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Abstract—In digital communication systems, multipath 

propagation induces Inter Symbol Interference (ISI). To reduce 

the effect of ISI different channel equalization algorithms are 

used. Complex equalization algorithms allow for achieving the 

best performance but they do not meet the requirements for 

implementation of real-time detection at low complexity, thus 

limiting their application. In this paper, we present different blind 

and non-blind equalization structures based on Artificial Neural 

Networks (ANNs) and, also, we analyze their complexity versus 

performance. The simulated network is based on multilayer 

feedforward perceptron ANN, which is trained by utilizing the 

error back-propagation algorithm. The weights of the network are 

updated in accordance with training of the network to improve the 

convergence speed. Simulation results demonstrate that the 

implementation of equalizers using ANN provides an upper hand 

over the performance and computational complexity with respect 

to conventional methods. 

Keywords—Blind Channel Equalization; Neural Networks; 

Multi-Layer Perceptron. 

I. INTRODUCTION  

In the recent years, mobility of communicators has added 
new challenges in the path to accomplish the goal of providing 
all the information asked for in any possible location. One of the 
new challenges is to conceive highly reliable and fast 
communication systems unaffected by the problems caused by 
the multipath in wireless fading channels [1]. Inter-symbol 
interference (ISI) is one of the major problems faced practically 
in digital communication.  

To overcome these issues the design of new equalization 
technique is the one of main concerns in the case of frequency 
selective channels. This has lead to the development of more and 
more complex equalization techniques, with the problem that 
complex algorithms do not meet the requirement for real-time 
implementation at low complexity and, therefore, limiting their 
application. Therefore, we focus on the design of equalization 
techniques using artificial neural network (ANN) [2].  

Many equalization techniques have been proposed and 
implemented. In some of them, a training sequence is transmitted 
prior the transmission of information data, while others are able 
to perform equalization without the need of such a training 
sequence [3]. This has motivated us to the use of ANNs, which 
have the advantage of accuracy and also provide with a faster 
response.  

Linear equalizers generally employ linear filters with 
transversal or lattice structures using different adaptation 

algorithms such as recursive least square (RLS), least mean 
square (LMS), fast RLS, square-root RLS, gradient RLS [5]. 
However, linear equalizers do not perform well on channels with 
deep spectral nulls [6]. In contrast, ANNs can form arbitrarily 
nonlinear decision boundaries to take up complex classification 
tasks [7]. Model the nonlinear phenomenon in channel 
equalization based on ANNs is attractive for imitating the 
computational function of systems using simple computation in 
the biological domain [8].  

In this work, we implement various linear and nonlinear 
channel equalizers using ANNs. We consider both the two cases 
with and without transmission of the training sequence. When a 
training sequence is not available for the equalizer, blind 
learning algorithms have to be used. The well-known decision-
directed (DD) algorithm based on least mean square (LMS) is 
commonly selected for its computational efficiency. However, 
DD strictly requires a very low level of decision errors in initial 
acquisition state, which is a hard task for most applications, to 
prevent local convergence [9]. The main issue of local 
convergence is that the bit error rate (BER) of the equalizer 
output may be worse than that of the equalizer input. In other 
words, the symbol detection would even be degraded due to the 
employment of a blind equalizer. Trying to exploit more extra 
information, other than the output decisions, some excellent 
blind equalization algorithms have been developed using the 
former methods that avoid local convergence. Among these, we 
mention the stochastic quadratic distance (SQD) algorithm 
where the probability density function (pdf) of the equalizer 
output is forced to match the pdf of the estimated constellation. 
In [10] the entropy of the output error is considered and an error-
entropy minimization algorithm is proposed. Also, the well-
known Sato [11] and Godard [12] algorithms use high-order 
moments of the received information. Indeed, it is proved that a 
fractionally spaced equalizer (FSE) using the constant modulus 
algorithm (CMA) could be globally convergent under a finite-
length channel satisfying a length-and-zero condition.  

As an alternative to linear equalizers, nonlinear equalizers 
have the potential to compensate distortions introduced by the 
channel [3]. A common nonlinear equalizer is the decision-
feedback equalizer. Another class of nonlinear equalizers is 
based on artificial neural networks, e.g., multilayer perceptron 
(MLP). 

The main contribution of this paper is a comparison of the 
complexity of blind and non-blind channel equalizers with and 
without ANN using BER as performance index. Also, we analyse 
the hardware complexity by comparing CPU timing. 



 

Figure 1:  Block diagram of an adaptive equalizer 

The remaining part of this paper is organized as follows. 

Section II introduces the feed forward ANN covering the MLP 

equalizer model and that based on radial basis function (RBF). 

Section III reviews the literature associated with various 

performance analysis of non-blind and blind based equalizers. 

Simulation results are provided in Sec. IV, where the BER 

performance of different equalizers is compared. Finally, Sec. 

V concludes the paper.  

II. SYSTEM MODEL AND  IMPLEMENTATION OF NEURAL 

NETWORKS 

A.  System Model 

 

The discrete-time oversampled model of the received signal 

at the output of the time-invariant channel is written as 

𝑥 (
𝑖

𝑚
𝑇 + (𝑛 − 1)𝑇) = ∑ 𝑠𝑘ℎ (

𝑖

𝑚
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𝑖

𝑚
𝑇 + (𝑛 − 1)𝑇] , 𝑖 = 0, 1… ,𝑚 − 1,       (1) 

where  {𝑠𝑘 }  is the sequence of symbols transmitted at baud 

rate T, 𝑚  is the oversampling factor with respect to T, 
{𝓌(𝑘𝑇/𝑚)} is the sampled zero mean additive white Gaussian 

noise with variance 𝜎𝓌
2 , and ℎ(𝑖𝑇/𝑚) is the overall channel 

response, which is here modelled as finite impulse response 

(FIR) filter of length 𝑚 given in [13]. 

By taking into account the oversampled channel output and 

by assuming that the length of the observation interval is L, the 

received signal in any interval [𝑖𝑇, 𝑖𝑇 + 𝐿] can be expressed as 

[13]: 

                   𝑥(𝑖) = 𝐻𝑠(𝑖) +  𝓌(𝑖),    𝑖 = 0, 1, 2, …                (2)                    

where  

    𝑥(𝑖) = [𝑥(𝑖𝑇), 𝑥(𝑖𝑇 + ∆), … , 𝑥(𝑖𝑇 + (𝑚𝑞 − 1)∆)]𝑇 ,    

∆  is the sampling period, 𝑚 = 𝑇/∆ , and  𝑞 = (
𝐿

𝑇
)×∆  . The 

noise vector is 

𝓌(𝑖) = [𝓌(𝑖𝑇),𝓌(𝑖𝑇 + ∆), … ,𝓌(𝑖𝑇 + (𝑚𝑞 − 1)∆)]𝑇 , 

𝑠(𝑖) = [𝑠𝑖−𝑝+1 , 𝑠𝑖−𝑝+2, … . 𝑠𝑖+𝑝−1]
𝑇
, 

where 𝑝 =(
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𝑇
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where ℎ𝑙, with 𝑙 = 1, 2, … , 𝑝, is a column vector defined as 

ℎ𝑙 = [ℎ[(𝑝 − 𝑙)𝑇], ℎ [(𝑝 − 𝑙 +
1

𝑚
) 𝑇] , … , ℎ [(𝑝 − 𝑙 +

𝑚−1

𝑚
) 𝑇]]

𝑇

.  

 

B.  Implementing Neural Networks 

The received symbol sequence 𝑥(𝑖)at the output of the 

channel is applied at the input of network. By following the 

same model given in [20], 𝑥(𝑖)  is the vector of length 𝑚𝑞 

applied at the input layer. The estimated vector 𝑥 ̂(𝑖)  is 

compared with 𝑥(𝑖) and the resulting error vector is written as 

                                        𝑒(𝑖) = 𝑥(𝑖) − 𝑥 ̂(𝑖),                               (4) 

As given in [20], symbol i denote the  i-th vector of the error 

whose j-th is given by 

                               𝑒𝑗(𝑖) = 𝑥𝑗(𝑖) − ∑ 𝐻̂𝑗𝑘

𝑀

𝑘=1

𝑞𝑘(𝑖),                      (5) 

where 𝐻̂𝑗𝑘 is the element (j, k) of the estimated channel matrix 

𝐻̂. By following the same procedure described in [20], the error 

is given by 

                           𝑒𝑗 = 𝑥𝑗 − ∑ 𝐻̂𝑗𝑘

𝑀

𝑘=1

∑𝑊𝑘𝑙𝑥𝑙(𝑖)

𝑁

𝑙=1

,                       (6) 

where 𝑊𝑘𝑙 = 𝑥𝑘𝑙 + 𝑗𝑦𝑘𝑙  is the corresponding weight of the 

each neurons. The block diagram of the feedforward neural 

network is given in Fig. 2. Each node, representing a basic 

element of the neural network, is called neuron. As given in 

[20], the output of a neuron is given by 

                                    𝑦 = 𝑓 (∑𝑤𝑖𝑥𝑖

𝑁

𝑖=1

),                                   (7) 

where  𝑥𝑖  is the i-th input to a neuron, 𝑤𝑖  is the weight 

associated with the i-th input, and 𝑓(ˑ) is the activation function.  

C. Multi-Layer Perceptron 

Possible activation functions for multilayer perceptron’s are 

given in [21] 

 linear: 𝑓(𝑣) = 𝑘𝑣 

 sigmoid: 𝑓(𝑣) =
1

1+𝑒−𝑣 

 hyperbolic tangent: 𝑓(𝑣) = tanh(𝑣) =
1−𝑒−𝑣

1+𝑒−𝑣. 



 

Figure 2: A feedforward neural network. Each circle represents a 

neuron which sums the inputs and passes the sum through an. 

activation function. Each arc represents multiplication by a scalar 

weight. 

 

Figure 3: RBF Network 

An MLP may have more than one hidden layer. The neurons in 

the hidden layer may use either sigmoid or hyperbolic tangent 

activation functions. The activation function for the output 

layer may be any one of the above.  

D. Radial Basis function 

Since there is no guarantee that an MLP would converge to 

a global minimum, RBF networks are a key alternative. RBFs 

have only three layers (one input, one hidden, and one output) 

[14]. The k-th output is given by 

                                        𝑦𝑘 = ∑𝑤𝑘𝑖∅(𝑥)

𝑁ℎ

𝑖=1

,                                 (8) 

where 𝑁ℎ  is the number of neurons in hidden layer and ∅𝑖(𝑥) is 

a radially symmetric scalar function with 𝑁ℎ  centers of the 

radial basis function. A commonly used radial basis function 

∅𝑖(𝑥) is the Gaussian function 

                         ∅𝑖(𝑥) = exp (−
‖𝑥 − 𝑐𝑖‖

2

2𝜎𝑖
2 ),                            (9) 

where ‖. ‖ is a norm, e.g., Euclidean. A radial basis function is 

local in its characteristic response to the input 𝑥 and it drops off 

quickly for input values that are away from the center of the 

activation function’s receptive field, 𝑐𝑖. 

 

                   Figure 4: Adaptive channel equalization 

III. BLIND AND NON BLIND EQUALIZERS  

In this Sec. performance analysis of various equalizers is 

considered by a broad classification of them into Non-blind  and 

Blind equalizers [15]. Non-blind algorithms implement 

supervised learning approaches where training sequences are 

used. In supervised learning, a machine can infer a function from 

labelled training data. The main issue is the amount of training 

data available relative to the complexity of the "true" function 

(classifier or regression function). If the true function is simple, 

then an "inflexible" learning algorithm with high bias and low 

variance will be able to learn it from a small amount of data. 

However, if the true function is highly complex because, for 

example, it involves complex interactions among many 

different input features and behaves differently in different 

parts of the input space, then the function will only be learnable 

from a very large amount of training data and using a “flexible” 

learning algorithm with low bias and high variance. A different 

scenario occurs when the process of parameter optimization 

and/or adaptation cannot be guided because a reference signal 

is by no means available. Channel equalization is an 

unsupervised problem by nature. In addition to that, such a 

problem is characterized by the requirement of real-time and 

low computational burden, due to the practical operation 

conditions of a communication system. 

III.1.  NON  BLIND EQUALIZERS –SUPERVIZED 

A. Zero Forcing (ZF) 

ZF Equalizer [16] refers to a form of linear equalization 

algorithm used in communication systems which applies the 

inverse of the frequency response of the channel. The name 

Zero Forcing corresponds to bringing down the inter-symbol 

interference (ISI) to zero in a noise free case. This will be useful 

when ISI is significant compared to noise. Thus the 

combination of channel and equalizer gives a flat frequency 

response and linear phase. Apart from it being lucrative choice 

for an equalizer it suffers from drawbacks such as infinite 

channel impulse response.  

B. Adaptive Minimum Mean Square Equalizer (MMSE) 

The adaptive MMSE equalizer is a classic approach that has 

been widely used in digital communication systems [17]. The 

MMSE equalizer is obtained by minimizing the cost function 



 

Figure 5: Structure of Forward Linear Predictor. 

                         𝜉 = 𝐸|𝑑(𝑛) − 𝑤𝑇(𝑛)𝑦(𝑛)|2                            (10) 

with respect to the tap vector 𝑤(𝑛). The input vector is given 

by  

                      𝑦(𝑛) = [𝑦(𝑛) … 𝑦(𝑛 − 𝑁 + 1)],                        (11) 

where N is the tap-length and 𝑑(𝑛) = 𝑥(𝑛 − ). The decision 

delay ∆  determines which symbol is being detected at the 

current time 𝑛,  or the current equalization output 𝑧(𝑛)  is an 

estimate of 𝑥(𝑛 −  ∆). The maximum potential performance of 

an MMSE equalizer is achieved by the ideal equalizer with 𝑁 →
∞ extending from -∞ to ∞.  

III.2. BLIND EQUALIZERS-NON SUPERVISED 

A. Blind Constant Modulus Algorithm 

The most commonly used adaptive algorithm for blind 

channel equalization is the Constant Modulus Algorithm 

(CMA), which uses the constant modularity of the signal as the 

desired property [18]. CMA assumes that the input to the 

channel is a modulated signal that has constant amplitude at 

every instant in time. CMA attempts to accomplish this 

objective by forcing the output of the equalizer to have constant 

amplitude. It can also be used for QAM signals where the 

amplitude of the modulated signal is not the same at every time 

instant. The error is then determined by considering the nearest 

valid amplitude level of the modulated signal at the desired 

value as 

                                 𝐽𝐶𝑀 = 𝐸(|𝑥(𝑛)|2 − 𝑅2)
2,                          (12) 

where 𝑥(𝑛) is the received signal and 𝑅2is Godard dispersion 

constant given by 

                                        𝑅2 =
𝐸[𝑥(𝑛)4]

𝐸[𝑥(𝑛)2]
.                                   (13) 

The constant R2 depends on a priori statistical information 

about transmitted signal. Equalizer coefficients’ update 

equation in CMA uses a gradient descent to minimize JCM by 

as illustrated in Fig. 4, that is given by 

    𝑤(𝑛 + 1) = 𝑤(𝑛) − 𝜇𝑦(𝑛)𝑥(𝑛) [𝑎𝑏𝑠(𝑥(𝑛))
2
− 𝑅2],   (14) 

where 𝑦(𝑛) is the output, 𝑤(𝑛) is current equalizer coefficient, 

𝑤(𝑛 + 1) is next equalizer coefficient, 𝜇 is the step size and 𝑅2 

 

TABLE 1: SETTINGS FOR THE NEURAL NETWORK 

Tap Length of equalizer(L) 20 

Number of input Neuron L+1 

Number of output Neuron 1 

Number of hidden Neuron 15 

Number of training patterns 1000 

is the Godard constant.  

B. Blind Linear Predictive Equalizer 

Blind equalization based on linear prediction is one of the 

methods for blind multiuser case [19]. The idea is to obtain an 

estimate for the received vector 𝑥(𝑛) as a linear combination of 

the vectors 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝐾 +  1), i.e., the components 

of 𝑥(𝑛 − 1). The estimate can be expressed as 

𝑥(𝑛) = 𝐴𝐻(1)𝑥(𝑛 − 1) +· · +𝐴𝐻(𝐾 − 1)𝑥(𝑘 − 𝐾 + 1)(15) 

where 𝐴 is a 𝑃(𝐾 − 1)×𝑃 matrix composed by the(𝐾 − 1) 𝑃×
𝑃 matrices of prediction coefficients.  

                        𝐴 = [𝐴𝐻(1) …𝐴𝐻(𝐾−1)]
𝐻
.                                 (16) 

The forward prediction error is given by: 

      𝑒𝑓(𝑛)|𝑥(𝑛−1)
= 𝑥(𝑛) − 𝑥̂(𝑛)|𝑥(𝑛−1) = [𝐼 − 𝐴𝐻]𝑥(𝑛)    (17)     

The operation of a forward linear multichannel predictor is 

illustrated in Figure 5. A P × P matrix with the forward 

prediction-error variance is defined by 

                            𝜎𝑒𝑓
2 = [𝐼 − 𝐴𝐻]ℝ𝑥

(𝐾)(𝑛)[𝐼 − 𝐴𝐻]𝐻 ,             (18)    

where  ℝ𝑥
(𝐾)(𝑛) = 𝐸[𝕩(𝑛)𝕩(𝑛)𝐻] and K indicates the number 

of time instances taken into account. The minimization of the 

variance of the prediction error, 𝜎𝑒𝑓
2 , leads to the following 

optimization problem: 

                       min
𝐴

[𝐼𝑝 − 𝐴𝐻]ℝ𝑥
(𝐾)(𝑛)[𝐼 − 𝐴𝐻]𝐻 = 𝜎𝑒𝑓

2      (19) 

Upon solving the minimization results according to 

equation  

                        [𝐼𝑝 − 𝐴𝐻]ℝ𝑥
(𝐾)(𝑛) = [𝜎𝑒𝑓

2   0𝑝 … . 0𝑝]             (20)  



IV. SIMULATION RESULTS AND CONFIGURATION SETTINGS  

In this section, to have a collective performance index, we 

consider BER as the performance figure of merit. The following 

minimum phase channel with five taps is considered [20]: 

ℎ =  [0.0545 + 0.05𝑖   0.2832 − 0.11971𝑖 − 0.7676  
0.2788𝑖  − 0.0641 − 0.0576𝑖   0.0466 − 0.02275𝑖] 

 

TABLE 2: COMPARISON OF A HARDWARE AND TIME COMPLEXITY 

Method 
Number of 

Additions 

Number of 

Multiplications 

Time 

Complexity 

Adaptive 

CMA 

 

346 349 0.085675sec 

Non Blind 

Neural 

Network 

330 330 0.043085sec 

Blind, Neural 

Network 
330 330 0.060391sec 

Random data generation at the input account for the presence 

of 3ˑ105 symbols drawn from a QPSK constellation, 105 being 

total number of data symbols and 2ˑ105 training symbols. The 

SNR is varied from 0 to 30 dB with an increment of 2 dB. The 

input signal is passed through the complex multipath channel h.  

Implementation settings of Blind and Non Blind equalizers with 

ANN are reported in Table 1 [15]. 

Two activation functions have been used in the equalizers 

implemented by ANN: the hyperbolic tangent function for the 

hidden layer and the identity linear function for the output 

layers. The complexity of the addition and multiplication when 

bias is used for all neurons can be calculated in neural networks 

by a general formula given in [22] as  

                     of  multiplication = 𝑛×𝜌 + 𝑚 ×𝜌             (21) 

                         of addition = 𝑛×𝜌 + 𝑚 ×𝜌,                    (22) 

where n is number of neuron in input layer, m is the number of 

neurons in output layer, and 𝜌 is the number of hidden layer. 

Figure 6 reports BER versus 𝐸𝑏/𝑁𝑜 performance for QPSK 

modulation for ZF and MMSE equalizers. The theoretical BER 

is also reported as a reference. In Fig. 7 the BER performance 

of the linear predictive equalizer with and without ANN is 

shown. From the results it is clearly visible that we have same 

performance with and without ANN. In Fig. 8 similar behavior 

is observed for the BER performance of Non-Blind equalizers 

of ZF with and without ANN. From the results it is clearly 

visible that by using Neural network a better performance is 

achieved. Finally, Fig. 9 depicts the overall performance of the 

both blind and non-blind equalizers, with and without neural 

networks. The equalizers implemented using ANN outperform 

the conventional ones both in terms of BER performance and 

and in terms of number of additions and multiplications required 

for the hardware implementation, as reported in Table 2. 

 

V. CONCLUSION  

From the presented results it is clear that BER performance 

is better for channel equalizers implementing conventional 

method based on ANN as compared to equalizers that do not 

implement it. Also in terms of hardware and time complexity 

(CPU time), channel equalizers implemented by neural network 

performs better than conventional method. There would be an 

undermining deteriorating effect in case of blind approaches, 

since it is not trained. We were able to successfully mimic the 

BER performance blind channel equalizer namely blind linear 

 
Figure 6: Comparison of performance analysis of Zero Forcing and 

Minimum Mean Square Equalizer with theoretical BER of QPSK. 

 
Figure 7: Comparison of Performance of Blind Linear Predictive 

Equalizers with and without Neural Networks. 



 
Figure 8: Comparison of Neural Network implemented equalizers for  

Blind and Non Blind.  

 
Figure 9: Overall Performance evaluation of various equalizers 

predictive equalizer using ANN. A significant improvement of 

the performance is observed for the conventional equalizers, 

namely non-blind ZF when ANN is used.  
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