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Abstract

Web services are ubiquitous technologies which are used for
integrating business processes and services. As is the case
in many other applications, the information processed in
web services might be commercially sensitive and it is im-
portant to protect this information against security threats
such as disclosure to unauthorized parties.

In this paper we propose a notion of non-interference for
service compositions expressed as terms of a typed CCS-
like process algebra. Security policies are used to specify
the security requirements of service components and may
be dynamically provided by the service participants.

We study the conditions under which service components
may be replaced in a service composition while preserving
both non-interference and compliance, that is a basic pro-
perty ensuring the absence of livelocks and deadlocks dur-
ing execution.

Keywords: Process algebra, behavioural equivalences,
non-interference, web services

1 Introduction

Service Oriented Architectures (SOA) provide a soft-
ware architectural style to connect loosely specied and cou-
pled services that communicate with each other. Web ser-
vices are the most prominent software systems used to
realize SOA. They are designed to support interoperable
service-to-service interactions over a network. This inter-
operability is gained through a set of XML-based open stan-
dards, such as WSDL, SOAP, and UDDI. These standards
provide a common approach for defining, publishing, and
using web services.

Web services are mostly used for integrating business
processes and services. As is the case in many other ap-
plications, the information processed in web services might
be commercially sensitive and it is important to protect this
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information against security threats such as disclosure to
unauthorized parties. Indeed, many of the features that
make web services attractive, including greater accessibility
of data, dynamic connections, and relative autonomy (lack
of human intervention) are at odds with traditional security
models and controls. Difficult issues and unsolved prob-
lems exist, such as protecting confidentiality and integrity
of data that is transmitted through web services protocols in
service-to-service transactions.

Traditional network security technologies (e.g., fire-
walls) are inadequate to protect SOAs. Indeed SOAP mes-
sages are transmitted over HTTP, which is allowed to flow
without restriction through proxies and firewalls. More-
over, the protocol SSL/TLS, which is used to authenticate
and encrypt web-based messages, is inadequate for protect-
ing SOAP messages because it is designed to operate be-
tween two endpoints. SSL/TLS cannot accommodate web
services’ inherent ability to forward messages to multiple
other web services. The web service processing model re-
quires the ability to secure SOAP messages and XML doc-
uments as they are forwarded along potentially long chains
of consumers, providers, and other intermediary services.

In this paper we propose a notion of non-interference
[13] for multilevel service compositions. This is motivated
by the fact that SOAs are increasingly relying on com-
plex distributed systems that share information with mul-
tiple levels of security. In these systems information with
mixed security levels is processed and targeted to particu-
lar clients. For example, in a e-business system, some data
will be privileged (e.g., credit card numbers and medical
records) and some data will be public (e.g., stock market
quotes). Such systems need to be equipped with appropri-
ate security facilities to guarantee the security requirements
(e.g., confidentiality or integrity) of the participants.

Traditionally, security policies are used to specify the se-
curity requirements of a system and to control the access
to confidential data and resources (see, e.g., [1, 3]). How-
ever, if this approach can be successfully applied to enforce
the security requirements of a centralized system, it is less
suited to formulate the security needs of a service composi-
tion. Indeed, there is no central authority in the web that



is able to fix the security labels of all services and data.
Rather than manipulating stored data, web services com-
putes requested information from dynamic data available on
the net that need to be dynamically classified according to
their stored information.

We present an information flow security model [20, 15,
12, 19] for service compositions to control the flow of confi-
dential data in web services. Our framework is based on the
use of security policies which may be dynamically provided
by the service components.

We specify service compositions in terms of behavioral
contracts which provide abstract descriptions of system be-
haviors by means of terms of some process algebra. Formal
theories of contracts have first been introduced in [8], and
then further developed along independent lines of research
in [9, 10, 14], and independently in [4, 5].

Our model is based on the notion of non-interference
[13, 11, 18] and is inspired by our previous work [12]
for CCS processes. The definition of non-interference for
service compositions we present here demands that pub-
lic synchronizations are unchanged as confidential commu-
nications are varied or, more generally, that the low level
behaviour of the composition is independent from the be-
haviour of its high components. Security policies are used
to specify the security requirements of service components.
In order to capture the dynamic nature, heterogeneity and
lack of knowledge which are intrinsic features of modern
web services, we allow policies to be dynamically speci-
fied by the service participants. In our model, for example,
customers may formulate their security requirements by dy-
namically assign types (that are security annotations) to in-
dividual service components.

Moreover, we study the conditions under which ser-
vice components may be safely replaced in a service
composition while preserving both non-interference and
compliance [2, 7], that is a property ensuring the absence of
livelocks and deadlocks during execution. We also provide
a coinductive proof technique for the safe replacement of
single components in multy-party service compositions.

The paper is organized as follows: Section 2 introduces
the contract-based language we use to specify multilevel
service compositions. Section 3 formalizes the notion of
non-interference. Section 4 studies the conditions under
which a single contract can be safely replaced in a service
composition while preserving both compliance and non-
interference. Finally, Section 5 concludes the presentation.

2 A Process Algebra for Multilevel Service
Compositions

We represent service contracts as terms of a value-
passing CCS-like [16] process calculus that includes recur-

sion and operators for external and internal choice. Parallel
composition arises in contract compositions that we define
as the parallel (and concurrent) composition of a set of prin-
cipals executing contracts. We presuppose a denumerable
set of action names A, ranged over by a, b, c, a denumer-
able set of principal identities P , ranged over by p, q, r, and
a denumerable set of variables V , ranged over by x, y. The
actions represent the basic units of observable behavior of
the underlying services, while the principal names specify
the peers providing the services.

In order to specify multilevel service compositions, we
assign security levels to principal identities and express con-
tracts and compositions as typed terms of our process cal-
culus. Formally, we assume a complete lattice 〈Σ,�〉 of
security annotations, ranged over by ς, %, where > and ⊥
represent the top and the bottom elements of the lattice. We
denote by t and u, respectively, the join and meet opera-
tors over Σ. Type environments are used to assign security
levels to principals. A type environments Γ is a finite map-
ping from principals and variables to security annotations.
We define Γ1 t Γ2 (resp. Γ1 u Γ2) the type environment
Γ such that Γ(p) = Γi(p) if p 6∈ dom(Γ1) ∩ dom(Γ2)
and p ∈ dom(Γi), otherwise Γ(p) = Γ1(p) t Γ2(p) (resp.
Γ(p) = Γ1(p) u Γ2(p)).

The syntax of our calculus is presented in Table 1.
The term 1 indicates a contract that has reached a suc-

cessful state. The contract ā@p.σ describes a service that
sends a message on a to principal p and then behaves as
σ; syntactically, the principal identity p may be a variable,
but it must be a name when the prefix is ready to fire. Du-
ally, the input prefix a@u.σ waits for an input on a from
a particular/any principal and then continues as σ. If u is
a variable x, then the input form is a binder for x with
scope σ: upon synchronization with a principal p, x gets
uniformly substituted by p in σ. The contract σ + σ′ de-
notes an external choice, guided by the environment. The
contract σbΓ⊕ Γ′cσ′ represents the internal choice between
σ in the type environment Γ and σ′ in the type environment
Γ′ made irrespective of the structure of the interacting com-
ponents; the internal choice operator we adopt in this paper
allows us to model the fact that a principal may dynami-
cally change (upgrade) the security level of his interactions
with other service components through an internal choice.
Finally, rec(x)σ makes it possible to express iteration in
the contract language. As usual, we assume a standard con-
tractivity condition for the recursion operator, requiring that
recursion variables be guarded by a prefix.

Given a principal p ∈ P , we say that a contract σ is
p-compatible if for all ā@q and a@q occurring in σ, q is
different from p.

A composition p1[σ1] ‖ · · · ‖ pn[σn] of principals
must be well-formed [5, 6] to constitute a legal composition,
namely: (i) the principal identities pi’s must all be pairwise



Table 1 Syntax

Type environments Γ ::= ∅ | Γ, p : ς p ∈ P, ς ∈ Σ
Actions ϕ ::= ā@u | a@u a ∈ A, u ∈ P ∪ V
Contracts σ ::= 1 | x | ϕ.σ | σ + σ | σbΓ⊕ Γcσ | rec(x)σ
Compositions C ::= p[σ] | C ‖ C

Table 2 Example of a travel agency

S = C[σC ] ‖ T [σT ] ‖ A1[σA] ‖ A2[σA]

σC = Req@T.Lst@T.( Close@T.1b∅⊕ T :Hc( Buy1@T.Pay@T.Get@A1.1bA1:H⊕ A2:HcBuy2@T.Pay@T.Get@A2.1 ) )

σT = Req@x.Inq@A1.Inq@A2.Price@A1.Price@A2.Lst@x.( Close@x.1 +
Buy1@x.Ord@A1.Pay@x.Conf@A1.1 + Buy2@x.Ord@A2.Pay@x.Conf@A2.1 )

σA = Inq@x.Price@x.( Ord@x.Conf@x.Get@y.1 + 1 )

different, and (ii) each contract σi, executed by principal
pi, is pi-compatible. If C = p1[σ1] ‖ · · · ‖ pn[σn] is a legal
composition, we say that C is a {p1, . . . , pn}-composition
(dually, that {p1, . . . , pn} are the underlying principals for
C).

Throughout, we assume that contracts are closed (they
have no free variables) and that compositions are well
formed. Also, we often omit trailing 1’s.

A service component may modify the security level of
its interactions with other components by assigning differ-
ent security levels to the principals with which it is go-
ing to interact. However, it is reasonable to assume that
a service component cannot downgrade the security level
of other principals; moreover it cannot upgrade the level of
its interactions with other components above its own level.
These are the only typing constraints we assume. Such a
typing discipline ensures that information does not explic-
itly flow from high to low, but it does not deal with implicit
flows. Instead, we characterize non-interference in terms of
the actions that typed service compositions may perform.

Example 2.1 Table 2 shows an example of a service con-
tract composition. Four services are involved in this compo-
sition: C[σC ], T [σT ] andAi[σA] representing a customer, a
travel agency, and two airline companies, respectively. The
elementary actions represent business activities that result
in messages being sent or received. For example, the action
Req@T undertaken by the customer results in a message be-
ing sent to the travel agency. In the example, the customer
sends a request to the travel agency which then inquires the
airlines to get the prices for the selected route. Each airline
responds and the travel agency sends to the customer the list

of the best prices. The customer decides whether to close
the interaction with the travel agency or to buy from one of
the airlines. In the latter case the customer decides to assign
a high security level (H) to both the travel agency and the
chosen airline company in order to safeguard the confiden-
tiality of the purchasing data. The travel agency orders the
ticket from the selected airline and takes a deposit (or a full
payment) from the customer. As soon as the airline receives
the confirmation of the payment, the ticket is issued to the
customer. 2

Type System The typing rules reported in Table 3 ensure
that, given a service composition with underling set of prin-
cipals π, every p ∈ π cannot upgrade the security level of
the other principals in π (including p) above p’s level.

The judgments take the form Γ ` C, where Γ is a type
environment and C is a service composition. We denote by∐

the function that associates to each contract σ the join of
all the Γi occurring as a parameter of an internal choice in
σ. We say that a service component p[σ] is well-typed in Γ
if p will never upgrade the security level of other principals
over his own level; this is obtained by requiring that for all
q ∈ dom(

∐
(σ)), it holds

∐
(σ)(q) � ς .

Semantics of typed service compositions We define the
dynamics of typed service compositions in terms of labelled
transition systems (and a success predicate), with rules re-
ported in Table 4. In the table, and in the whole paper, λ
ranges over visible contract typed actions ā@p, a@p and
silent actions τ ; δ ranges over service composition actions
ap→q , āp→q and τ .



Table 3 Type System∐
(1) = ∅

∐
(x) = ∅

∐
(ϕ.σ) =

∐
(σ)

∐
(σ1 + σ2) =

∐
(σ1) t

∐
(σ2)

∐
(rec(x)σ) =

∐
(σ)∐

(σ1bΓ1⊕ Γ2cσ2) = Γ1 t Γ2 t
∐

(σ1) t
∐

(σ2)

Γ, p : ς ` p[σ]
ς ∈ Σ,

⊔
q∈dom(

‘
(σ))

∐
(σ)(q) � ς Γ ` C1 Γ ` C2

Γ ` C1 ‖ C2

Table 4 Typed contract and composition transitions
Contract and composition satisfaction: σX

1X
σi X

σ1 + σ2 X

σ{x := rec(x)σ}X

rec(x)σX

σX

p[σ] X

C1 X C2 X

C1 ‖ C2 X

Typed contract transitions: Γ B σ
λ−→ Γ′ B σ′

Γ B ā@p.σ
ā@p
−−→ Γ B σ Γ B ā@x.σ

ā@p
−−→ Γ B σ{x := p} Γ B a@p.σ

a@p
−−→ Γ B σ Γ B a@x.σ

a@p
−−→ Γ B σ{x := p}

Γ B σ1bΓ1⊕ Γ2cσ2
τ−→ Γ t Γi B σi (i = 1, 2)

Γ B σi
λ−→ Γ′ B σ

(i = 1, 2)
Γ B σ1 + σ2

λ−→ Γ′ B σ

Γ B σ{x := rec(x)σ} λ−→ Γ′ B σ′

Γ B rec(x)σ λ−→ Γ′ B σ′

Typed composition transitions: Γ B C
δ−→ Γ′ B C ′

Γ B σ
τ−→ Γ′ B σ′

Γ B p[σ] τ−→ Γ′ B p[σ′]

Γ B σ
a@p−→ Γ B σ′

p ∈ dom(Γ), p 6= q
Γ B q[σ]

ap→q−→ Γ B q[σ′]

Γ B σ
ā@p−→ Γ B σ′

p 6= q

Γ B q[σ]
āq→p−→ Γ B q[σ′]

Γ B C1
ap→q−→ Γ B C ′1 Γ B C2

āp→q−→ Γ B C ′2

Γ B C1 ‖ C2
τ−→ Γ B C ′1 ‖ C ′2

Γ B C1
δ−→ Γ′ B C ′1

Γ B C1 ‖ C2
δ−→ Γ′ B C ′1 ‖ C2

We say that Γ B C is a configuration if Γ is a type envi-
ronment and C is a {p1, . . . , pn}-service composition such
that {p1, . . . , pn} ⊆ dom(Γ).

The first block of rules defines the successful states of
a contract and a composition, which are those that expose
the successful term 1 at top level, or immediately under an
external choice (up-to recursive unfoldings). We note that a
composition is a successful state only when all the compo-
nents are successful.

The second block of rules defines the typed transitions
for contracts, and are mostly self-explanatory. Notice that
the rule for the internal choice ensures that a service com-
ponent cannot downgrade the security level of other princi-
pals. Each typed contract transition yields a corresponding
transition for the principal hosting the contract. The typed

transitions for the configurations are relative to the underly-
ing set dom(Γ) of principals and are entirely standard.

We will use the following shorthands. We write =⇒ to
note the reflexive and transitive closure of τ−→, and δ=⇒ for
=⇒ δ−→=⇒. We extend the definition to sequences of ac-
tions w = δ1 . . . δn and we write w=⇒ to note δ1=⇒ · · · δn=⇒.

A computation for a configuration Γ B C, is a sequence
Γ B C = Γ0 B C0

τ−→ Γ1 B C1
τ−→ . . . of internal

actions.

Lemma 2.2 [Subject reduction] Let Γ be a type environ-
ment and C be a service composition such that Γ B C is
a configuration. If Γ B C is well-formed and Γ B C

τ−→
Γ′ B C ′, then Γ′ B C ′ is well formed.



Example 2.3 Consider again the service composition S of
Example 2.1. Let Σ contain two security annotations, L
(public) and H (confidential), with L � H. Let Γ be the
type environment C : H, T : L, A1 : L, A2 : L. The
service composition S is well-typed in Γ, i.e., Γ ` S. 2

3 Non-Interference for Service Compositions

The concept of noninterference [13] has been introduced
to formalize the absence of information flow in multilevel
systems. In the context of service compositions it demands
that public interactions between service components are un-
changed as secret communications are varied or, more gen-
erally, that the low level behaviour of the service composi-
tion is independent from the behaviour of its high compo-
nents. In this way clients are assured that the data trans-
mitted over the air to a web server remains confidential;
in other words, it cannot be intercepted and understood by
eavesdroppers.

The notion of non-interference we are going to introduce
is relative to the internal behaviour of service compositions,
i.e., we are interested in observing the internal synchroniza-
tions between service components. We thus refine the se-
mantics of compositions in order to help (i) to distinguish
a local contract move from a synchronization, and (ii) to
identify the principals involved in every synchronization.
This is captured by the rules collected in Table 5, where we
use the relation ↪−→ to represent the internal typed transi-
tion of compositions. The τ action now indicates an internal
action to a service component, while synchronizations be-
tween different peers in a composition are now represented
through a label of the form {a}p→q where a represents a
synchronization on a and p and q are the principals execut-
ing it. We let α range over the labels {a}p→q and τ . We de-

fine
τ
↪−→→ def=

τ
↪−→ · · · τ

↪−→ and
{a}p→q

↪−→→ def=
τ
↪−→→ ·

{a}p→q

↪−→ · τ
↪−→→.

The following lemma relates the two semantics for ser-
vice compositions, one expressed in terms of −→ and the
other one in terms of ↪−→.

Lemma 3.1 Let Γ be a type environment andC be a service
composition such that Γ B C is a configuration. It holds
that

• Γ B C
τ
↪−→ Γ′ B C ′ if and only if C = C1 ‖p[σ]‖C2,

C ′ = C1 ‖ p[σ′] ‖ C2 and σ τ−→ σ′;

• Γ B C
{a}p→q

↪−→ Γ B C ′ if and only if C = C1 ‖ p[σ] ‖
C2 ‖ q[ρ] ‖ C3, C ′ = C1 ‖ p[σ′] ‖ C2 ‖ q[ρ′] ‖ C3

and σ
ā@q−→ σ′ and ρ

a@p−→ ρ′.

In order to define our notion of non-interference, we
need to be able to distinguish the internal interactions at a
given security clearance. As internal transitions are typed,

we can assign a security level to them as follows: the level
of a synchronization depends on the level of the principals
performing it. More precisely, we denote by Γ({a}p→q) the
level of the internal action {a}p→q in the type environment
Γ and we define is as:

Γ({a}p→q) = Γ(p) u Γ(q).

Thus a ς-level synchronization between two components
is performed by principals whose security level is higher or
equal to ς .

Behavioural observations We define behavioural obser-
vations in terms of equivalences that are parametric with
respect to the security level ς ∈ Σ of the behaviour we want
to observe. Such equivalences are relations over configura-
tions that equate service compositions exhibiting the same
ς-level component interactions.

Our behavioural equivalence is a variant of the notion of
weak bisimulation [16], an observation equivalence which
allows one to observe the nondeterministic structure of the
LTSs and focuses only on the observable actions.

In the following, we write Γ1 =ς Γ2 whenever {p ∈
dom(Γ1)| Γ1(p) � ς} = {p ∈ dom(Γ2)| Γ2(p) � ς}.

Definition 3.2 [Weak bisimulation on ς-low actions] Let
ς ∈ Σ. A weak bisimulation on ς-low actions is the largest
symmetric relation ≈ς over configurations such that when-
ever Γ1 B C1 ≈ς Γ2 B C2 with Γ1 =ς Γ2

• if Γ1 B C1
α
↪−→ Γ′1 B C ′1 with α = τ or Γ1(α) � ς ,

then there exist Γ′2 and C ′2 such that Γ2 B C2
α
↪−→→

Γ′2 B C ′2 with Γ′1 B C ′1 ≈ς Γ′2 B C ′2 and Γ′1 =ς Γ′2;

• if Γ1 B C1
α
↪−→ Γ′1 B C ′1 with α 6= τ and Γ(α) 6� ς ,

then there exist Γ′2 and C ′2 such that

– either Γ2 B C2
α
↪−→→ Γ′2 B C ′2

– or Γ2 B C2
τ
↪−→→ Γ′2 B C ′2

with Γ′1 B C ′1 ≈ς Γ′2 B C ′2 and Γ′1 =ς Γ′2.

We write Γ |= C1 ≈ς C2 whenever Γ B C1 ≈ς Γ B C2.
2

The notion of non-interference is inspired by [12] and is
expressed in terms of a restriction operator ·|ς which allows
one to represent a service composition prevented from per-
forming internal synchronizations of a level higher than ς .
The semantics of C|ς is described by the following rule:

Γ B C
α
↪−→ Γ′ B C ′

Γ(α) � ς
Γ B C|ς

α
↪−→ Γ′ B C ′|ς



Table 5 Typed internal composition transitions

Typed internal composition transitions: Γ B C
α
↪−→ Γ′ B C ′

Γ B σ
τ−→ Γ′ B σ′

Γ B p[σ]
τ
↪−→ Γ′ B p[σ′]

Γ B C1
ap→q−→ Γ B C ′1 Γ B C2

āp→q−→ Γ B C ′2

Γ B C1 ‖ C2

{a}p→q

↪−→ Γ B C ′1 ‖ C ′2

Γ B C1
α
↪−→ Γ′ B C ′1

Γ B C1 ‖ C2
α
↪−→ Γ′ B C ′1 ‖ C2

Definition 3.3 [Non-interference] Let ς ∈ Σ, Γ be a type
environment and C be a service composition such that Γ B
C is a configuration. We say that the service composition
C satisfies the non-interference property with respect to the
level ς in the type environment Γ, denoted C ∈ NIΓ,ς , if

Γ |= C ≈ς C|ς . 2

Since our calculus for service compositions is finite state,
the non-interference property defined above can be checked
in polynomial time on the number of states reachable from
the initial configuration [12]. In particular, a simple variant
of our previous algorithms for the security of CCS processes
can be used.

Example 3.4 Consider again the service composition S of
Example 2.1 in the type environment Γ of Example 2.3. It
holds that S ∈ NIΓ,L. 2

Example 3.5 Consider the service composition depicted in
Table 6: it consists of a client C, two financial consulting
services F1 and F2 and a stock quote service provider S.
The client inquires the financial services to get investment
advices. The financial services consult the stock quote ser-
vice provider in order to look up information on the finan-
cial quotes. Then the financial services send their invest-
ment recommendations to the client which may decide to
adhere to the investment plan proposed by one of the finan-
cial services and close the connection with the other one.

Let Σ = {L,H} with L � H and Γ be the type environ-
ment C : H, F1 : L, F2 : L, S : L. In this case we have that
M 6∈ NIΓ,L. Indeed, there is a direct causality between
the high level actions {Agree}C→Fi and the low level ac-
tion {Close}C→Fj with i 6= j, performed after the clients
makes the choice. As a consequence, if the client decides to
accept the proposal of F1 then F2 knows that the customer
has agreed to proceed with investment recommendation of
F1 by just observing that the action {Close}C→F2 has been
performed. The service composition can be made secure
by letting {Close}C→Fj be executed independently from
{Agree}C→Fi

as in the composition M ′ which is obtained
from M by replacing the contract σC with σ′C . 2

4 Compliance and Non-Interference

Compliance is a basic property that characterizes the cor-
rect behavior of concurrent distributed systems. It is used
widely in the context of Service Oriented Architectures as
a formal device to identify well behaving service composi-
tions, those whose interactions are free of synchronization
errors.

In this paper we refer to the notion of compliance for
service contract compositions studied in [2]. Intuitively, a
composition of services is compliant if it is deadlock and
livelock free, i.e., it does not get stuck nor does it get trapped
into infinite loops with no exit states. This notion is inde-
pendent from the security levels of principals involved in the
internal synchronizations. Thus we omit trailing type envi-
ronments in the definitions below, and write, e.g., C =⇒ C ′

to denote a transition of the form Γ B C =⇒ Γ′ B C ′ for
some type environments Γ and Γ′.

Definition 4.1 [Compliance] Let C be a service composi-
tion. We say that C is compliant, noted C ↓, if for every C ′

such that C =⇒ C ′ there exists C ′′ such that C ′ =⇒ C ′′

and C ′′X. 2

Based on the notion of compliance, one can introduce a
compliance pre-order on the component contracts in terms
of their ability to preserve the compliance of the service
compositions they are part of. This is formalized through
the notion of subcontract relation. Intuitively, compositions
are seen as tests for comparing single contracts. Two con-
tracts are related if so are the sets of service compositions
compliant with them.

Formally, we first define the set of compositions compli-
ant with a contract σ relative to a principal p as: [σ]p =
{C| (C ‖ p[σ]) ↓}. Then we express the subcontract rela-
tion in terms of set inclusion as follows.

Definition 4.2 [Subcontract Relation] Let p be a principal
and σ and ρ be two p-compatible contracts. We say that
σ is a subcontract for ρ relative to the principal p, written
σ vp ρ, if [σ]p ⊆ [ρ]p. 2

The subcontract relation does not in general preserve
non-interference.



Table 6 Example of a financial consulting platform

M = C[σC ] ‖ F1[σF ] ‖ F2[σF ] ‖ S[σS ]

σC = Inq@F1.Inq@F2.Plan@F1.Plan@F2.( Agree@F1.Close@F2.1bF1:H⊕ F2:HcAgree@F2.Close@F1.1 ) )

σF = Inq@x.LookUp@S.Quote@x.Plan@C.( Agree@x.1 + Close@x.1 )

σS = LookUp@x.Quote@x.1

M ′ = C[σ′C ] ‖ F1[σF ] ‖ F2[σF ] ‖ S[σS ]

σ′C = Inq@F1.Inq@F2.Plan@F1.Plan@F2.( Close@F2.Agree@F1.1bF1:H⊕ F2:HcClose@F1.Agree@F2.1 ) )

Table 7 Example of a travel agency (revised)

S′ = C[σ′C ] ‖ T [σT ] ‖ A1[σA] ‖ A2[σA]

σ′C = Req@T.Lst@T.( Close@T.1b∅⊕ T :HcBuy1@T.Pay@T.Get@A1.1 )

Example 4.3 Consider the service composition S′ ob-
tained from S by replacing the contract σC with σ′C as in
Table 7. We have that σC vC σ′C but S ∈ NIΓ,L does
not imply S′ ∈ NIΓ,L since the service has a branch that
performs two high actions with a final low action. 2

In [7] we introduced a safe coinductive preorder for
this subcontract relation. It provides an efficient method
to check whether a service component can be safely re-
placed inside a multi-party service composition. Here we
show that, under some conditions, the same verification
techniques can be used to check whether a contract can
be replaced inside a composition while preserving the non-
interference property with respect to a given security level
ς in a specific type environment Γ. In particular, the next
theorem states that if σ vp ρ then we can replace the com-
ponent p[σ] with p[ρ] preserving the non-interference prop-
erty with respect to a security level ς in a type environment
Γ provided that p has level lower or equal to ς in Γ and the
level of p will never be upgraded above ς .

We generalize the definition of
∐

in Table 3 to service
components as follows:

∐
(p1[σ1] ‖ · · · ‖ pn[σn]) =∐

(σ1) t · · ·
∐

(σn).

Theorem 4.4 Let p be a principal and σ and ρ be two p-
compatible contracts. If σ vp ρ then for all type environ-
ment Γ and security level ς such that Γ(p) � ς then

• (C ‖ p[σ]) ∈ NIΓ,ς implies (C ‖ p[ρ]) ∈ NIΓ,ς for
every C with

∐
(C)(p) � ς .

A more general result can be obtained by defining a
stronger coinductive subcontract preorder with respect to
the one in [7] which preserves both compliance and non-
interference. First we need some notation.

Let R ⊆ {ā@p, a@p| a ∈ A, p ∈ P} ∪ {X} be a set
of contract actions which may contain both visible actions
and the satisfaction signal X. We write σ ↓ R to note that
R is the smallest non-empty set such that σ λ−→ with λ 6= τ
implies λ ∈ R, and σX implies X ∈ R. Moreover, we
write σ ⇓ R whenever σ =⇒ σ′ with σ′ ↓ R.

The next definition provides a safe coinductive proof
method to check whether a contract σ can be replaced by ρ
in a service composition while preserving both compliance
and non-interference.

Definition 4.5 [Strong Coinductive Subcontract Relation]
A strong coinductive subcontract relation is the largest rela-
tion � over contracts such that whenever σ � ρ
• if ρ τ−→ ρ′ then σ � ρ′,

• if ρ ↓ R then for every S such that σ ⇓ S it holds S ⊆ R,

• if ρ λ−→ ρ′ with λ 6= τ then σ =⇒ σ′
λ−→ σ′′ and

σ′′ � ρ′. 2

Theorem 4.6 Let p be a principal and σ and ρ be two p-
compatible contracts. If σ � ρ then for all principal p, type
environment Γ and security level ς it holds that

• (C ‖ p[σ])↓ implies (C ‖ p[ρ])↓, and

• (C ‖ p[σ]) ∈ NIΓ,ς implies (C ‖ p[ρ]) ∈ NIΓ,ς .



5 Conclusion

We have developed a formal framework for the analy-
sis of non-inteference of service compositions. We con-
sider a simple typing discipline where types are used to
assign security levels to service components. We allow
types to be dynamically specified by the service partici-
pants. Our framework is effective: efficient algorithms for
(weak) bisimulation can be adapted (see, e.g., [17]) in order
to check the non-interference property in polynomial time
on the number of states reachable from the initial configu-
ration.

Future work concerns the development of a unique
framework for a formal analysis of service non-interference,
compliance, conformance, adaption and replacement inside
a composition.
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