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Simulation of PLL with impulse signals in MATLAB:
limitations, hidden oscillations, and pull-in range
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* Faculty of Mathematics and Mechanics, Saint-Petersburg State University, Russia
t Dept. of Mathematical Information Technology, University of Jyvaskyvld, Finland

Abstract—The limitations of PLL simulation are
demonstrated on an example of phase-locked loop with
triangular phase detector characteristic. It is shown
that simulation in MatLab may not reveal periodic
oscillations (e.g. such as hidden oscillations) and thus
may lead to unreliable conclusions on the width of pull-
in range.

I. INTRODUCTION

The phase-locked loop based circuits (PLL) are widely
used in various applications in computer architectures and
telecommunications (see, e.g. [1]-[3]). A PLL is essentially
a nonlinear control system and its nonlinear analysis is
a challenging task. Important characteristics of PLL are
hold-in, pull-in, and lock-in frequency deviation ranges
(see [4], [5] for rigorous mathematical definitions). Hold-
in range corresponds to the existence of a locally asymp-
totically stable locked state and can be studied by using
the Routh-Hurwitz criterion (at the stage of pre-design
analysis when all parameters of the loop can be chosen
precisely) or various frequency characteristics of the loop
(at the stage of post-design analysis when only the input
and output of the loop are considered). To estimate the
pull-in (capture) range, one has to check the global stabil-
ity (stability in the large) of the locked states, i.e. to prove
that for any initial state the loop acquires a locked state.
Its rigorous study is a challenging task.

In a recent book [6, p.123] it is noted that “the de-
termination of the width of the capture range together
with the interpretation of the capture effect in the second
order type-1 loops have always been an attractive theoretical
problem. This problem has not yet been provided with a
satisfactory solution”. Below we demonstrate that in this
case the numerical analysis may lead to unreliable results
and should be used carefully.

II. PLL WITH TRIANGULAR PHASE DETECTOR
CHARACTERISTIC

The basic blocks of the PLL are voltage-controlled
oscillator (VCO), linear loop filter, and phase detector
(PD) [3]. Balanced mixers PDs are used in the microwave
frequency range as well as in low noise frequency syvnthe-
sizers [7]. This type of PD is also used in optical PLLs
[8]. However, the characteristic of PD depends on the
waveforms of the reference signal and VCO [9]. Next square
waveform signals are considered since they are actively
used in practice [1], [3]. Another popular implementation
of the PD is Exclusive-OR (XOR) gate. One of the main

advantages of such PD is its independence of input signals
amplitudes. Although hardware implementations of PDs
mentioned earlier are significantly different, they have the
same characteristic. Therefore, the following analysis can
be applied to both of them.

Consider now block diagram of the classic PLL with
multiplier/mixer phase detector and square waveform sig-
nals on Fig. 1.
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Fig. 1: Classic PLL with square waveform signals

Here a reference oscillator and VCO generate
square waveform signals sign sin(#(t)) and sign cos(62(%))
with the phases 6((f) and 02(t), respectively. Ana-
log multiplier (®) output signal is a product ¢(t) =
sign sin(6 (t))sign sin(62(t)). Here we consider a lead-lag
loop filter with the transfer function

F(s) = , (1)
1

where 0 < 7o <7y, Kf >0, and initial filter state is @(0).
Loop filter dynamics can be described by the following
differential equations
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where 2 is a state of the loop filter, and ¢ is the PD output.
Assume that the frequency of reference signal is a

constant 0;(t) =w;. The output of the loop filter adjusts
the VCO frequency to the frequency of the input signal:

02 (t) = Weree + Kvco(l), 3)

Combining (2) and (3), one obtains the following model in
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Fig. 3: Phase detector characteristic

the signal space:

. 1 T2
= ——a+(1— )t
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=—ax+—=p(
9 lernw ), (4)
02 = Wfree + Kvco®,
p(t) = sign sin(w; t)sign cos(fz).

Model (4) in the signal space is a nonlinear non-
autonomous system with discontinuous right-hand side
and its rigorous analysis is a very difficult task.
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Fig. 2: The model in the signal’s phase space

Consider corresponding nonlinear mathematical model
of the loop in the signal’s phase space (see Fig. 2):
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Here PD is a nonlinear element with triangular character-
istic p(0e) (see Fig. 3), whose output depends only on the
phase error e (t) =01 (1) —02(1). Denote we = w —wWpee.
The model in the signal’s phase space can be obtained
from the model in the signal space by averaging under
certain conditions [9]-[13], violation of which may lead to
unreliable results (see, e.g. [14], [15]). Its rigorous analysis
and simulation is much simpler since time ¢ is excluded
and instead of high-frequency reference and VCO signals
only difference between their phases is considered.

for 6e € [— %%]
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III. SIMULATION OF THE LOOP IN THE SIGNAL’S PHASE
SPACE

Consider the implementation of the signal’s phase space
model in MatLab Simulink (see Fig. 4).
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Fig. 4: Simulink model of the loop in the signal’s phase space.

Here the loop filter transfer function F(s) = 1*?2

71 =0.02, 72 =0.008, L = 2000, we = 1399, phase detector
characteristic is 1rnplernented by Interpreted MatLab func-
tion “sawtooth(u+pi/2,0.5)”, and filter is implemented by
state-space block with the following parameters!:

1 T2 1 T2

A=—-— B=1-—=C=—,D=—.
Ti Ty Ty T1

(6)

Note that since characteristic of the phase detector is not
smooth, it is better to choose a numerical method for stiff
svstems?, e.g. “odel’s”.

Now we demonstrate that simulation of the loop may
lead to wrong results. If the simulation step is too large
(e.g. default value of “Max step size” parameter is used)
the model acquires lock (see Fig. 5-left) for any initial
states. At the same time, for a smaller time step in the
numerical procedure the loop may remain unlocked (see
Fig. 5-right).

Consider the corresponding phase portrait (6¢(t),2(1))
in Fig. 6.

The green trajectory (solid green curve) in Fig. 6
corresponds to the trajectory with the loop filter initial
state (0) = 0.004 and the VCO phase shift 62(0) =0, (0) =
—3.8941 rad. This curve tends to a periodic trajectory,
therefore it will not acquire lock. All the trajectories under
the green curve also tend to the same periodic trajectory.

The solid red curve corresponds to the trajectory with
2(0) =535-1073 and 62(0) = 0 (0) = —3.8941. This trajec-
tory lies above the unstable periodic trajectory and tends
to a stable equilibrium. In this case PLL acquires lock.

All the trajectories between the stable and unstable
periodic trajectories tend to the stable one (see, e.g.,
a solid blue curve). Therefore, if the gap between the
stable and unstable periodic trajectories is smaller than
the discretization step, then the numerical procedure may

IFollowing the classical consideration [16, p.17, eq.2.20] [17, p.41,
eq.4-26], where the filter’s initial state is omitted, the filter is often
represented in MatLab Simulink as the block Transfer Fen with zero
initial state. (see, e.g. [18]-[22]). It is also related to the fact that
the transfer function (from ¢ to g) of system (2) is defined by the
Laplace transformation for zero initial data #(0) = 0. Unlike “Transfer
fen” block, “State-space” block from Simulink allows one to consider
nonzero initial states.

2Default Simulink integration method “ode45” may not work well
with non-smooth systems
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Fig. 5: (a) Max step size “auto”; relative tolerance = “le-4”. (b) Max step size = “le-4”, and relative tolerance = “1e-6.
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Fig. 6: Phase portrait with coexistence of stable and unstable

periodic trajectories. Red trajectory tend to an equilibrium
point, green trajectory tend to a periodic trajectory (blue).

slip through the stable trajectory. The case corresponds to
the close coexisting attractors and the bifurcation of birth
of semistable trajectory [23], [24]. In this case numerical
methods are limited by the errors on account of the linear
multistep integration methods (see [25], [26]). As noted
in [27], low-order methods give a relatively large warping
error that, in some cases, could lead to corrupted solutions
(i.e., solutions that are wrong even from a qualitative point
of view).

Corresponding limitations of simulation in SPICE are
discussed in [28].

The above example demonstrates also the difficulties
of numerical search of so-called hidden oscillations, whose
basin of attraction does not overlap with the neighborhood
of an equilibrium point, and thus may be difficult to
find numerically. In general, an oscillation in a dyvnamical
svstem can be easily localized numerically if the initial data
from its open neighborhood lead to long-time behavior
that approaches the oscillation. From a computational
point of view, on account of the simplicity of finding
the basin of attraction in the phase space, it is natural
to suggest the following classification of attractors [23],
[29]-[32]: An attractor is called o hidden attractor if its
basin of attraction does not intersect small neighborhoods
of equilibria, otherwise it is called a self-excited attractor.

For a self-excited attractor its basin of attraction is
connected with an unstable equilibrium. Therefore, self-
excited attractors can be localized numerically by the
standard computational procedure in which after a transient
process a trajectory, started from a point of unstable
manifold in a neighborhood of unstable equilibrium, is
attracted to the state of oscillation and traces it. Thus
self-excited attractors can be easily visualized.

In contrast, for a hidden attractor its basin of attraction
is not connected with unstable equilibria. For example,
hidden attractors can be attractors in the systems with
no equilibria or with only one stable equilibrium (a special
case of multistable svstems and coexistence of attractors -
in this case the observation of one or another stable solu-
tion may depend on the initial data and integration step).
Recent examples of hidden attractors can be found in The



European Physical Journal Special Topics: Multistability:
Uncovering Hidden Attractors, 2015 (see [33]-[44]).

IV. THE PULL-IN RANGE ESTIMATION

Model (5) can be effectively studied analytically by
Andronov’s point transformation method. One of the first
considerations of the above effect is due to M. Kapranov
[45] in 1956. In 1961, N. Gubar’ [46] revealed a gap in
the proof of Kapranov’s results and specified the values
of parameters for which the pull-in range was limited
by a periodic or heteroclitic solution. Finally, in 1969,
B. Shakhtarin fixed some misprints in the Gubar’s work
[47]. In 1970 [48], these results were confirmed numerically
and corresponding bifurcation diagram was given (see
Fig. 8) (see, also [12], [23]).

Consider, e.g., the parameters 7y = 0.02, 7o = 0.008 and
the corresponding curve in Fig. 8 (see the right-hand side
vertical axis). This curve corresponds to the bifurcation of
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Fig. 7: PLL parameters for existence of semistable periodic
trajectory.

semistable trajectory. Considering other possible bifurca-
tions, it is possible to demonstrate that this curve restricts
the area corresponding to the pull-in range. Consider this
curve separately in Fig. 8. Next we choose VCO gain L
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Fig. 8: Pull-in range for parameters 7| = 0.02, 7 = 0.008, L =
200.

(see horizontal axis in Fig. 8), which defines a point on
the curve (e.g. LTy =4, L = T‘i—l). This point corresponds
to the normalized pull-in frequency %’4 (see the left-hand
side vertical axis in Fig. 8), i.e. for smaller values of we
the model acquires lock for any initial state. However for
a larger value of we this is not true.

CONCLUSION

The considered example (see also the corresponding
examples with sinusoidal signals [14], [15], [24]) is a moti-
vation for the use of rigorous analytical methods for the
analysis of nonlinear PLL models. Various modifications
of classical stability criteria for the nonlinear analysis of
control systems in cylindrical phase space were developed
in the second half of the 20th century (see, e.g. [49]-[52]
and recent books recent books [6], [11], [12], [53], [54]).
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