
 Performance Comparison of Blind and Non-Blind

Channel Equalizers using Artificial Neural Networks

Sarvraj Singh Ranhotra, Atul Kumar, Maurizio Magarini
Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, 20133 Milano, Italy

sarvrajsingh.ranhotra@mail.polimi.it

Amit Mishra
Thapar Institute of Engineering and Technology

Patiala, India

 amit_mishra@thapar.edu

Abstract—In digital communication systems, multipath

propagation induces Inter Symbol Interference (ISI). To reduce

the effect of ISI different channel equalization algorithms are

used. Complex equalization algorithms allow for achieving the

best performance but they do not meet the requirements for

implementation of real-time detection at low complexity, thus

limiting their application. In this paper, we present different blind

and non-blind equalization structures based on Artificial Neural

Networks (ANNs) and, also, we analyze their complexity versus

performance. The simulated network is based on multilayer

feedforward perceptron ANN, which is trained by utilizing the

error back-propagation algorithm. The weights of the network are

updated in accordance with training of the network to improve the

convergence speed. Simulation results demonstrate that the

implementation of equalizers using ANN provides an upper hand

over the performance and computational complexity with respect

to conventional methods.

Keywords—Blind Channel Equalization; Neural Networks;

Multi-Layer Perceptron.

I. INTRODUCTION

In the recent years, mobility of communicators has added
new challenges in the path to accomplish the goal of providing
all the information asked for in any possible location. One of the
new challenges is to conceive highly reliable and fast
communication systems unaffected by the problems caused by
the multipath in wireless fading channels [1]. Inter-symbol
interference (ISI) is one of the major problems faced practically
in digital communication.

To overcome these issues the design of new equalization
technique is the one of main concerns in the case of frequency
selective channels. This has lead to the development of more and
more complex equalization techniques, with the problem that
complex algorithms do not meet the requirement for real-time
implementation at low complexity and, therefore, limiting their
application. Therefore, we focus on the design of equalization
techniques using artificial neural network (ANN) [2].

Many equalization techniques have been proposed and
implemented. In some of them, a training sequence is transmitted
prior the transmission of information data, while others are able
to perform equalization without the need of such a training
sequence [3]. This has motivated us to the use of ANNs, which
have the advantage of accuracy and also provide with a faster
response.

Linear equalizers generally employ linear filters with
transversal or lattice structures using different adaptation

algorithms such as recursive least square (RLS), least mean
square (LMS), fast RLS, square-root RLS, gradient RLS [5].
However, linear equalizers do not perform well on channels with
deep spectral nulls [6]. In contrast, ANNs can form arbitrarily
nonlinear decision boundaries to take up complex classification
tasks [7]. Model the nonlinear phenomenon in channel
equalization based on ANNs is attractive for imitating the
computational function of systems using simple computation in
the biological domain [8].

In this work, we implement various linear and nonlinear
channel equalizers using ANNs. We consider both the two cases
with and without transmission of the training sequence. When a
training sequence is not available for the equalizer, blind
learning algorithms have to be used. The well-known decision-
directed (DD) algorithm based on least mean square (LMS) is
commonly selected for its computational efficiency. However,
DD strictly requires a very low level of decision errors in initial
acquisition state, which is a hard task for most applications, to
prevent local convergence [9]. The main issue of local
convergence is that the bit error rate (BER) of the equalizer
output may be worse than that of the equalizer input. In other
words, the symbol detection would even be degraded due to the
employment of a blind equalizer. Trying to exploit more extra
information, other than the output decisions, some excellent
blind equalization algorithms have been developed using the
former methods that avoid local convergence. Among these, we
mention the stochastic quadratic distance (SQD) algorithm
where the probability density function (pdf) of the equalizer
output is forced to match the pdf of the estimated constellation.
In [10] the entropy of the output error is considered and an error-
entropy minimization algorithm is proposed. Also, the well-
known Sato [11] and Godard [12] algorithms use high-order
moments of the received information. Indeed, it is proved that a
fractionally spaced equalizer (FSE) using the constant modulus
algorithm (CMA) could be globally convergent under a finite-
length channel satisfying a length-and-zero condition.

As an alternative to linear equalizers, nonlinear equalizers
have the potential to compensate distortions introduced by the
channel [3]. A common nonlinear equalizer is the decision-
feedback equalizer. Another class of nonlinear equalizers is
based on artificial neural networks, e.g., multilayer perceptron
(MLP).

The main contribution of this paper is a comparison of the
complexity of blind and non-blind channel equalizers with and
without ANN using BER as performance index. Also, we analyse
the hardware complexity by comparing CPU timing.

Figure 1: Block diagram of an adaptive equalizer

The remaining part of this paper is organized as follows.

Section II introduces the feed forward ANN covering the MLP

equalizer model and that based on radial basis function (RBF).

Section III reviews the literature associated with various

performance analysis of non-blind and blind based equalizers.

Simulation results are provided in Sec. IV, where the BER

performance of different equalizers is compared. Finally, Sec.

V concludes the paper.

II. SYSTEM MODEL AND IMPLEMENTATION OF NEURAL

NETWORKS

A. System Model

The discrete-time oversampled model of the received signal

at the output of the time-invariant channel is written as

𝑥 (
𝑖

𝑚
𝑇 + (𝑛 − 1)𝑇) = ∑ 𝑠𝑘ℎ (

𝑖

𝑚
𝑇 − 𝑘𝑇)

𝑛−1

𝑘=𝑛−𝑝

 +𝓌 [
𝑖

𝑚
𝑇 + (𝑛 − 1)𝑇] , 𝑖 = 0, 1… ,𝑚 − 1, (1)

where {𝑠𝑘 } is the sequence of symbols transmitted at baud

rate T, 𝑚 is the oversampling factor with respect to T,
{𝓌(𝑘𝑇/𝑚)} is the sampled zero mean additive white Gaussian

noise with variance 𝜎𝓌
2 , and ℎ(𝑖𝑇/𝑚) is the overall channel

response, which is here modelled as finite impulse response

(FIR) filter of length 𝑚 given in [13].

By taking into account the oversampled channel output and

by assuming that the length of the observation interval is L, the

received signal in any interval [𝑖𝑇, 𝑖𝑇 + 𝐿] can be expressed as

[13]:

 𝑥(𝑖) = 𝐻𝑠(𝑖) + 𝓌(𝑖), 𝑖 = 0, 1, 2, … (2)

where

 𝑥(𝑖) = [𝑥(𝑖𝑇), 𝑥(𝑖𝑇 + ∆), … , 𝑥(𝑖𝑇 + (𝑚𝑞 − 1)∆)]𝑇 ,

∆ is the sampling period, 𝑚 = 𝑇/∆ , and 𝑞 = (
𝐿

𝑇
)×∆ . The

noise vector is

𝓌(𝑖) = [𝓌(𝑖𝑇),𝓌(𝑖𝑇 + ∆), … ,𝓌(𝑖𝑇 + (𝑚𝑞 − 1)∆)]𝑇 ,

𝑠(𝑖) = [𝑠𝑖−𝑝+1 , 𝑠𝑖−𝑝+2, … . 𝑠𝑖+𝑝−1]
𝑇
,

where 𝑝 =(
𝐿

𝑇
), and 𝐻 is a 𝑚𝑞×(𝑝 + 𝑞 − 1) matrix defined by:

𝐻 =

[

ℎ1 ℎ2 .
0 ℎ1 ℎ2

. . .

. . ℎ𝑛

. . .

.
. . .
0 0 0

. . .

. . .
0 0 0

0 0 0
ℎ𝑛 0 0
. . .

0 0 0
0 0 0
.

. . .
ℎ1 ℎ2 .

. . .

. . .

. . ℎ𝑛]

, (3)

where ℎ𝑙, with 𝑙 = 1, 2, … , 𝑝, is a column vector defined as

ℎ𝑙 = [ℎ[(𝑝 − 𝑙)𝑇], ℎ [(𝑝 − 𝑙 +
1

𝑚
) 𝑇] , … , ℎ [(𝑝 − 𝑙 +

𝑚−1

𝑚
) 𝑇]]

𝑇

.

B. Implementing Neural Networks

The received symbol sequence 𝑥(𝑖)at the output of the

channel is applied at the input of network. By following the

same model given in [20], 𝑥(𝑖) is the vector of length 𝑚𝑞

applied at the input layer. The estimated vector 𝑥 ̂(𝑖) is

compared with 𝑥(𝑖) and the resulting error vector is written as

 𝑒(𝑖) = 𝑥(𝑖) − 𝑥 ̂(𝑖), (4)

As given in [20], symbol i denote the i-th vector of the error

whose j-th is given by

 𝑒𝑗(𝑖) = 𝑥𝑗(𝑖) − ∑ 𝐻̂𝑗𝑘

𝑀

𝑘=1

𝑞𝑘(𝑖), (5)

where 𝐻̂𝑗𝑘 is the element (j, k) of the estimated channel matrix

𝐻̂. By following the same procedure described in [20], the error

is given by

 𝑒𝑗 = 𝑥𝑗 − ∑ 𝐻̂𝑗𝑘

𝑀

𝑘=1

∑𝑊𝑘𝑙𝑥𝑙(𝑖)

𝑁

𝑙=1

, (6)

where 𝑊𝑘𝑙 = 𝑥𝑘𝑙 + 𝑗𝑦𝑘𝑙 is the corresponding weight of the

each neurons. The block diagram of the feedforward neural

network is given in Fig. 2. Each node, representing a basic

element of the neural network, is called neuron. As given in

[20], the output of a neuron is given by

 𝑦 = 𝑓 (∑𝑤𝑖𝑥𝑖

𝑁

𝑖=1

), (7)

where 𝑥𝑖 is the i-th input to a neuron, 𝑤𝑖 is the weight

associated with the i-th input, and 𝑓(ˑ) is the activation function.

C. Multi-Layer Perceptron

Possible activation functions for multilayer perceptron’s are

given in [21]

 linear: 𝑓(𝑣) = 𝑘𝑣

 sigmoid: 𝑓(𝑣) =
1

1+𝑒−𝑣

 hyperbolic tangent: 𝑓(𝑣) = tanh(𝑣) =
1−𝑒−𝑣

1+𝑒−𝑣.

Figure 2: A feedforward neural network. Each circle represents a

neuron which sums the inputs and passes the sum through an.

activation function. Each arc represents multiplication by a scalar

weight.

Figure 3: RBF Network

An MLP may have more than one hidden layer. The neurons in

the hidden layer may use either sigmoid or hyperbolic tangent

activation functions. The activation function for the output

layer may be any one of the above.

D. Radial Basis function

Since there is no guarantee that an MLP would converge to

a global minimum, RBF networks are a key alternative. RBFs

have only three layers (one input, one hidden, and one output)

[14]. The k-th output is given by

 𝑦𝑘 = ∑𝑤𝑘𝑖∅(𝑥)

𝑁ℎ

𝑖=1

, (8)

where 𝑁ℎ is the number of neurons in hidden layer and ∅𝑖(𝑥) is

a radially symmetric scalar function with 𝑁ℎ centers of the

radial basis function. A commonly used radial basis function

∅𝑖(𝑥) is the Gaussian function

 ∅𝑖(𝑥) = exp (−
‖𝑥 − 𝑐𝑖‖

2

2𝜎𝑖
2), (9)

where ‖. ‖ is a norm, e.g., Euclidean. A radial basis function is

local in its characteristic response to the input 𝑥 and it drops off

quickly for input values that are away from the center of the

activation function’s receptive field, 𝑐𝑖.

 Figure 4: Adaptive channel equalization

III. BLIND AND NON BLIND EQUALIZERS

In this Sec. performance analysis of various equalizers is

considered by a broad classification of them into Non-blind and

Blind equalizers [15]. Non-blind algorithms implement

supervised learning approaches where training sequences are

used. In supervised learning, a machine can infer a function from

labelled training data. The main issue is the amount of training

data available relative to the complexity of the "true" function

(classifier or regression function). If the true function is simple,

then an "inflexible" learning algorithm with high bias and low

variance will be able to learn it from a small amount of data.

However, if the true function is highly complex because, for

example, it involves complex interactions among many

different input features and behaves differently in different

parts of the input space, then the function will only be learnable

from a very large amount of training data and using a “flexible”

learning algorithm with low bias and high variance. A different

scenario occurs when the process of parameter optimization

and/or adaptation cannot be guided because a reference signal

is by no means available. Channel equalization is an

unsupervised problem by nature. In addition to that, such a

problem is characterized by the requirement of real-time and

low computational burden, due to the practical operation

conditions of a communication system.

III.1. NON BLIND EQUALIZERS –SUPERVIZED

A. Zero Forcing (ZF)

ZF Equalizer [16] refers to a form of linear equalization

algorithm used in communication systems which applies the

inverse of the frequency response of the channel. The name

Zero Forcing corresponds to bringing down the inter-symbol

interference (ISI) to zero in a noise free case. This will be useful

when ISI is significant compared to noise. Thus the

combination of channel and equalizer gives a flat frequency

response and linear phase. Apart from it being lucrative choice

for an equalizer it suffers from drawbacks such as infinite

channel impulse response.

B. Adaptive Minimum Mean Square Equalizer (MMSE)

The adaptive MMSE equalizer is a classic approach that has

been widely used in digital communication systems [17]. The

MMSE equalizer is obtained by minimizing the cost function

Figure 5: Structure of Forward Linear Predictor.

 𝜉 = 𝐸|𝑑(𝑛) − 𝑤𝑇(𝑛)𝑦(𝑛)|2 (10)

with respect to the tap vector 𝑤(𝑛). The input vector is given

by

 𝑦(𝑛) = [𝑦(𝑛) … 𝑦(𝑛 − 𝑁 + 1)], (11)

where N is the tap-length and 𝑑(𝑛) = 𝑥(𝑛 − ). The decision

delay ∆ determines which symbol is being detected at the

current time 𝑛, or the current equalization output 𝑧(𝑛) is an

estimate of 𝑥(𝑛 − ∆). The maximum potential performance of

an MMSE equalizer is achieved by the ideal equalizer with 𝑁 →
∞ extending from -∞ to ∞.

III.2. BLIND EQUALIZERS-NON SUPERVISED

A. Blind Constant Modulus Algorithm

The most commonly used adaptive algorithm for blind

channel equalization is the Constant Modulus Algorithm

(CMA), which uses the constant modularity of the signal as the

desired property [18]. CMA assumes that the input to the

channel is a modulated signal that has constant amplitude at

every instant in time. CMA attempts to accomplish this

objective by forcing the output of the equalizer to have constant

amplitude. It can also be used for QAM signals where the

amplitude of the modulated signal is not the same at every time

instant. The error is then determined by considering the nearest

valid amplitude level of the modulated signal at the desired

value as

 𝐽𝐶𝑀 = 𝐸(|𝑥(𝑛)|2 − 𝑅2)
2, (12)

where 𝑥(𝑛) is the received signal and 𝑅2is Godard dispersion

constant given by

 𝑅2 =
𝐸[𝑥(𝑛)4]

𝐸[𝑥(𝑛)2]
. (13)

The constant R2 depends on a priori statistical information

about transmitted signal. Equalizer coefficients’ update

equation in CMA uses a gradient descent to minimize JCM by

as illustrated in Fig. 4, that is given by

 𝑤(𝑛 + 1) = 𝑤(𝑛) − 𝜇𝑦(𝑛)𝑥(𝑛) [𝑎𝑏𝑠(𝑥(𝑛))
2
− 𝑅2], (14)

where 𝑦(𝑛) is the output, 𝑤(𝑛) is current equalizer coefficient,

𝑤(𝑛 + 1) is next equalizer coefficient, 𝜇 is the step size and 𝑅2

TABLE 1: SETTINGS FOR THE NEURAL NETWORK

Tap Length of equalizer(L) 20

Number of input Neuron L+1

Number of output Neuron 1

Number of hidden Neuron 15

Number of training patterns 1000

is the Godard constant.

B. Blind Linear Predictive Equalizer

Blind equalization based on linear prediction is one of the

methods for blind multiuser case [19]. The idea is to obtain an

estimate for the received vector 𝑥(𝑛) as a linear combination of

the vectors 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝐾 + 1), i.e., the components

of 𝑥(𝑛 − 1). The estimate can be expressed as

𝑥(𝑛) = 𝐴𝐻(1)𝑥(𝑛 − 1) +· · +𝐴𝐻(𝐾 − 1)𝑥(𝑘 − 𝐾 + 1)(15)

where 𝐴 is a 𝑃(𝐾 − 1)×𝑃 matrix composed by the(𝐾 − 1) 𝑃×
𝑃 matrices of prediction coefficients.

 𝐴 = [𝐴𝐻(1) …𝐴𝐻(𝐾−1)]
𝐻
. (16)

The forward prediction error is given by:

 𝑒𝑓(𝑛)|𝑥(𝑛−1)
= 𝑥(𝑛) − 𝑥̂(𝑛)|𝑥(𝑛−1) = [𝐼 − 𝐴𝐻]𝑥(𝑛) (17)

The operation of a forward linear multichannel predictor is

illustrated in Figure 5. A P × P matrix with the forward

prediction-error variance is defined by

 𝜎𝑒𝑓
2 = [𝐼 − 𝐴𝐻]ℝ𝑥

(𝐾)(𝑛)[𝐼 − 𝐴𝐻]𝐻 , (18)

where ℝ𝑥
(𝐾)(𝑛) = 𝐸[𝕩(𝑛)𝕩(𝑛)𝐻] and K indicates the number

of time instances taken into account. The minimization of the

variance of the prediction error, 𝜎𝑒𝑓
2 , leads to the following

optimization problem:

 min
𝐴

[𝐼𝑝 − 𝐴𝐻]ℝ𝑥
(𝐾)(𝑛)[𝐼 − 𝐴𝐻]𝐻 = 𝜎𝑒𝑓

2 (19)

Upon solving the minimization results according to

equation

 [𝐼𝑝 − 𝐴𝐻]ℝ𝑥
(𝐾)(𝑛) = [𝜎𝑒𝑓

2 0𝑝 … . 0𝑝] (20)

IV. SIMULATION RESULTS AND CONFIGURATION SETTINGS

In this section, to have a collective performance index, we

consider BER as the performance figure of merit. The following

minimum phase channel with five taps is considered [20]:

ℎ = [0.0545 + 0.05𝑖 0.2832 − 0.11971𝑖 − 0.7676
0.2788𝑖 − 0.0641 − 0.0576𝑖 0.0466 − 0.02275𝑖]

TABLE 2: COMPARISON OF A HARDWARE AND TIME COMPLEXITY

Method
Number of

Additions

Number of

Multiplications

Time

Complexity

Adaptive

CMA

346 349 0.085675sec

Non Blind

Neural

Network

330 330 0.043085sec

Blind, Neural

Network
330 330 0.060391sec

Random data generation at the input account for the presence

of 3ˑ105 symbols drawn from a QPSK constellation, 105 being

total number of data symbols and 2ˑ105 training symbols. The

SNR is varied from 0 to 30 dB with an increment of 2 dB. The

input signal is passed through the complex multipath channel h.

Implementation settings of Blind and Non Blind equalizers with

ANN are reported in Table 1 [15].

Two activation functions have been used in the equalizers

implemented by ANN: the hyperbolic tangent function for the

hidden layer and the identity linear function for the output

layers. The complexity of the addition and multiplication when

bias is used for all neurons can be calculated in neural networks

by a general formula given in [22] as

  of multiplication = 𝑛×𝜌 + 𝑚 ×𝜌 (21)

  of addition = 𝑛×𝜌 + 𝑚 ×𝜌, (22)

where n is number of neuron in input layer, m is the number of

neurons in output layer, and 𝜌 is the number of hidden layer.

Figure 6 reports BER versus 𝐸𝑏/𝑁𝑜 performance for QPSK

modulation for ZF and MMSE equalizers. The theoretical BER

is also reported as a reference. In Fig. 7 the BER performance

of the linear predictive equalizer with and without ANN is

shown. From the results it is clearly visible that we have same

performance with and without ANN. In Fig. 8 similar behavior

is observed for the BER performance of Non-Blind equalizers

of ZF with and without ANN. From the results it is clearly

visible that by using Neural network a better performance is

achieved. Finally, Fig. 9 depicts the overall performance of the

both blind and non-blind equalizers, with and without neural

networks. The equalizers implemented using ANN outperform

the conventional ones both in terms of BER performance and

and in terms of number of additions and multiplications required

for the hardware implementation, as reported in Table 2.

V. CONCLUSION

From the presented results it is clear that BER performance

is better for channel equalizers implementing conventional

method based on ANN as compared to equalizers that do not

implement it. Also in terms of hardware and time complexity

(CPU time), channel equalizers implemented by neural network

performs better than conventional method. There would be an

undermining deteriorating effect in case of blind approaches,

since it is not trained. We were able to successfully mimic the

BER performance blind channel equalizer namely blind linear

Figure 6: Comparison of performance analysis of Zero Forcing and

Minimum Mean Square Equalizer with theoretical BER of QPSK.

Figure 7: Comparison of Performance of Blind Linear Predictive

Equalizers with and without Neural Networks.

Figure 8: Comparison of Neural Network implemented equalizers for

Blind and Non Blind.

Figure 9: Overall Performance evaluation of various equalizers

predictive equalizer using ANN. A significant improvement of

the performance is observed for the conventional equalizers,

namely non-blind ZF when ANN is used.

REFERENCES

[1] S. Bang, S. H. Sheu, and J. Bing, “Neural network for detection of signals

in communication,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 43,
no. 8, pp. 644–655, Aug. 1996.

[2] J.M Cioffi., “When do I use an RLS adaptive filter?,” in Proc. of Asilomar
Conference on Circuits, Systems and Computers, 1985, pp. 636—639.

[3] J. John Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8 pp. 2554-2558, 1982.

[4] D. W. Tank and J. J. Hopfield, “Simple 'neural' optimization networks: an
A/D converter, signal decision circuit, and a linear programming circuit,”
IEEE Transactions on Circuits and Systems, vol.33 no.5, pp. 533-541,
1986.

[5] Ali H. Sayed and K. Thomas, “A state-space approach to adaptive RLS
filtering,” IEEE Signal Processing Magazine, vol. 11, no. 3, pp. 18-60
1994.

[6] S. Bang, S. H. Sheu, and J. Bing, “Neural network for detection of signals
in communication,” IEEE Trans. Circuits Syst. I, vol. 43, no. 8, pp. 644–
655, Aug. 1996.

[7] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks:
perceptron, madaline and backpropagation,” Proc. IEEE, vol. 78, no. 9,
pp. 1415–1442, Sep. 1990.

[8] Magarini, Maurizio, Arnaldo Spalvieri, and Guido Tartara. "The mean-
square delayed decision feedback sequence detector." IEEE transactions
on communications 50.9 (2002): 1462-1470.

[9] E. Eleftheriou and D. Falconer, “Adaptive equalization techniques for HF
channels,” IEEE Journal on Selected Areas in Communications, vol, 5,
no. 2, pp. 238-247, 1987.

[10] J. Shore and J. Rodney, “Properties of cross-entropy minimization,”
IEEE Transactions on Information Theory, vol. 27, no. 4 pp. 472-482,
1981.

[11] G. Picchi and G. Prati, “Blind equalization and carrier recovery using a
stop-and-go decision-directed algorithm,” IEEE Trans. Commun, vol. 35,
no. 9, pp. 877-887, 1987.

[12] D. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,” IEEE Trans. Commun, vol.
28, no. 11, pp. 1867-1875, 1980.

[13] Y. Fang and T.W.S. Chow, “Blind equalization of a noisy channel by
linear neural network." IEEE Trans. Neural Netw., vol. 10, no. 4, pp. 918-
924, 1999.

[14] J. Lee, C. Beach, and N. Tepedelenlioglu, “A practical radial basis
function equalizer,” IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 450–
455, Mar. 1999.

[15] D. Godard and P. E. Thirion, “Method and device for training an adaptive
equalizer by means of an unknown data signal in a quadrature amplitude
modulation transmission system,” U.S. Patent No. 4,227,152. 7 Oct.
1980.

[16] M. Goursat and A. Benveniste, “Blind equalizers,” IEEE Trans.
Commun., vol. 28., no. 11, pp. 871-883, 1984.

[17] Y. Gong, X. Hong, and K. F. Abu-Salim, “Adaptive MMSE equalizer
with optimum tap-length and decision delay,” IET Sensor Signal
Processing for Defence, pp. 1-5, 2010.

[18] S. Abrar and A. K. Nandi, “An adaptive constant modulus blind
equalization algorithm and its stochastic stability analysis,” IEEE Signal
Proc. Lett., vol. 17, no. 1 pp. 55-58, 2010.

[19] G. Kechriotis, E. Zervas, and E. S. Manolakos. “Using recurrent neural
networks for adaptive communication channel equalization,” IEEE Trans.
Neural Netw., vol. 5, pp. 267-278, 1994.

[20] A. Naveed et al, “Blind equalization and estimation of channel using
artificial neural networks,” in Proc. of Intern. Multitopic Conf., 2004.

[21] W. D. Ruck et al, “The multilayer perceptron as an approximation to a
Bayes optimal discriminant function,” IEEE Trans. Neural Netw., vol. 1,
no. 4, pp. 296-298, 1990.

[22] K.-S. Oh and J. Keechul, “GPU implementation of neural networks,”
Pattern Recognition, vol.37, no. 6, pp. 1311-1314 37.6, 2004.

