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Abstract: Over 95% of the data traffic is carried over optical fibre communication links.
The split-step Fourier method (SSFM) has been widely employed to model the evolution
of optical signals along the fibre channels in optical communication systems. However, the
split-step Fourier method requires very high computational resources, especially for ultra-
long-haul and wideband communication systems. Meanwhile, deep learning techniques can
be applied to investigate the evolution of optical signals along the fibre links, where the
nonlinear Schrödinger equation (NLSE) can be solved directly using neural networks to
avoid the huge complexity of the split-step Fourier simulations. In this work, we will discuss
the application of neural networks in modelling the evolution of different types of optical
pulses along fibre transmission channels. © 2023 The Author(s)

1. Introduction

Optical fiber communication systems were first deployed five decades ago and since then, the information capacity
carried by a single-mode optical fiber has grown exponentially to the extent of reaching an astonishing increase of
10,000 times by the mid-2000s, and only slowing down thereafter [1]. Optical communications are undoubtedly
unrivaled as the principal enabling technology and the foundation of today’s global telecommunications networks
for the transfer of very large amounts of data across long distances and substantial bandwidths with minimal
latency. However, optical fibers which are responsible for carrying approximately 95% of all internet traffic are
relatively expensive and as a result, it becomes difficult to study such large-scale optical systems or networks in
lab or field experiments. Hence, modeling optical fibers becomes very important for assessing the performance
of long-haul wideband optical communication systems and networks. The split-step Fourier technique (SSFM),
which is predominantly used to simulate the combination of dispersion and fiber nonlinearities in optical pulse
propagation in fibers, can be a laborious computational procedure, especially when long transmission distances
and very large bandwidths are taken into account [2–4]. On the other hand, since their introduction, deep neural
networks (DNNs) have both revolutionized and enhanced the achievable results and potentials of machine learning
techniques employed in various fields of study, fiber optics being no exception. Most recently, physics-informed
neural networks (PINNs) were developed to estimate nonlinear partial differential equation solutions by a non-data
driven approach [5]. PINNs have been employed recently for a number of fiber modeling tasks. Wang [6] et al.
investigated the uses of PINNs in optical communications, using them to solve the paraxial Helmholtz equation
which describes the distribution of the electric field in fiber and to simulate the wideband spectrum evolution for
C+L systems. Fang [7] et al. investigated high-order NLSE parameter discovery utilizing PINNs and data-driven
femtosecond optical soliton excitations. The authors of this paper have investigated the use of the PINN scheme
to model the propagation of the peregrine soliton pulse in an optical fiber. And in this paper, we report the use of
PINNs to model the dynamical evolution of 3 different types of optical pulses propagating in a single-mode fiber
under the impact of fiber nonlinearity and chromatic dispersion.

2. Physics-Based Models

Given a complex-valued baseband signal x(t), transmitted through an optical fiber of length L, The signal will
propagate following the nonlinear Schrödinger equation (NLSE), which is a nonlinear variant of the Schrödinger
equation [8]. The NLSE is given as
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where γ is the nonlinear Kerr parameter, α is the loss parameter, β2 is the chromatic dispersion and A(z = 0,τ) =
x(t). The signal received after propagating along the length L is denoted by y(t) = A(z = L,τ). The NLSE charac-
terizes the evolution of optical pulses in a fiber and takes into account physical effects such as cross-phase mod-
ulation (XPM) and self-phase modulation (SPM). The NLSE also takes into account the impact of fiber losses,
chromatic dispersion, third-order dispersion (TOD), and fiber non-linearity as well as their combined effects. The
optical pulse envelope propagates at the group velocity vg. The value of β2 can either be negative or positive de-
pending on the wavelength, whether it is above or below the zero-dispersion wavelength λD of the fiber. In typical
silica fibers, β2 is positive and ranges from 50 ps2km−1 in the visible to very nearly 20 ps2km−1 as the wave-
lengths approach 1550 nm, and β2 is often negative in the anomalous dispersion domain. The NLSE (1) is written
in terms of τ where the variable τ = t − z

vg
, which represents pulse propagation in a time frame moving at the

speed of the signal group. Generally, Eq. (1) does not have an analytical solution and is solved numerically. The
SSFM which is implemented through block-wise processing of sampled waveforms is a popular choice amongst
numerical solvers for this purpose. The signals y(t) and x(t) are sampled at t = k/ fs and are collected into the
vectors y = (y1, ...,yn)

T and x = (x1, ...,xn)
T respectively for n samples. To derive the SSFM, it is important to

represent the NLSE in its time-discretized form,
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where R : Cn → Cn is the element-wise application of R(x) = x|x|2, P = F−1diag(H1, ....,Hn)F, Hk = i β2
2 ω2

k ,
and F is the n x n discrete Fourier transform (DFT) matrix. ωk = 2π fk is the k-th DFT angular frequency (i.e.,
fk/ fs = (k−1−n)/n if k ≥ n/2 and fk/ fs = (k−1)/n if k < n/2). The fiber is then conceptually divided into N
segments of lengths δ1, ...,δN such that ∑

N
i=1 δi = L. It is then assumed that for a short step δi, the effects of the

linear and nonlinear terms can be isolated. Alternating between the linear and nonlinear operator for z = δi results
in the SSFM [8–10].

3. PINNs for Optical Communications

3.1. Principle of PINNs

The solution, the derivative of the solution with respect to time, and the nonlinear function, respectively, are all
denoted by the letters u, ut , and N , with the differential equation defined as ut +N [u] = 0. We use the PINN
technique, where the output of the NN is an approximation of the solution and the nonlinear terms, to solve the
equation. To this end, we create a model f := ut +N [u] and, by minimising the mean squared error loss, learn
the parameters that are shared between the NNs, f (t,x) and u(t,x) [5, 11].
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Where {t f
i,x f

i} are the collocation points for f (t,x) and {tui,xu
i,ui}Nu

i=1 are the training data for u. The first loss
term’s goal is to satisfy the network u, while the physics-based regularisation term is the second loss term. To
guarantee that the NN’s solution resolves the underlying differential equations, this term is minimised. Figure 1
shows the architecture of the PINN network.

Fig. 1. Architecture of Physics-Informed Neural Networks

3.2. PINNs for fiber optics

In the fiber-optics domain, we can write the normalized distance, time, real and imaginary components of a com-
plex envelope E(z,τ) = u(z,τ) + iv(z,τ) as z, τ , u and v respectively. Where E(z,τ) is the complex envelope
of a slowly evolving optical field. In contrast to the traditional approach with neural networks (NNs), a PINN
is essentially a PDE solver that maps from (z,τ) to [u(z,τ)+ v(z,τ)] pair, unlike other data-driven methods that
would normally only fit a given pulse to ending pulse. This network mapping structure gives an insight into
how the optical field E(z, t) evolves in the (z, t) plane. In other words, any randomly selected point (z′,τ ′) in



the (z, t) plane satisfies the NLSE(u′,v′) = 0. The normalised NLSE, represented as Ez +
i
2 Eττ − i|E|2E = 0, may

be divided into its real and imaginary components, denoted by the symbols f (u) : uz − 1
2 vττ +(u2 + v2)v and

g(v) : vz +
1
2 uττ +(u2 + v2)u, respectively. Where τ , z, g, and f are the time, normalised distance, and the gov-

erning functions for v(z,τ) and u(z,τ) respectively [2, 11, 12]. The relation NLSE(u,v) = 0 is satisfied by solving
this. The function E(z,τ) is represented by a four-layer, 100-neuron deep neural network with a tanh activation
function. 15,000 discrete points have been sampled to constrain the NLSE, and they have been set as input along
with 50 points from the input pulse, which is utilised to make sure the initial pulse loss term is close to zero.

4. Results and Further Discussion

To reveal the pulse development throughout the length of the fiber, a [-5T0, 5T0] × [0,z] 2D modeling region
was constructed. The Gaussian, sinc and sech pulses were propagated through the fiber to test PINN’s versatility
in characterizing different pulse types and shapes. The results for this task are shown in Figures 2, 3 and 4,
which show the evolution of the complex optical pulse envelope through a 10 km single-mode fiber. The PINN

Fig. 2. Time-domain pulse profile showing the received pulse at z = 10km for the sinc pulse

Fig. 3. Time-domain profile showing the received optical pulse at z = 10km for the sech pulse

based predicted solutions (green solid line) are compared with the exact solutions (yellow dashed line), which
are obtained by solving the NLSE using the SSFM. We utilised this to check the algorithm’s accuracy, and the
prediction error was found to be 4.3×10−3, 5.13×10−3 and 7.02×10−3 for the evolution of the sinc, sech and
Gaussian pulses respectively. With only the initial conditions and input, the PINN algorithm is able to characterize
pulse evolution with a good degree of accuracy. In this paper, the performance of PINN is measured by the accuracy
of the method. We use the relative L2 norm to evaluate the error. To compute this, we use Python’s Numpy Norm
package. When np.linalg.norm() is called, it computes the L2 norm. The L2 norm, which may be regarded as the
vector’s length in Euclidean space, is the square root of the sum of squared elements.



Fig. 4. Temporal profile of the Gaussain pulse showing the received optical pulse at z = 10km

5. Conclusions

In this work, the NLSE is solved using a PINN model, a method that gives more insight into the underlying
physical process from the perspective of deep learning. Unlike the typical data-driven approach employed by
traditional NN methods to solve the same problem, the PINN method is able to describe the entire process of pulse
propagation with very little prior information (only the initial pulse is needed). The results of the PINN modeling
scheme show the potential of this method as a fast and accurate alternative to the SSFM without the computational
burden of the latter. Our results show that PINN is able to both accurately perceive and predict pulse propagation
in a fiber and is able to characterize other physical effects in fiber-optic transmission system modeling.

6. Acknowledgements

This work is supported by EU Horizon 2020 MSCA Grant 101008280 (DIOR) and UK Royal Society Grant
(IES\R3\223068).

References

1. R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of Optical Communication Networks,” Proceedings of
the IEEE, vol. 100, no. 5, pp. 1035–1055, 2012.

2. J. Uduagbomen, S. Lakshminarayana, M. S. Leeson, and T. Xu, “Physics-informed neural network modeling of soliton
pulses in Optical Communication Systems,” 2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM),
2022.

3. C. Jin, N. A. Shevchenko, Z. Li, S. Popov, Y. Chen, and T. Xu, “Nonlinear coherent optical systems in the presence of
Equalization Enhanced Phase Noise,” Journal of Lightwave Technology, vol. 39, no. 14, pp. 4646–4653, 2021.

4. P. Serena et al., On numerical simulations of ultra-wideband long-haul optical communication systems, Journal of
Lightwave Technology, vol. 38, pp. 1019-1031, 2020.

5. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed Neural Networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational
Physics, vol. 378, pp. 686–707, 2019.

6. D. Wang, X. Jiang, Y. Song, M. Fu, Z. Zhang, X. Chen, and M. Zhang, “Applications of physics-informed neural
network for optical fiber communications,” IEEE Communications Magazine, vol. 60, no. 9, pp. 32–37, 2022.

7. Y. Fang, G.-Z. Wu, Y.-Y. Wang, and C.-Q. Dai, “Data-driven femtosecond optical soliton excitations and parameters
discovery of the high-order NLSE using the pinn,” Nonlinear Dynamics, vol. 105, no. 1, pp. 603–616, 2021.

8. G. P. Agrawal, Fiber-optic communication systems, 4th ed. Hoboken, NJ: Wiley, 2022.
9. C. Hager and H. D. Pfister, “Physics-based deep learning for fiber-optic communication systems,” IEEE Journal on

Selected Areas in Communications, vol. 39, no. 1, pp. 280–294, 2021.
10. Q. Zhang and M. I. Hayee, “Symmetrized split-step fourier scheme to control global simulation accuracy in fiber-optic

communication systems,” Journal of Lightwave Technology, vol. 26, no. 2, pp. 302–316, 2008.
11. X. Jiang, D. Wang, Q. Fan, M. Zhang, C. Lu, and A. P. Lau, “Solving the nonlinear Schrödinger equation in optical

fibers using physics-informed neural network,” Optical Fiber Communication Conference (OFC) 2021, 2021.
12. X. Jiang, D. Wang, X. Chen, and M. Zhang, “Physics-informed neural network for optical fiber parameter estimation

from the nonlinear Schrödinger equation,” Journal of Lightwave Technology, vol. 40, no. 21, pp. 7095–7105, 2022.


