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ABSTRACT 
The introduction of cloud data centres has opened new possibilities for the storage and processing of data, 
augmenting the limited capabilities of peripheral devices. Large data centres tend to be located away from the end 
users, which increases latency and power consumption in the interconnecting networks. These limitations led to 
the introduction of edge processing where small-distributed data centres or fog units are located at the edge of the 
network close to the end user. Vehicles can have substantial processing capabilities, often un-used, in their on-
board-units (OBUs). These can be used to augment the network edge processing capabilities. In this paper, we 
extend our previous work and develop a mixed integer linear programming (MILP) formulation that optimizes 
the allocation of networking and processing resources to minimize power consumption. Our edge processing 
architecture includes vehicular processing nodes, edge processing and cloud infrastructure. Furthermore, in this 
paper our optimization formulation includes delay. Compared to power minimization, our new formulation 
reduces delay significantly, while resulting in a very limited increase in power consumption.  
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1. INTROUCTION 
Data centres and centralized clouds have resulted in a significant shift in the capabilities of users in terms of data 
processing and data storage, thus significantly augmenting edge devices [1]. Traffic continues to grow at 30% - 
40% [2] per year currently and this huge growth in traffic has led to a corresponding large growth in data centre 
requirements and in the power consumption of the network and processing [2]-[6]. Consideration has been given 
to different network segments [7] - [11], and to content distribution networks [12]. The introduction of distributed 
mini data centres close to the edge of the network is one promising solution that is currently being pursued [13] - 
[17]. Particular attention has been given to IoT [18], [19], the big data produced, and hence the improvement of 
the energy efficiency of such big data edge processing networks [20] – [23]. The introduction of autonomous 
driving promises new frontiers in vehicle processing capabilities, and hence the evaluation of Internet of Vehicle 
(IoV) approaches has gained momentum [24]. These added vehicular processing capabilities have opened new 
research avenues in vehicular clouds and in Vehicle as Resource (VaaR) approaches [25]. We have considered 
the use of the processing capabilities of vehicles in [26] where vehicles become the first stage in the chain of 
processing options that extends in our architecture from the vehicle processors, to the edge layer and its potential 
fog processing and finally to the core network segment where the central clouds are located. We compared our 
architecture to conventional architectures where power consumption was the main criterion in our comparisons. 
Following the introduction, we present our vehicular distributed architecture in Section II. We then discuss our 
MILP model and the optimization in Section III together with the results. Finally, conclusions are given in Section 
IV. 

2. VEHICULAR DISTRIBUTED COMPUTING ARCHITECTURE 
Our proposed distributed processing architecture is shown in Fig. 1. There are several processing options in this 
architecture. Firstly, data can be processed in the processors available through the vehicle OBU, possibly 
augmented through a “processing box / server” fitted in the vehicle and connected to the vehicle CAN bus which 
also links to the vehicle OBU. This “processing box / server” ensures that the critical systems of the vehicle are 
isolated from external users, hence improving security. It can furthermore augment the OBU processing 
capabilities and can introduce uniform processing capabilities in different car models and aid rapid deployment. 
Here vehicular users who wish to participate and receive financial or credit rewards, can opt to have such a 
“processing box / server” fitted. Following the vehicle, processing can next be performed in servers placed close 
to users at the edge nodes. Communication between these edge nodes and the vehicles can be achieved through 
IEEE 802.11p WiFi, ie WAVE or Dedicated Short-Range Communication (DSRC). The final layer is the cloud 
processing layer which hosts powerful servers. The interconnection in the edge tier is provided by a passive optical 
network (PON) where the optical network units (ONUs) of the PON connect to the edge nodes and the optical 
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line terminal (OLT) of the PON sources and terminates traffic to the ONUs. The PON infrastructure is a deep 
PON in this case that links directly to the core network layer leading to the central cloud as shown in Fig. 1. 

 

Figure 1: The distributed vehicular, edge and cloud processing architecture  

3. OPTIMISATION MODEL AND RESULTS 
We developed a Mixed Integer linear Programming (MILP) model to optimize the location in which a demand is 
served in the architecture presented in Figure 1 to minimize power consumption and delay. The power 
consumption of a processing or network device is composed of the idle power consumed with the device 
activation; and load-proportional power consumption. For wireless communication interfaces, we also consider a 
distance dependent power consumption for transmission. For the delay, the propagation, transmission and 
queueing delay are calculated for each source and destination nodes. The model ensures the conservation of 
processing capacity of each node, as well as the communication interface bandwidth capacity. Also, a processing 
demand can be served by multiple processing nodes and the full traffic is sent to every processing node regardless 
of the assigned processing in it. For the queueing delay, we assumed an M/M/1 model, where delay is given as ૚ஜ ି ࣅ  , where µ is the service rate and Ȝ is the arrival rate. However, the number of data packets arriving at a node 

can vary depending on the model routing decisions, leading to variable arrival rate. A lookup table is used with 
entries for every possible arrival rate at each node and a pre-calculated queueing delay associated with it.  

The model is evaluated in a parking lot with 8 vehicles parked within 40 ൈ 40 meters space, communicating using 
DSRC interfaces. The parking lot is served by 2 edge nodes connected to vehicles through WiFi. Each edge node 
is composed of a server, ONU, and an access point. The edge nodes can also communicate with each other using 
WiFi. Demands are generated by the vehicles and are composed of two parts, the data to be sent (traffic in kbps), 
and the processing requirements (in MIPS). Table 1 shows the parameter values for the vehicles and edge nodes. 
Due to the space limitations, not all values are shown here. More parameters and methods for the parameters 
estimations are explained in [26]. The modified multi-objective model uses weighting factors to prioritize either 
the power consumption or the service delay in the resource allocation decision made by the model.  

Table 1: performance evaluation parameters 

Vehicles Parameters  Edge Node Parameters 

Parameter  value Parameter device value 

Processor 

speed 

800 MHz [27] Max 

Power 

Raspberry Pi 12.5 W  

Max Power  OBU = 10 W [27]  Access Point 25 W[28] 

WiFi transceiver = 0.612 W [29] ONU 8 W  

Idle Power  OBU = 5 W [27] Idle Power  Raspberry Pi 2 W 

WiFi transceiver = 0.000072 

W[29] 

 Access Point 5.5 W[28] 

Tx Power  OBU = +22 dBm [30]  ONU 6.8 W (85% of 

max) 

WiFi transceiver = +14 dBm [29]  Tx  Access point 28 dBm [28]  

Rx Sensitivity  OBU = -77 dBm [27]  Rx Access point -104 dBm [28] 

WiFi transceiver = - 72 dBm [29] Processor 

Speed 

Raspberry Pi 1.2 GHz 
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WiFi 

Bandwidth  

150 Mbps [31] WiFi 

Bandwidth 

Access Point 150 Mbps [28] 

DSRC 

Bandwidth  

27 Mbps Optical 

Fibre 

capacity 

ONU 3.75 Gbps 

 

 

 

Figure 2 : Total power consumption for each scenario, with varying demand size 

 

Figure 3:Service Delay for each scenario, with varying demand size

The model is evaluated by varying the demand size of a single request (generated by one vehicle) considering 
three settings, in the first setting only vehicles have processing capacities, in the second setting both vehicles and 
edge nodes have processing capacities, and in the third setting conventional cloud is used for processing. For each 
setting, a scenario is run with an objective to minimize power consumption only. Another scenario is run with an 
objective to minimize both power and delay with equal weighting factors. We compare the power consumption 
and delay of each scenario considering the different settings.  
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Figure 2Figure 2 shows the power consumption versus the traffic demand. It can be noticed that no values are 
presented for the highest traffic demand (6000 kbps) with the vehicles only setting, as the demand exceeded the 
vehicles processing capacity. It was established in our work in [26], that vehicles and edge nodes are more efficient 
for processing in terms of power consumption, and the use of cloud can be limited when demands exceed the 
processing and communication capacities in the distributed vehicular environment. The same findings hold for 
this work. However, the power consumption increases by 22%-34% when jointly minimizing delay and power 
compared to minimizing power only with only vehicles as processing destinations. When using both vehicles and 
edge nodes to serve the processing demands, enough capacity is available to serve the larger demand of 6000 kbps 
and the increase in power consumption is limited to 3%-6%. In terms of power saving in comparison with 
conventional cloud, the power saving drop was more apparent when only vehicles were used for processing. The 
savings dropped for (89%-76%) range to (86%-68%) range. The case when vehicles and edge nodes were used 
was more resilient, and the drop is almost negligible, with (89%-73%) ranged maintained. 

Figure 3 shows the delay versus the traffic demand. Under distributed processing, the demand can be served in 
parallel in more than one destination. The delay shown here is the maximum delay experienced by the distributed 
flows between the source and the different destinations serving the demand. The joint minimization significantly 
decreases the delay compared to power minimization only. A decrease of 48%-74% can be seen in the vehicles 
only scenarios, and 54%-67% in the vehicles and edge scenarios. With conventional cloud, the distant location of 
the cloud from the demand source (around 200-300 km away) increases the propagation delay. Processing in the 
vehicles and edge nodes reduces the delay by 60-80% compared to the cloud considering the joint minimization.  

The increased power consumption and decreased delay can be explained by the fact that optimizing routing to 
minimize delay results in routing traffic over links with the higher data rate to reduce the transmission delay, 
which led to choosing WiFi over DSRC which has higher energy per bit leading to increasing in the power 
consumption. 

The results in Figure 2 and Figure 3 show the merits of using edge nodes to support of vehicles in a distributed 
processing architecture under power only minimization or joint minimization. In addition to the capacity to serve 
higher demands, the total power consumption and delay are minimized, as the edge nodes have power 
consumption values close to the vehicles but with higher processing capacity (reference to parameters table). Also, 
the communication with edge nodes is originally done using WiFi, which has higher data rate, and with the joint 
optimization relaying upon it more to reduce the delay.  

CONCLUSIONS 
In this paper, we studied optimizing resource allocation in a distributed processing architecture based on vehicular 
and edge computing to jointly minimize power consumption and delay. The results show that the joint 
minimization significantly decreases the delay while introducing a limited increase in power consumption 
compared to power minimization only. The results also show the merits of using edge nodes to support vehicles 
in a distributed processing architecture in terms of higher capacity and reduced power consumption and delay.  
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