁(𝑖) , where 𝑑𝑖 is the number of neighbors of vertex 𝒗𝒊. We also 

define the diagonal degree matrix 𝐃 (D[i,i] = 𝑑𝑖) and adjacency matrix Α, with A[i,j] = 1, if  (𝑖, 𝑗) ∈ ℰ and A[i,j] 

= 0, otherwise. Finally, the symmetric Laplacian matrix 𝐋 of graph is equal to 𝐋 =  𝐃 –  𝐀. Relying on the 

previously defined 𝛅 coordinates, one can recover the true absolute coordinates of the vertices, represented by the 

vectors 𝐱 and 𝒚, by solving the systems: 

 𝐋𝐱 = 𝐃𝛅(𝐱)and 𝐋𝐲 = 𝐃𝛅(𝐲)             (6) 

Each vehicle, using LIDAR or RADAR, can also exploit, the azimuth angle (shown in Fig. 2) measurement 

between vehicle observer 𝑖 and vehicle target 𝑗:      

𝑧̃𝑎𝑧,𝑖𝑗
(𝑘)

 = 𝜆𝜋 +  𝑎𝑟𝑐𝑡𝑎𝑛
|𝑥𝑗

(𝑘)
 − 𝑥𝑖

(𝑘)
|

|𝑦
𝑗
(𝑘)

 − 𝑦
𝑖
(𝑘)

|
 +  𝑤𝑎𝑧

(𝑘)
, 𝜆 = 0,1 𝑜𝑟 𝑧̃𝑎𝑧,𝑖𝑗

(𝑘)
 =   𝜆𝜋 +  𝑎𝑟𝑐𝑡𝑎𝑛

|𝑦𝑗
(𝑘)

 − 𝑦𝑖
(𝑘)

|

|𝑥
𝑗
(𝑘)

 − 𝑥
𝑖
(𝑘)

|
 +  𝑤𝑎𝑧

(𝑘)
, 𝜆 =  

1

2
,

3

2
, 

𝑤𝑎𝑧
(𝑘)

 ~ 𝒩(0, 𝜎𝑎𝑧
2 )           (7) 

For example, in Fig. 2, λ =  
1

2
. We can also notice from Fig. 2, that: δ𝑖

(𝑥)
=

1

𝑑𝑖
∑ 𝑣𝑖

(𝑥)
𝑗∈𝑁(𝑖) − 𝑣𝑗

(𝑥)
=

1

𝑑𝑖
∑ −𝑗∈𝑁(𝑖) 𝑧̃𝑑,𝑖𝑗𝑠𝑖𝑛𝑧̃𝑎𝑧,𝑖𝑗  ,   δ𝑖

(𝑦)
=

1

𝑑𝑖
∑ 𝑣𝑖

(𝑦)
𝑗∈𝑁(𝑖) − 𝑣𝑗

(𝑦)
=  

1

𝑑𝑖
∑ −𝑗∈𝑁(𝑖) 𝑧̃𝑑,𝑖𝑗𝑐𝑜𝑠𝑧̃𝑎𝑧,𝑖𝑗      (8) 

By considering the vehicles of the network as vertices of a graph and the communication link between the 

neighbours as its edges, we can derive the associated matrices 𝐃, 𝐀, 𝐋. Moreover, each vehicle utilizing 

measurement models of Eq. (1) and Eq. (7), can send its measurements to a fusion centre, which can compute the 

𝛅 coordinates. However, L is a singular matrix, which implies that systems in Eq. (6) are not solvable. Thus, we 

need to add into the systems some anchor points 𝐜𝒊 with known absolute coordinates. Furthermore, if we assume 

as anchors e.g. the vertices 𝒗𝟏 and 𝒗𝟓, then the extended 𝑳̃ is equal to 𝑳̃ = (
𝐋
𝒆𝟏

𝒆𝟓

), where 𝐞𝒊 is a vector with 0’s and 

e𝑖[𝑖] = 1. After adding the anchor points, the systems in Eq. (6) can be re-written as: 

𝑳̃𝒙 = 𝒃(𝑥), 𝒃(𝑥) = [𝛅(𝑥) 𝑐1
(𝑥)

. . .]
𝛵

  and  𝑳̃𝒚 = 𝒃(𝑦), 𝒃(𝑦) = [𝛅(𝑦) 𝑐1
(𝑦)

. . .]
𝛵

     (9) 

The required location vectors 𝐱 and 𝒚 can be computed in the Least Squares sense as follows: 

𝐱 = (𝑳̃𝑻𝑳̃)
−1

𝑳̃𝑻𝒃(𝑥) and  𝐲 = (𝑳̃𝑻𝑳̃)
−1

𝑳̃𝑻𝒃(𝑦)        (10) 

In practice, as anchor points the GPS positions of the vehicles of the network (Eq. (3)) can be used. Furthermore, 

each 𝜹𝒊 must be multiplied with 𝑑𝑖, so as to remain in accordance with Eq. (6). Moreover, due to the limited 

communication range of vehicles' transceivers, matrix 𝑳̃ is actually sparse. Thus, one may use a sparse least-

squares solver, in order to solve systems of Eq. (9).  

To summarize, in Step 1 we create matrices D, A, L, in Step 2 we define 𝜹 coordinates of vehicles using Eq. 

(8) and in Step 3, we solve the systems in Eq. (10). 

4. SIMULATIONS 

4.1 Experimental Setup 

Extensive experiments were conducted for different levels of noise of measurement models. The initial locations 

of vehicles were determined assuming uniform distribution for 𝐱 and 𝒚 coordinates. We generated the trajectories 

of vehicles for 500-time instances according to the vehicle motion model of [5]. Active communication links were 

assumed to exist between the vehicles, only if their distance was lower than 20m, and the number of connected 

neighbours was at most 6. Based on these assumptions we considered two different approaches: i) the Traditional 

CL (of [2] and Eq. (5)) based on MLE (TCL-MLE), and ii) the proposed centralized scheme as Graph-based CL 

(GCL-CLapl). We applied the two approaches at each time instant. Equation (5) was minimized using the CVX 

software. Each time instant, we set σ𝑥 = 3m, 𝜎𝑦 = 2.5m in order to have an average GPS error equal to 3.4m and 

we calculated the Mean Square Localization Error (MSLE) of GPS and the 2 aforementioned methods. In Fig. 4, 

we present the Cumulative Distribution Functions (CDFs) of MSLE with σ𝑑 = 1𝑚 and 𝜎𝑎𝑧 = 4o for (a) ϵ = 0, (b) 

ϵ = 0.1, (c) ϵ = 0.15, and (d) ϵ = 0.2 for 10 vehicles. ℋ is the Standard Gumbel Distribution and the Gaussian 

noise of distances and angles is based on [2]. 



4.2 Evaluation study 

The performance of the proposed method, as well as that of the method in [2], depends on the error introduced in 

range measurements. The variance of the range measurements error is usually much smaller than the variance of  

 

  (a) 𝜖 = 0                   (b) 𝜖 = 0.1       (c) 𝜖 = 0.15        (d) 𝜖 = 0.2 

Figure 4. CDFs of MSLE 

the GPS error, allowing an accurate estimation of the differential coordinates, which seems to be a requirement 

for estimating accurately the actual vehicles position.  

In Fig. 4, it is evident that there is a significant reduction of GPS error using both methods. In Fig. 4-(a) the 

reduction of error is 88% for GCL-CLapl and 78% for TCL-MLE. In Fig. 4-(b) the reduction of error is 83% for 

GCL-CLapl and 65% for TCL-MLE. In Fig. 4-(c) the reduction of error is 79% for GCL-CLapl and 52% for TCL-

MLE. In Fig. 4-(d) the reduction of error is 78% for GCL-CLapl and 48% for TCL-MLE. It is obvious that the 

performance of the two CL methods is degraded when ϵ increases and the NLOS effect is stronger. However, 

GCL-CLapl outperforms TCL-MLE in all 4 cases and proves to be more robust to noise. This is apparently due to 

the fact that the proposed method exploits not only the (noisy) inter-vehicle measurements but it also integrates 

properly the connectivity representation of the VANET graph. Thus, the impact of noise in range measurements 

could be further reduced, even in the presence of the NLOS effect. 

Τhe average execution time is independent of ϵ. It is 0.0015 sec with GCL-CLapl and 0.4357 sec with TCL-

MLE. More specifically, our method is 290 times faster than TCL-MLE. Therefore, GCL-CLapl is 2 orders of 

magnitude faster than TCL-MLE. 

5. CONCLUSION 

In this paper, we modelled the vehicles of a VANET as vertices of an undirected graph and the communication 

links between them as the edges of the graph. Each vehicle knows its absolute position and measures the relative 

distance and angle or azimuth angle to its neighbouring and connected vehicles. Thus, by creating the Laplacian 

matrix and defining the 𝛅 coordinates, Sparse Laplacian Localization can significantly improve GPS accuracy. 

Finally, we have proven that our centralized scheme, outperforms the method of [2], both in terms of accuracy and 

execution time. Regarding the accuracy, the reduction of MSLE can reach 78%-88% with our method (instead of 

48%-78% of [2]) under variable NLOS conditions, while the gain in execution time is 2 orders of magnitude. 
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