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Abstract—Tree-based backbone establishment and mainte-
nance in Mobile Ad hoc - Delay Tolerant Networks is often
operated through the use of traversing tokens. A study and
framework are proposed here for various token traversal
strategies on tree-based backbones. The proposed strategies
execute in distributed and purely decentralized manner, and
require only 1-hop knowledge. Aiming at providing the highest
robust and quality of services, these token-traversal strategies
are studied in particular with an algorithm for merging and
maintaining the different trees based on the quality of the
nodes. For the robustness aspect, the use of a trust-based
evaluation framework is assumed and weights the different
nodes based on their quality of cooperation. Three cost func-
tions are implemented in order to evaluate the trust based
framework proposed, including another function for evaluating
tree-convergence time. Results and comparison charts are pro-
vided to illustrate the trade-off between the various strategies
in terms of performance, cost (memory and communication)
and robustness.
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I. INTRODUCTION

Mobile Ad Hoc - Delay Tolerant Networks (mobile ad

hoc DTNs) constitute an emerging subclass of mobile ad hoc

networks (MANETs) that feature frequent and long duration

partitions. Furthermore, this kind of network evolves quickly

and unpredictably. Hence, the most vital features, which

applications working on mobile ad hoc DTNs need, are

the flexibility and survivability of the whole system. These

characteristics render the centralized approaches, such as a

dedicated node, inefficient to work in such an environment.

Therefore, mobile ad hoc DTNs need self-configuring, de-

centralized and robust algorithms to cope with the dynamic

and the partitioned nature of the environment. This implies

that the solution provided to the network must be done

locally but yet effective globally.

Operations within ad hoc networks rely on cooperation

between nodes. A number of research are dedicated to the

cooperative enforcement approaches. These research [1],

[2] aim at enhancing the robustness, the availability and/or

the overall throughput in a purely ad hoc network. This

cooperation scheme tries to cope with ‘selfish nodes’. Such

nodes can deteriorate the robustness (efficient communica-

tion and survivability) of the network since they do not give

collaborative efforts. In these approaches, the terms of trust

and reputation are used to represent the cooperative level

toward other stations in the community. This implies that

the node having high trust level is more likely to cooperate

and accomplish the task or the request which has been placed

on it.

Recently, the paper [3] exploits the existence of such

trust / reputation level of each station, and proposes ‘Greedy

Trusted Spanning Tree’ (G-TRUST) algorithm for creating

of robust trusted spanning trees (tree-based backbone) in

mobile ad hoc DTNs. In this system, it tries to push the lower

trust level nodes to the leaves of the tree. Since the nodes

staying at leaves position do not relay any information for

their neighbors, the higher communication success rate can

be expected. However, this is true only if a spanning tree of

the network, or a spanning tree of a connected component, is

available. This means there must be a spanning tree covering

entirely a connected component.

Since the spanning tree establishment in distributed sys-

tem is often operated through the used of tokens, and, the

paper of [4] suggests that token behavior may have an

impact on the time required to build spanning forests (many

spanning trees in the same network). Moreover, stating in [5]

that techniques for traversing the token which perform well

in static networks are not necessarily well suited in networks

with high mobility. Furthermore, with closely studying the

mechanism of G-TRUST, we foresee that the token behavior

has also an impact on the robustness of the spanning forest.

These motivate us (1) to investigate a new token traversal in

high mobility network using G-TRUST algorithm, and, (2)

to determine a suitable strategy, such that the trusted span-

ning trees (created by G-TRUST) are robust to the dynamic



features of the underlying mobile ad hoc DTNs. Hence,

the objectives of this work are to enhance the robustness

metrics, the performance ratio and convergence speed rate

(described in details later in Section IV and Section V) on

the whole networks by focusing on improving the token

traversal behavior in trusted spanning forest approach.

This work studies a number of possible heuristics to be

used for token traversing in purely distributed and decen-

tralized manner of G-TRUST algorithm, and in a dynamic

network like mobile ad hoc DTNs. The aim is to study

the trade-off among these heuristics in order to choose the

most suitable heuristic to be used for different setting of

networks using G-TRUST. The following section describes

related works and notions of mobile ad hoc DTNs, and

G-TRUST in more details. Section III gives the details

of all heuristics used in this study. The definitions of all

cost functions, the measurement mathematical models, are

described in Section IV. The experimentation methodology,

results and analysis are included in Section V. Finally, the

study is concluded in Section VI and the future work is

suggested in Section VII.

II. RELATED WORKS

A. Mobile Ad Hoc - Delay Tolerant Networks (mobile ad

hoc DTNs)

Mobile Ad Hoc - Delay Tolerant Networks (mobile ad

hoc DTNs) are fluctuating networks populated by a set of

moving materials equipped with wireless communicating

devices. They are mobile, ad hoc configuring, and frequently

partitioned. At a given moment, two stations belonging to

distinct partitions can neither communicate directly nor un-

directly (using multi-hop communications) [6], [7].

In this kind of network, each station can reach a subset of

the other stations using wireless communication abilities, if

possible. Such communication ability is typically defined by

a communication range and may be constrained by natural

obstacles (e.g. walls, building, etc.). The network can be

represented by its dynamic communication graph. At a

given moment t, the communication graph, G(t), of such

a network is a pair (V (G(t)), E(G(t))), where V (G(t))
is a finite set of elements, called vertices, E(G(t)) is a

binary relation on V (G(t)) - a subset of pairs of elements

of V (G(t)). The elements of E(G(t)) are called edges and

constitute the edge set of G(t). An edge between node xi

and xj indicates that, at time t, it is possible for xi and

xj to exchange information. At moment t, G(t) may be

partitioned into a set of m disjoint connected subgraphs.

B. Original algorithm of G-TRUST: Dynamicity Aware-

Graph Relabeling System (DA-GRS)

DA-GRS [8] is a model introduced for the conception

and the analysis of decentralized applications and algo-

rithms targeting dynamically distributed environments like

MANETs or mobile ad hoc DTNs. DA-GRS proposed and

used an algorithm, ‘spanning forest’, for constructing and

maintaining a spanning forest in DTNs, by relying on careful

rules-based token management. Henceforth this concept will

be referred to as ‘original algorithms’ for brevity. The work

in [8] described rules to handle four different scenarios, (a)

partition occurs at a node which belongs to the spanning

tree that possesses the token, (b) partition occurs at a node

which belongs to the spanning tree which does not possess

the token, (c) when a token meets another token (this original

algorithm refers to this event as the synchronization method),

and, (d) tokens traversal in general case (This original algo-

rithm use randomness as a token traversal strategy). These

rules can be viewed in DA-GRS’s visual representation as

illustrated in Figure 1.
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Figure 1. The four rules of the original algorithm [8]

The re-labeling idea of DA-GRS can be explained as

follows. The circle represents a node. ‘T’ refers to token.

When this ‘T’ sign appears above a node, it means that node

is holding a token. The number ‘0’ on an edge means the

communication edge is not a part of spanning tree yet. The

number ‘1’ and ‘2’, which is attached to each ‘spanning tree

edge’, gives the pointer to the direction of token location.

The number ‘2’ means the token is behind this node or this

node is parent (parent-child tree), in contrast, number ‘1’

means the token is not behind this node or this node is a

child. The word ‘off’ represents the breakage situation of

the communication edge.

According to the rules of DA-GRS, at one moment in

time, only two tokens can meet and be merged at any

instance. This synchronization method is known as ‘rendez-

vous assumption’ [9]. One remark about this synchronization

method in a dynamic communication graph is that, if we

consider the communication space, several synchronizations

may happen simultaneously at different locations.

C. Greedy Trusted Spanning Tree (G-TRUST)

‘Greedy Trusted Spanning Tree’ or G-TRUST [3] is a

distributed algorithm constructing trusted spanning tree in a

dynamic network like mobile ad hoc DTNs. This algorithm

attempts to create robust spanning forest by relying on

the cooperative or trust level of each neighbor. The higher

trusted nodes tend to give a higher quality of service,



therefore they tend to be located inside tree so that in-

formation can be assured the successful communication.

Excepting the fact that G-TRUST utilizes trust/cooperative

level of nodes, it is an extension of the original algorithm.

In G-TRUST the rendez-vous assumption of the original

algorithm is relaxed. Thus, in G-TRUST, several tokens can

meet simultaneously. Furthermore, by relying on ‘Greedy’

heuristics, G-TRUST can select the highest trusted node to

merge when applicable. The merging operation in G-TRUST

is described in algorithm 1.

Algorithm 1 Look for other tokens around token τi

1: τ best is token owned by the most trusted neighborhood
2: if τ best 6= ∅ then
3: Merge With(τi, τ

best) //merge the two tokens
4: else
5: Move Token(τi) //continue to move the token randomly
6: end if

Indeed, the advantage of G-TRUST occurs when several

tokens meet. It allows each node owning a token to choose

the most trusted neighbor to merge.

III. CONSTRUCTING AND TRAVERSING TRUSTED

SPANNING TREE IN DTMS

Aiming at constructing spanning trees (forest), both orig-

inal and G-TRUST algorithm utilize a number of rules for

token management. A token, which is initially possessed by

each node, is unique within each spanning tree. In order

to merge two spanning trees, token of each spanning tree

must meet and agree to operate merging process. After this

merging process, a bigger spanning tree is created and one

token becomes obsolete in order to remain a unique token

in a new bigger tree. Later, the token moves to another node

within the same tree in order to find other tokens belonging

to other spanning trees whose merging process reoccurs.

These activities, occurring during spanning tree construc-

tion and maintenance, may be categorized into three different

scenarios, (a) handling the partitioning of the communication

graph, (b) merging operation when tokens meet (synchro-

nization process), and (c) token traversal/circulating in a

spanning tree. G-TRUST has been proposed to improve

quality of the created tree by dealing with the merging

operation approach (using greedy method). The objective of

this paper is to improve the quality, the robustness, and the

performance of the created spanning trees (spanning forest

of a communication graph) via enhancing token traversing

approach.

The walk of the token impacts the spanning tree con-

struction. In literature, tree traversal refers to the process of

visiting each node in a tree data structure in a particular

manner [10]. In the context of this study, we want the

token to traverse less but has more chance to meet another

token (where the direct effect is a bigger tree and higher

performance ratio). In other words, we want the fastest con-

vergence rate of the tree construction to cover a connected

subgraph, which means less number of trees or remain only

one tree over a connected subgraph (the ideal performance

ratio equals to one). At the same time, high robustness of

the created spanning tree (in terms of high availability based

on cooperative/trust level) is also desired.

In this section, we describe all heuristics used for studying

the traversing trusted spanning tree. These heuristics work

in a purely decentralized and distributed manner. They are

Randomness, DFS and TABU-like, and are described below.

A. Randomness

The Randomness here follows the uniform distribution

law. Randomness is the heuristic used in the original algo-

rithm by selecting randomly among the list of neighbors.

Hence, this heuristic can be used as the lower bound to

compare with other proposed heuristics. The moving token

operation using ‘Randomness’ is described below.

Algorithm 2 Using Randomness heuristic in

Move Token (τi) process of a node ν

1: α is the set of neighbors of node ν
2: node ρ is a node selected randomly from set α
3: move token τi from node ν to node ρ

B. Depth-First Search (DFS)

In order to reach every node in a spanning tree efficiently,

Depth-First Search concept is proposed here for token move-

ment. The applied DFS can be found used in vary purposes

[11], [12], [13] in the context of MANETs. Depth-First

Search is an algorithm for traversing or searching a tree

or graph. One starts at one node and explores as deep as

possible along each branch before backtracking at the leaves.

In this work, DFS imitates the traversal of the classical

centralized Depth First Search algorithm from literature at

the global point of view. However, since we cannot achieve

global knowledge in mobile ad hoc DTNs, the DFS itself

utilizes a number of memory in each node, and working in

purely distributed and decentralized manner. In this work,

DFS is applied in every node of the communication graph,

and utilizes the neighbor list information provided by the

beaconing process. In this implementation, it is necessary to

keep information about the node that sends the token to the

current device for the first time (henceforth, we refer to this

first node as ‘upper neighbor’), and to keep also information

of neighbors receiving token from this current device. In

this way, the node will definitely sends the token to all its

neighbors. Whenever the current node receives the token

back from its neighbors (and this is not the first time this

node receives token), the current node will send the token

to the next neighbor in the neighbor list. Once the list is

finished, the token is sent back to the ‘upper neighbor’ if it

has not gone from the neighborhood. Otherwise, this current



node will become its own ‘upper neighbor’ and will send

again the token to the first neighbor of the its neighbor list.

This implementation is described in Algorithm 3.

Algorithm 3 Using DFS heuristic in Move Token (τi)

process of a node ν

1: α is the set of neighborhood of node ν
2: β is the DFS list in node ν
3: ̟ is ‘upper neighbor′

4: δ is the latest node that send τi to ν
5: if ̟ is empty then
6: ̟ = δ
7: end if
8: Set availableNode = α - β - ̟
9: if availableNode 6= ∅ then

10: node ρ is the first node from set availableNode
11: move token τi from node ν to node ρ
12: add ρ to the end of list β
13: else
14: clear list β
15: if ̟ is in the set α then
16: move token τi from node ν to node ̟
17: set ̟ to empty
18: else
19: ̟ = ν
20: Set availableNode = α - δ
21: node ρ is the first node from set availableNode
22: move token τi from node ν to node ρ
23: add ρ to the end of list β
24: end if
25: end if

C. TABU-like

TABU-like is an adaptation from Tabu search [14], a

metaheuristic algorithm. Tabu search uses memory structures

to enhance the performance of a local search method, once a

potential solution has been determined, it is marked so that

the algorithm does not visit that possibility repeatedly.

TABU-like list, belongs to each token, is a list of visited

nodes. This idea was originaly mentioned in [15] and

exposed in [4], and can be seen in algorithm 4. In contrast

to the DFS, the TABU-like utilizes a limited memory size

in each token. In this work, the memory size of one is

considered according to the result in the previous work. For

brevity, henceforth we will use ‘TABU-like{1}’ to represent

the usage of TABU-like at memory size equals to one. The

longer the list, the higher number of different nodes that

token visits already and has been recorded. It is remarkable

that a size of information in TABU-like list affects directly

to the communication bandwidth usage in the network.

D. Memory Usage

A remarkable different point among those three heuristics

is the usage of memory. While Randomness has no memory

usage, both DFS and TABU-like utilize either memory on

node or in the token. Employing some memory in DFS and

TABU-like should enhance the decision making on the next

Algorithm 4 Using TABU-like heuristic in Move Token

(τi) using a defined value of memory size processing at

a node ν
1: α is the set of neighbors of node ν
2: β is the TABU-like list which has size equal to memory size
3: Set availableNode = α - β
4: if availableNode 6= ∅ then
5: node ρ is a node selected randomly from set availableNode
6: token τi move from node ν to node ρ
7: if the number of item of β reach the memory size then
8: remove the first item from list β
9: add ρ to the end of list β

10: else
11: add ρ to the end of list β
12: end if
13: else
14: node ρ is a node selected randomly from set α
15: remove item ρ from list β
16: token τi move from node ν to node ρ
17: add ρ to the end of list β
18: end if

move. This should achieve higher coverage area of the token

traversal, and, as a consequence, bring faster convergence of

spanning trees over a communication subgraph.

However, DFS and TABU-like utilize different kinds and

different sizes of memory. In DFS, the list is stored inside a

mobile node. Although, the memory of each mobile node is

limited, the current trend of memory in mobile node is either

increasing its built-in memory size or offering a memory

card slot for the liberty of extending the memory. However,

in a very limited resource such as sensor device, this might

not be manageable. For TABU-like, each token carries a

number of information depending on its memory size and

send over the network. Thus, the algorithm costly utilizes

the communication bandwidth. However, the previous work

[15] shows the benefit of TABU-like with memory size equal

to one. This means the bandwidth usage is very small (in this

case, the memory size is one meaning that only one MAC

address is recorded). Hence, the usage of TABU-like{1} is

still convincing to the current study.

Although, the Depth-First Search and Tabu list are not

a new novelty, the usage of both heuristics in a dynamic

communication graph like mobile ad hoc DTNs and the

implementation in purely distributed and decentralized en-

vironment in this work had never been done in this context.

IV. ROBUST TRUSTED SPANNING TREE AND FOREST IN

MOBILE AD HOC DTNS

Nodes with higher trust level are more likely to be

able to complete their tasks than lower ones. Furthermore,

having nodes with low trust levels localized on leaves

is advantageous since they would not be responsible for

forwarding information to others. Moreover, loosing them

at these positions has little effect on the overall structure.

Hence, robust trusted spanning tree is a tree which has



low trusted nodes as leaves or as close as possible. The

number of tree(s) over the connected subgraph is equally

important. An ideal situation is when there exist a single

trusted spanning tree in a connected subgraph. This allows

us to assess how robust the algorithm does and how fast

the algorithm can construct and/or recover the tree from the

dynamic communication graph at any moment t.

Trust level of a node n, denoted by trust(n), where

trust(n) ∈ Z+, defines the levels of quality of service it

can provide. Whether a node n can be trusted is determined

by a given threshold. Let Θt = {n′ ∈ Vt(G)|trust(n′) ≤
threshold} be the set of all low-trustable nodes at moment t.

A node in a cooperative network can have low level of trust

for various reasons such as low battery, poor communication

signal, moving out of communication range, etc, but finally

resulting in communication failure.

In order to determine robust trusted spanning trees,

the previous work [3] introduced quality measurement

for a trusted spanning tree by means of two cost func-

tions. In order to assess the quality of overall network

or the trusted spanning forest, this work adopts the idea

of those two cost functions and introduces three new

cost functions for measuring the spanning forest. These

cost functions are performanceRatio(), weight(), and

isolateLowTrustedNode()
In order to assess the quality of the created trust spanning

forest, the value of functions from different studied heuristics

will be compared, where a higher value for all these three

cost functions indicate a superior quality. All the example

scenarios used in this work applied the labeling idea from

DA-GRS. The letter and number appeared in each node

present the node’s id and trust value, respectively.

A. performanceRatio() function

At moment t, G(t) may be partitioned into a set of m

connected subgraphs. Having Γ as the set of all spanning

trees at moment t of G(t). The quality of the algorithms

can be assessed by number connected subgraph divided by

number of trees. This quality is determined by the following

ratio.

performanceRatio(G(t)) =

(

m

| Γ |

)

(1)

The value of approaches to one means higher quality of

the constructed forest. Having a trusted spanning tree per a

connected subgraph enables more efficient communication

and management, since at least, information can be dis-

seminated systematically via the created spanning tree. This

means the algorithm is robust with respect to the dynamic

of the network because it can construct a tree covering the

connected subgraph.

Figures 2(a) and (b) illustrate the measurement of all

cost functions proposed here. In the figure 2(a), the com-

munication graph I(t) has two connected subgraph, and

each connected subgraph has one spanning tree. On the

communication edge

spanning tree edge(a) (b)
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Figure 2. An example scenario for Illustrating the proposed cost functions
for Spanning Forest

contrary, the communication graph K(t) depicted in figure

2(b) has only one connected subgraph but four spanning

trees (γ1, ..., γ4). Thus, the performanceRatio(I(t)) and

performanceRatio(K(t)) equal to 1 and 0.25, respec-

tively.

B. weight() function
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Nodes with higher trust level are more likely to be able to

complete their tasks than lower ones. The weight() function

introduced in previous work [3], can be used to assess trust

spanning trees with respect to this objective. Having V (γ)
as the set of all nodes in a spanning tree γ, the weight()
function of a trusted spanning tree can be determined by the

following equation:

weight(γ) =
∑

x∈V (γ)

trust(x) ∗ tree degree(x) (2)

The function tree degree(x) represents the number of

one hop neighbors of node x in the tree. Figures 3(a) and

(b) are examples to illustrate how the weight() function

can assess this quality where the threshold used in this

example is equal to one. In Figure 3(a), the node with

lowest trust level gets the highest tree degree, while the

node with highest level gets the lowest tree degree (i.e the

node A has a trust level of 1 and tree degree of 3, while



the node E has a trust level of 5 and tree degree of 1),

hence the weight(γa) function for this trusted spanning tree

is 22. Figure 3(b) depicts the opposite (i.e. the node with

the highest trust level possesses the highest tree degree

(node E), while the node with the lowest level possesses the

lowest tree degree (node E)). The weight(γb) function for

this trusted spanning tree is 34. In order to measure this

function on the whole graph (the spanning forest), equation

3 is introduced below.

weight(G(t)) =
∑

γ∈G(t)

weight(γ) (3)

Based on the Figure 2, weight(I(t)) gives 83, while

weight(K(t)) gives 66.

C. isolateLowTrustedNode() function
Since low trust level nodes have tendency to break away

from the network, allowing them to have high degrees in

the tree will increase the likelihood of disconnection from

the spanning tree. Therefore, in order to minimize the re-

connecting task, nodes with lowest trust levels should be

assigned the lowest tree degree position in the tree. The

functions isolateLowTrustedNode() is introduced as a

mean to assess trusted spanning forest with respect to this

objective.

This function evaluates the efficiency of a trusted spanning

forest by noting how well it can isolate non-trustable nodes

n′ where n′ ∈ V (G(t)) and trust(n′) ≤ threshold.

The function measures the percentile of n′ nodes at leaf.

The higher value of isolateLowTrustedNode() func-

tion signifies better quality trusted spanning tree. Let

Θ∗(γ) = {n′ ∈ Θ(γ)|tree degree(n′) = 1} be the set

of low trustable nodes being leaves in the tree γ. The

isolateLowTrustedNode() function is defined by

isolateLowTrustedNode(γ) =
(

| Θ∗(γ) |

| Θ(γ) |

)

∗ 100 (4)

Hence, the isolateLowTrustedNode() value for Figure 3(a)

is 33.33% while this value is 100% for Figure 3(b). Equation

5 is introduced below as a mean to measure the same

objective in a spanning forest. The result given by this

equation for Figure 2(a) and (b) equal to 0% and 100%

respectively.

isolateLowTrustedNode(G(t)) =
(
∑

γ∈G(t) | Θ∗(γ) |
∑

γ∈G(t) | Θ(γ) |

)

∗ 100 (5)

The more detailed explanation is as follows. Both graphs

I(t) and K(t) have the same number of node and the

same proportion of trust value of nodes, but different forest

topologies. Within each graph, there exists one low trusted

node according to the given threshold value. The location

of this low trusted node (y) in K(t) is good at this time t

since it is at leaf of tree γ4, while the low trusted node (x)

in I(t) is in middle of a tree, having two trusted spanning

tree edges.

However, the performanceRatio() of K(t) is

0.25, which means the current good value of

isolateLowTrustedNode() is not valid to the objective.

If there are only few changes in the forest topology and

node y and z of K(t) can merge in several time steps later,

isolateLowTrustedNode(K(t)) will become 0%. This

case shows the impact of function performanceRatio()
has on other cost functions.

V. EXPERIMENTATION AND RESULTS

A. Experiment methodology

Suitable networks for simulation of any mobile ad hoc

DTNs ought to comprise lay-out of nodes (e.g. citizens),

environmental properties and radio propagation (communi-

cation link) which reflect real-world situations. The networks

used in this work were generated by Madhoc [16], an ad-hoc

networks simulator that provides mobility models allowing

realistic motion of citizens in variety of environments. Two

real-world mobility models, ‘Shopping Mall’ and ‘High-

way’, are selected in the simulations using the parameters

summarized in Table I.

Table I
PARAMETERS USED IN THE EXPERIMENTS

Shopping High
Mall way

Surface (km2) 0.32 2.20

Node Density (per km2) 1100 70.4

Number of Nodes 110 160

Avg. Number of Partitions 1.95 15.9

Number of Connections 446 498

Average Degrees 8.13 6.23

Velocity of Nodes (m/s) 0.3-3 20-40

Radio Transmission Range 40-80 m

We derived communication graphs from Madhoc which

performs simulation in discrete-time. So the communication

network corresponds to a series of static graphs: G(t) for t ∈
{t1, t2, t3, ..., t400}. Between two consecutive times ti and

ti+1 the communication graph remains the same. However,

using such a short timing-snapshot, 1/4 seconds between

two consecutive times is considered sufficient to reflect the

reality.

Using ‘GraphStream’ [17] to replay the simulation traces

and relying on Beaconing Rate of IEEE802.11 [18] , 100

milliseconds is used as time-interval to send a beacon.

This beacon also carries the movement of the token in this

work. Hence, the movement of token has no cost in this

respect. However, the cost occurs from the merge operation

in the spanning tree construction. Since the work uses UDP

packets, in order to do uni-casting, the protocol needs to

ensure the delivery in merge operation. This can be done

using ACK and SYN/ACK message as shown in Figure 4.



Merging Tree Process

�ndingTk

ACK_�nding

SYN/ACK_�nding

number of packet = 1

number of packet =

number of one-hop 

neighbors of this node

which have token 
number of packet = 1

Figure 4. Message Sequence Diagram of merging trees process used by
G-TRUST algorithm

This limited Beaconing Rate drives the launching

of new static graphs G(tnext). As a consequence, the

number of merging trees process is limited too. This

fact surely gives impact to the simulation results. The

convergenceSpeedRate() is measured based on the num-

ber of iterations spending in simulation and present the

time used in converging a spanning tree over an ex-

isting connected subgraph. Let ∆ is the number of

iterations the algorithm required in trying to achieve

the least performanceRatio() and ∆∗ is the number

of iterations it required for a particular G(ti). Having

performanceRatio() equal to one within G(ti) is an

ideal situation. However, having limited merging process

provides no guarantee that performanceRatio() will be

one, in other words, it is always possible to have multiple

trees per connected component at any time ti of graph

G. In such case, the number of iterations used within

that G(ti) will be counted into ∆. The lower the value

of convergenceSpeedRate() is, the faster the algorithm

can converge a connected component into a tree. Thus,

the trusted spanning trees are prompt faster to provide

efficient communication and management; information can

be disseminated systematically via the created tree. The

convergenceSpeedRate() can be written as below.

convergenceSpeedRate(G(t)) =
(

∆(G(t))

∆∗(G(t))

)

∗ 100 (6)

B. Results and Analysis

This work assumes 5 different levels of trust(n) where

trust(n) equal to 1 is the lowest trust level. The threshold

value, which is used to determine the acceptable level of

cooperativeness of any node, is equal to one. This means any

node having trust level equal to one is a low-trustable node,

and is undesirable to be place in the middle of tree. Please

note that the methodology in collecting and computation

of trust value is out of scope of this study. The results

presented in Figures 5 and 6 provided the comparison for

the 3 main strategies studied in the two real-world mobility

models, ‘Shopping Mall’ and ’Highway’ mobility model

respectively. The strategies are Randomness (as a lower

bound), DFS and TABU-like{1}. The simulations were done

using 100 runs per heuristic per mobility model. Since the
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Figure 5. Comparison of performanceRatio(), convergenceSpeedRate(),
weight() and isolatingLowTrustNode() measuring among all studied algo-
rithms in ‘Shopping Mall’ mobility model

duration of every simulation is 100 seconds or 400 time

steps, the result of each run was the average result occurred

within the simulation time. Hence, the final result is the

average result value from those 100 runs.

Since, the ideal performanceRatio() is at one, which

means there exists only one tree within one connected

component, both Figures 5 and 6 show the best performance

of DFS strategy. Indeed, among the three strategies, DFS

achieved significantly higher quality in all aspects except

for isolatingLowTrustNode() in both mobility models.

From the results, DFS can gives less number of spanning

trees than the other heuristics. This means DFS create a

bigger trusted spanning tree and thus weight() value can be

expected to be higher than several smaller trusted spanning

trees. While the other two cannot merge or collect spanning

trees efficiently, there is more chance for low-trusted nodes

on each small spanning tree to be at leaves because of

the G-TRUST algorithm itself. Hence, the cost function on

isolatingLowTrustNode() can give a good result when there

are more spanning trees in a forest, which is contrast to the

objective of performanceRatio() and this study.

To summarize, DFS achieved the best

performanceRatio() among all three algorithms in

both mobility models. This means using DFS heuristic as a

way to conduct the movement of token is the most efficient

way for merging all nodes in the same connected component

to be in the same tree. convergenceSpeedRate() shows
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Figure 6. Comparison of performanceRatio(), convergenceSpeedRate(),
weight() and isolatingLowTrustNode() measuring among all studied algo-
rithms in ‘Highway’ mobility model

how fast all three strategies can influence the convergence

of a tree on a connected component of a network in both

mobility models. From both figures, it is apparent that DFS

uses lower rate compare to other heuristics. Hence, it can

be concluded that DFS can create trusted spanning forest

faster than other strategies.

VI. CONCLUSIONS

For Mobile Ad hoc - Delay Tolerant Networks, main-

taining a high quality of service is a real challenge due

to its highly dynamic nature and appearance of partitions.

By using a cooperative enforcement paradigm to represent

the cooperative level of nodes in network, trusted spanning

forests are created and used as backbones, composed of the

most trusted nodes, to provide high availability of tree-base

backbone at any time. In order to truly operate on mobile

ad hoc DTNs, the operations need to be decentralized, self-

configuring and robust. A heuristics, G-TRUST, has been

proposed in order to construct global robust spanning forests.

This algorithm relies on a token traversal mechanism. The

behavior of such traversals influences the choice and quality

of the constructed forest.

The contributions of the present paper consist in (1) a

design and implementation of a token-traversal, DFS, for G-

TRUST, (2) implementation of TABU-like and a framework

for studying the various token-traversal strategies used in

trust-based backbone establishment and (3) assessing their

quality and giving analysis of the results. In particular, two

different approaches on information storage (i.e. considering

token and/or node memory) emerged. They were represented

by the Depth First Search algorithm, named DFS, and a

Tabu search based algorithm, named TABU-like, for token

traversal mechanism in G-TRUST. These DFS and TABU-

like heuristics are based on classical concepts but are, in

this version, totally decentralized heuristics in order to adapt

to mobile ad hoc DTNs requirements. This work studied

the effect of these heuristics towards the robustness of

the trusted spanning forest versus their costs (convergence

speed, performance ratio and memory).

The experimentation results showed that DFS yields bet-

ter results both in terms of robustness and convergence

speed when applying those decentralized heuristics with G-

TRUST. Also, there is no additional cost of communication,

since the algorithm relies on the existing token exchange.

However, as stated earlier in Section III, DFS does utilize

memory within mobile nodes where the size of this memory

usage depends on the size of tree edge of a node. Thus, this

might not be applicable with very small memory nodes in

a very dense network: in that case the Tabu search is more

suitable.

VII. PERSPECTIVES

The experimentation results raises the trade-off between

having a high performanceRatio() and having many

strong robustness trees but formed into smaller size. It must

be emphasized here that the real objective of this work is to

enhance the quality of service by means of managing robust

trusted spanning forest (to have high availability of backbone

at any time). This suggests the necessity for the robustness

measurements based on the whole communication graph.

However, according to the result, it reveals that the trusted

spanning forest management in different levels might give

a promising solution to the problem. By having many small

size, but strong robust spanning trees, the node selected

among the strongest trusted nodes of each robust spanning

tree may act as connecting points and collaborate with other

nodes of the neighbor trusted spanning trees. These merit

further investigation on the dynamic mobility pattern and the

sub-structure volatility in the future work. We also believe

that the choice and the tuning of local heuristics in mobile

ad hoc DTNs shall rely on global information consisting of

global network environment parameters (e.g. hostile network

or not) and on the existing mobility models/patterns in such

networks.
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