
On Web-based Domain-Specific Language for

Internet of Things

Manfred Sneps-Sneppe

Ventspils International Radioastronomy Centre

Ventspils University College

Ventspils, Latvia

manfreds.sneps@gmail.com

Dmitry Namiot

Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

dnamiot@gmail.com

Abstract—This paper discusses the challenges of the Internet

of Things programming. Sensing and data gathering from the

various sources are often the key elements of applications for

Smart Cities. So, the effective programming models for them are

very important. In this article, we discuss system software models

and solutions, rather than network related aspects. In our paper,

we present the web-based domain-specific language for Internet

of Things applications. Our goal is to present the modern models

for data processing in Internet of Things and Smart Cities

applications. In our view, the use of this kind of tools should

seriously reduce the time to develop new applications.

Keywords— domain-specific languages, micro-service, software

standards, actors, middleware.

I. INTRODUCTION

In this paper, we would like to discuss the software models
and architectures for the Internet of Things (IoT) programming.
There are many papers devoted to the network related aspects
of Machine-to-Machine (M2M) and IoT [1]. Our goal in this
paper is to discuss system software models and solutions. This
paper continues our series of publications about software
aspects of M2M and IoT.

The term IoT was introduced in a paper [2] as a union of
Internet-connected sensors, devices, and citizens. There are
many definitions for the term Smart City. For examples, the
authors in [3] describe it as an Internet-connected web of
citizens (people) and electronic sensors/devices (things) that
can serve many functions related to public and environmental
health surveillance and crisis management applications. The
key moments here are human related aspects. Sao, we can
conclude, that in many aspects IoT is an engine for Smart
Cities applications. And M2M domain is shortly the IoT
domain without user interfaces (UI). Obviously, the UI is a
mandatory part of IoT projects and could be missed in M2M.
This definition lets us make a more radical statement: M2M is
simply a part for IoT. For our programmers-oriented (data
access oriented) approach this definition is, probably, most
suitable.

The effective model for IoT application is a hot area attracts
a big attention. There are many papers discusses the ways for
common software standards in IoT area [4]. It is especially
important due to the high diversity of sensors and devices.

In paper [5] authors discussed the problems with the unified
standards of Machine to Machine communications (M2M).
They concluded that the current development misses the larger
point of how M2M services and products get created and
deployed. In many cases, developers either have to use some
predefined platform and be locked with its restriction or build a
system completely from scratch. For M2M and IoT products to
be successful, interfaces (programming interfaces) must be
simple. The complexity that lies underneath should be
completely hidden from the developers. As seems to us, at the
current stage the existing and proposed solutions very often just
increase the complexity.

The complexity of existing approaches is also discussed in
paper [6]. It raises the following question: do we really need
Application Program Interfaces (API) always, or our goal
could be described as Data Program Interfaces (DPI)? We can
describe DPI as an interface at the edge of an IoT device that
exposes and consumes data. IoT devices very often do not
support commands (instructions). Many of sensors just provide
some data and nothing more. This simple step (refusal to
support API) can seriously simplify the interaction with the
devices. DPI’s are much simpler, of course. And what is more
important – they can create a unified API for all devices. The
process of reading data can be similar for all devices. As usual,
we can pass data interpretation (translation) to the end-user
devices. And our “unified” reading procedure can simply
return some JSON array.

So, as soon as all the “unified” standards become too
complex, what is the solution? We are strong proponents of
micro-services.

The micro-services approach is a relatively new term in
software architecture patterns. The micro-service architecture
is an approach to developing an application as a set of small
independent services [7]. Each of the services is running in its
own independent process. Services can communicate with
some lightweight mechanisms (usually it is something around
HTTP) [8]. Such services could be deployed absolutely
independently. Also, the centralized management of these
services is a completely separate service too. It may be written
in different programming languages, use own data models, etc.
We think that micro-services are the natural fit for M2M (IoT)
development.

In accordance with this, in our opinion, considering the
individual systems, such as Open IoT [9], for example, a
description of their abilities cannot be the main purpose. The
main point is the allocation of micro-services within them. And
the second goal is, accordingly, the issues of their independent
usage and deployment. Such an analysis with respect to M2M
applications was presented in our paper [10].

IoT and M2M have remote device access in common. But
they are not completely similar, of course. Some of the authors
draw the difference in the way IoT and M2M access to the
remote devices. For example, traditional M2M solutions
typically rely on point-to-point communications using
embedded hardware modules and either cellular or wired
networks. In contrast, IoT solutions rely on IP-based networks
to interface device data to a cloud or middleware platform [11].
It is probably now always true because the cloud is not a
mandatory stuff for the Internet of Things. We think that this
statement is very important. Nothing prevents the application
access to remote devices directly, or, more precisely, get data
from remote devices without the cloud (and without the
middleware, by the way). The typical examples are Bluetooth
Low Energy tags, mentioned in [6]. The network related
aspects (protocols) are out of the scope of this paper. So, we
are not going to discuss IP vs. non-IP networks.

The rest of the paper is organized as follows. In Section II,
we discuss the common challenges of IoT programming. In
Section III, we discuss perspective programming models and
software architecture approaches for IoT applications.

II. IOT PROGRAMMING CHALLENGES

As the first challenge for the system development in IoT
area, we should mention the power supply. Obviously, it is the
first limitation. It directly affects the algorithms we can use in
our systems. So, solutions (e.g., libraries) for implementing
power-optimized calculations (algorithms) will prevail. The
same is true for network protocols.

We should mention in this context such entity as Dynamic
Power Management (DPM). The main idea behind this
approach is to shut down devices when they don’t need to be
on-line on and to start them up when they need to transmit
(receive) data. As per [12], Dynamic power management
(DPM) is a design methodology for dynamically reconfiguring
systems to provide the requested services and performance
levels with a minimum number of active components or a
minimum load on such components.

Normally, it is a typical task for the operating system (OS).
E.g., a mobile operating system can prefer accelerometer over
GPS for some tasks due to energy limitations, etc. But complex
IoT may orchestrate several devices, and any individual
operating system is simply unaware about the whole process.
So, the whole system should be able to switch services on and
off more intelligently than each individual device’s OS.

But, of course, DPM itself is not free and may cause such a
problem as latency. The latency could be of course a congenital
problem for IoT devices too. E.g., a device may transmit data
in discrete time cycles only. The typical example is the above-
mentioned BLE tag (iBeacon).

Another typical source of delays is very often the network
topology optimized for IoT system. For example, mesh
networks are immune to the failure of a few nodes [13]. But at
a price for this we will have more hops (read – increased delay)
in data delivery paths. Actually, the scalability for IoT
networks is a big problem. The things could be more
complicated if we admit the fact that many devices may simply
transmit data without requests (e.g., perform some operations
by the own timer or due to some external activity). It could lead
to the wasted bandwidth and increased delays in
communications.

The reliability is the next big issue. The whole set of
devices could be constantly checked, for example. So, in
general, for many use cases we have to consider IoT data as
unreliable. It may lead to the additional data curation and error-
correction procedures on the application level [14].

The data curation and data brokering stuff is very important
for IoT applications by the another reason also. Remote devices
(sensors) in case of IoT can produce a huge amount of data.
And it is very important to have the ability for data projection.
We need to select the right amount of data for the particular
task. And one of the biggest problem here is to find a right (and
commonly used) tool just for data description. Raw data from
sensors should have some meta-data associated with them.
Otherwise, there is no way to develop the adaptive algorithm.
As soon as the mapping for data is unknown, we cannot
automatically detect the dependencies for example. And this
information is critical for many algorithms.

Figure 1 illustrates the basic data model behind FI-WARE
project [15].

Figure 1. FI-WARE model

Obviously, remote devices (sensors) may generate a big
amount of data. So, the Big Data approach is a natural fit for
IoT. But in case of a huge amount of distributed data
developers need a way for real-time processing some sub-sets.
Think, for example about processing sensors data for some
limited retail space. It means, there is a huge demand for some
kind of toolchains [16].

Current IoT architectures are devices or networks-oriented.
However, the key value proposition of IoT is from the
interaction of these “Things” with humans and society. So, for
getting the benefits, some form of stream processing for IoT
data is practically mandatory.

It the terms of context-aware computing (“ubiquitous
computing”), IoT makes the software context much larger. So,
the developed applications should have some mechanisms for
dealing with this fast changed data.

III. IOT PROGRAMMING MODELS

For many years academic papers discussed web services
models for IoT (M2M, Smart Cities) [17]. We may discuss
underlying protocols (MQTT, COAP, etc.) [18], data formats
(XML vs. JSON), but this does not negate the fact of a very
low granularity for web requests. Yes, the web services can
unify the programming (coding practices), but due to the huge
amount of the various devices in the programming level, we
have to deal with a plenty of asynchronous requests and
manage them inside of the code manually.

The industrial approach to programming requires the
componentization. The code should deal with components. In
general, any component should contain the program interface
(API or DPI). But it is not enough for IoT or M2M. APIs for
components (e.g. for sensors) exist right now. For IoT, we
should include the behavior (the calculations) into components
too. It is the way to radically simplify the development.
Simply, the developer should be able to obtain alarms, history,
predictions right from some block of sensor, rather than pull
raw measurements data and perform all the above-mentioned
functionality again and again in the own code. In other words,
accepting the convenient unification from Web technologies,
we need to redefine the word “resource”. What could be behind
universal resource identifier (URI) in the modern web? Let us
see some models in this connection.

In the paper [19], the author introduces CREST
(Computational REST) model and provides the definition of a
resource as a locus of computation. As per RFC 2396 [20], a
resource can be anything. Looking at the definition of a
resource, we can distinguish between three elements: a
resource; the state of a resource; and the representational state.
By definition, resources can never be accessed and are only
manipulated through their representations [21]. CREST is
based on the following axioms:

- A resource is a locus of computations, named by an URL.

- The representation of a computation is an expression plus
metadata to describe the expression.

- All computations are context-free.

- Only a few primitive operations are always available, but
additional per-resource and per-computation operations are
also encouraged.

- The presence of intermediaries is promoted.

Let us see on the basis of existing models. Web of Things is
the most typical example for our explanation [22]. The fact that
we can use HTTP requests (e.g., REST as XML or JSON over
HTTP) to obtain information from a single device (sensor)
does not help when a large (huge) amount of devices is
deployed. Yes - it makes programming a much more uniform,
but for a large set of devices, the developer must still manually
organize polls for devices in order to collect data, organize wait
cycles and synchronization, etc. and forward the results of the
synchronization.

We must always deal with the fact that most our devices
(sensors) are asynchronous. As an analogy here we can
mention MapReduce [23] approach. Technically (from the
development point of view) it is just a library (Java package),
which helps to organize the parallel execution of threads and
assemble the results.

By this reason, we believe that the IoT programming will
require a paradigm shift. A simple declaration that we will use
XML over HTTP is not enough. We should think about some
tools for closing the gap between the distributed platform and
sequential computing paradigm (sequential programming
languages and frameworks).

In our paper [24], we analyzed the typical IoT applications
for wireless tags (iBeacons). We can present the top-level
definition like this:

- There is a set of sensors we need to poll periodically
for getting new measurements

- There is a set of sensors we need to accept data from
(push data – sensors initiated communications)

- The business process could be presented as a set of
productions (rules). Each of the rules depends on some
available data and, probably, on some global variables (states).

- The data availability always assumes the presence of
data for any finite set of timestamps. In other words, the
application makes conclusions (actions) depending on some
window of measurements.

The last statement fixes the fact that in the most cases IoT
application deals with the finite set of the “latest”
measurements. So, for example, our processing will deal with
the latest measurement (timestamp t) and some recent history
(t-1, t-2, etc.) Of, course, for some tasks (e.g., billing as the
most obvious example) we will need the whole timeline, but
we are talking about the majority of applications.

The next important moment is the meaning of the word
“availability”. We assume that data are available, when the
application receives a chunk of data, the process of receiving is
completed, and data are available for processing.

We see the future IoT programming in the declarative
models. Declarative networking [25] is an approach that
promotes declarative, data-driven programming to concisely
specify and implement distributed protocols and services.
Datalog [26] is, probably, the most known example of rule-
based language in this area.

Classically, declarative programming is a programming
paradigm that expresses the logic of a computation without
describing its control flow. In declarative programming, we
have to specify what is to be computed, rather than how it is to
be computed. The idea is to avoid a detailed description of our
algorithm of computation. We should leave this part
(algorithm) the some automatically generated applications. By
this reason, all declarative programming systems contain at
least two components: a programming language and its
execution system. The classical example is well known SQL.
Writing database queries in SQL could be considered as
declarative programming. At the same time, by the practical
reasons, many programming languages are hybridized and
contain both declarative and imperative language constructs.
The good example is any extension of SQL. Or even some of
the SQL operators: SELECT is declarative, UPDATE and
DELETE are imperative.

Originally, a Datalog program consists of a set of
deductive rules. Each rule has a rule condition (head) and a rule
body, which are separated by the deduction symbol :-. A
condition is a relation name with variables or constants as
arguments. A rule’s body is a list of predicates or Boolean
expressions that conjunctively derive the predicate in the
corresponding rule condition. A relation can be defined as
either in an extensional database or an intensional database.
EDB relations present the inputs of the program. They should
remain constant during the life time. IDB relations are deduced
based on EDB (and other IDB) relations, according to the rules.
The typical form is:

r1 rule1(A,B) :- action1(A,B).

r2 rule2(C,D) :- action2(C,D), rule1(C,D).

 Here the second rule refers to the first one. These rules are
declarative because they only specify what conditions the
reachable relation should satisfy, rather than procedures to
compute it.

But in the same time, on practice, each implementation is
de-facto some hybrid systems. For example, even for the pure
declarative system we need some procedural things for creating
a user interface, for printing reports, etc.

Our prototype LogicIoT allows programmers to write
applications without being concerned with low-level
programming details. The prototype is implemented as an
extension for JSP pages as a set of custom JSP tags.

The language model contains the following objects:
relations, triggers, endpoints, timers, facts, rules and modules.

Relations are analogues for relations (or data tables in
relational databases. E.g.:

RELATION R (MAC, RSSI)

The above-mentioned relation describes data tuples for
wireless networks. Each record has got a field MAC (we will
keep here a MAC-address) and RSSI (signal strength)

Each record has got automatically added timestamp field.
Its name is T. Here we follow to the standard practice of
NoSQL models (e.g., time stamped records in Cassandra [27]).

The fact that we use the word ‘relation’ and analogues with
relational databases is not associated with an automatic
representation of data as relational tables. For each
relationship, there will be specified a module for its
implementation, which will hold the data view. The
implementation module is the code (in our case - JSP) file that
implements the operations of adding data, read data, as well as
an analogue for trigger INSERT operation in relational
databases. Since in our case the implementation of the module
is a JSP file, the support of these operations is as follows. To
add data operations, JSP file handles a separate HTTP GET
request, where the parameters describe the data for new
records. For a read operation, JSP file supports a separate
HTTP GET request that returns JSON array with the requested
record. For the implementation of the trigger, JSP module
refers to some given (predetermined) URL, passing fields for a
fresh record in the parameters. In other words, a trigger
performs HTTP GET request for the each new record added to
our relation.

If R is a name for our relation, then R.MAC describes a
value for the field named MAC in the latest (by the time)
record. R.MAC[-1] describes a value for the field named MAC
in the last but one record and so on.

The form R (value1, value2) means adding a new record to
the relation R with the given values.

For the each relation, we can optionally define a trigger.
The trigger is a block that our system will execute as soon as a
new record is added to the relation. So, any existing trigger is
always associated with some relation. It is a block of code
executed during adding a new record to the given relation. The
closest analogue is TRIGGER INSERT in relational databases.
If our code adds multiple entries, then the trigger is executed
multiple times (an analogue is TRIGGER INSERT FOR
EACH ROW).

TRIGGER (R)

{

}

The trigger in LogicIoT always defines post-processing
actions. In other words, it will be executed after adding a new
record. So, in the above-mentioned example, we can use an
expression like R.RSSI in our trigger and this expression will
define the signal strength for the recently inserted record. R.T
describes the timestamp for the latest record, etc.

The endpoint is a structure for defining callbacks endpoints.
It is a named block that is ready to accept asynchronous calls
from external sources. For developers, each callback describes
an ability to pass the asynchronous request with the given
(described) parameters. The “request” here is HTTP GET
request.

ENDPOINT NEW_RECORD (M, RS)

{

 R(M, RS)

}

A Timer is a structure for describing periodically executed
code. Timers have names and time interval (in milliseconds):

TIMER TM (1000)

{

}

A Rule is a logical operator (IF-THEN). Each rule has got a
condition and conclusion (block).

RULE R1 R.RSSI< -60

{

}

Conditional part includes a regular expression with the
above-described relations.

The Modules provide a bridge for the runtime platform.
Each module has got a name and a list of output parameters.

MODULE COUNTER (count)

This description defines a list of output parameters. In other
words, it is a list of values that can be used after the method
call. All methods correspond to JSP files. The method call is
translated into an HTTP request. During a call, we can pass any
set of parameters. It is up to the implementation to define how
to proceed them. And the method’s definition describes output
values only. The method call can be direct (immediate) and
asynchronous.

The Facts are analogues of statements in procedural
languages. In the modern version, LogicIoT supports the
following statements:

- Define (add) a record to a relation:

R (“38:E7:D8:D3:18:68”, -87)

- start/stop a timer

STOP (TM)

- activate/deactivate a rule

DEACTIVATE (R1)

- check (execute) a rule

CHECK(R1)

- call a module / asynchronous call a module

CALL COUNTER (index, 2)

ACALL COUNTER (name, “test”)

The Mapping describes a link between the description
(declaration) and its implementation. We can describe a
mapping for modules and relations.

MAP RELATION R : module1.jsp

MAP MODULE CHECK : module2.jsp

Because our rules form the standard production rule based
system, we can use old and well know algorithm like Rete [11]
for the processing. A Rete-based expert system builds a
network of nodes, where each node (except the root)

corresponds to a pattern occurring in the left-hand-side (the
condition part) of a rule. The path from the root node to a leaf
node defines a complete rule’s left-hand-side. Each node has a
memory of facts, which satisfy that pattern. This structure
presents essentially a generalized tree. As new facts are
asserted or modified, they propagate along the network,
causing nodes to be annotated when that fact matches that
pattern. When a fact or combination of facts causes all of the
patterns for a given rule to be satisfied, a leaf node is reached,
and the corresponding rule is triggered [28].

In the terms of context-aware programming, our relations
play a role of so-called context variables. They can be updated
synchronously or asynchronously. The asynchronous update is
the prevailing model in IoT applications

Our first implementation is based on custom JSP tags. So,
for example, the above-mentioned definition for rule R1 looks
that:

<iot:Rule name=”R1”

 cond=”$R.RSSI<=-60”>

 some JSP (Java) code

</iot:Rule>

The use of Java Server Pages as a foundation lets us easily
embed our language modules into web applications. As the
next step, the whole JSP file could be wrapped as JSP tags (tag
file). It lets us reuse IoT functionality across various projects.

In the connection with the above-described DSL, we should
mention, of course, the Business Process Execution Language,
commonly known as BPEL or WS-BPEL. It is an XML-based
standard markup language that is emerging as the answer to
process orchestration requirements [29]. It is a correct question
in the context of this paper: why do we choose our own DSL
instead of WS-BPEL? For developers, WS-BPEL is a yet
another language. Our DSL is finally a set of custom tags.
There is no difference between our set of tags and custom tags
widely used for web development (e.g., Java Standard Tag
Library). Each process here should be organized as a web
service. So, on practice, we have to develop proxies for the
most of devices. Of course, REST used in our DSL is more
lightweight and works faster. Our modules (JSP files) are more
flexible than proxies for web services. LogicIoT does not
require XML parsing for the each request/response.

LogicIoT contains built-in support for data persistence. In
practice, developers very often should use data-oriented
extensions of WS_BPEL [30]. For example, authors in [31]
describe an extension of IoT. Their WS-BPEL extension
includes a when-then construct that process modelers can use
to define expected exceptions, using conditions with context
variables. They realize the WS-BPEL extension through a
language transformation approach. As it adds new activities to
process definitions, processes that are executed do not match
exactly the process the modeler defined. Nevertheless, the
resulting process behaves as expected by the modeler and is
independent of the execution engine. By our opinion, it just
adds the complexity. We can reach same goals extending the
basic programming language.

BPEL (WS-BPEL) is not the only candidate for canceling
our own DSL. We should also explain why we do not use the
Business Process Model and Notation (BPMN). BPMN is a
graphical language for visually defining business processes
[32]. BPMN version 2.0 contains enhancements to a graphical
notation and meta-model. It presents XML specifications for
making such models executable, when properly connected with
Web services and/or Java code. In other words, we can
directly specify the executable models in BPMN 2.0. Actually,
we’ve followed to the same approach as with BPEL. It is yet
another language for developers. Also, there are specific
pitfalls for using BPMN with the big amount of asynchronous
data sources. The BPMN 2.0 standard does not allow more
than one input set and a single Data Input per Service Task
[33].

Unfortunately, standards are most likely a long-term
solution in complex systems. By our experience, in IoT, they
are not answering business needs right now. Unfortunately, the
current standardization practice is not suited to accelerating
innovation cycles.

IV. CONCLUSION

Data from sensors are becoming widely used by
organizations in their business processes. However, to use it,
developers have to deal with a massive set of asynchronous
processes, associated with the procedure of obtaining data from
the individual devices. The approach we present in this paper
aims at simplifying the access to IoT information within web
applications. Through our DSL, processes can include context
data (variables), whose values are updated automatically. The
proposed model supports both synchronously and
asynchronously updates. And our extension is responsible for
the operations required to perform the communication between
process instances and sensors.

REFERENCES

[1] Han, C., Jornet, J. M., Fadel, E., & Akyildiz, I. F. (2013). A cross-layer
communication module for the Internet of Things. Computer Networks,
57(3), 622-633.

[2] Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal, 22, 97-
114.

[3] Boulos, Maged N. Kamel, et al. "Crowdsourcing, citizen sensing and
sensor web technologies for public and environmental health
surveillance and crisis management: trends, OGC standards and
application examples." International journal of health geographics 10.1
(2011): 67.

[4] Guinard, Dominique, Iulia Ion, and Simon Mayer. "In search of an
internet of things service architecture: REST or WS-*? A developers’
perspective." Mobile and Ubiquitous Systems: Computing, Networking,
and Services. Springer Berlin Heidelberg, 2012. 326-337.

[5] Namiot, D., & Sneps-Sneppe, M. (2014). On M2M Software.
International Journal of Open Information Technologies, 2(6), 29-36.

[6] Schneps-Schneppe, M., Namiot, D., Maximenko, A., & Malov, D.
(2012, October). Wired Smart Home: energy metering, security, and
emergency issues. In Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), 2012 4th International Congress on
(pp. 405-410). IEEE.

[7] Namiot, D., & Sneps-Sneppe, M. (2014). On Micro-services
Architecture. International Journal of Open Information Technologies,
2(9), 24-27.

[8] Uckelmann, Dieter, Mark Harrison, and Florian Michahelles. "An
architectural approach towards the future internet of things."
Architecting the internet of things. Springer Berlin Heidelberg, 2011. 1-
24.

[9] Kim, J., & Lee, J. W. (2014, March). OpenIoT: An open service
framework for the Internet of Things. In Internet of Things (WF-IoT),
2014 IEEE World Forum on (pp. 89-93). IEEE.

[10] Namiot, D., & Sneps-Sneppe, M. (2014). On M2M Software Platforms.
International Journal of Open Information Technologies, 2(8), 29-33.

[11] Alam, M., Nielsen, R. H., & Prasad, N. R. (2013, July). The evolution of
M2M into IoT. In Communications and Networking (BlackSeaCom),
2013 First International Black Sea Conference on (pp. 112-115). IEEE.

[12] Benini, L., Bogliolo, A., & De Micheli, G. (2000). A survey of design
techniques for system-level dynamic power management. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 8(3), 299-316.

[13] Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks:
a survey. Computer networks, 47(4), 445-487.

[14] Karasti, H., Baker, K. S., & Halkola, E. (2006). Enriching the notion of
data curation in e-science: data managing and information
infrastructuring in the long term ecological research (LTER) network.
Computer Supported Cooperative Work (CSCW), 15(4), 321-358.

[15] Elmangoush, A., Al-Hezmi, A., & Magedanz, T. (2013, December).
Towards Standard M2M APIs for Cloud-based Telco Service Platforms.
In Proceedings of International Conference on Advances in Mobile
Computing & Multimedia (p. 143). ACM.

[16] Biehl, M., DeJiu, C., & Törngren, M. (2010, April). Integrating safety
analysis into the model-based development toolchain of automotive
embedded systems. In ACM Sigplan Notices (Vol. 45, No. 4, pp. 125-
132). ACM.

[17] Shelby, Z. (2010). Embedded web services. Wireless Communications,
IEEE, 17(6), 52-57.

[18] Castellani, A. P., Gheda, M., Bui, N., Rossi, M., & Zorzi, M. (2011,
June). Web Services for the Internet of Things through CoAP and EXI.
In Communications Workshops (ICC), 2011 IEEE International
Conference on (pp. 1-6). IEEE.

[19] Erenkrantz, J. R. (2009). Computational REST: A New Model for
Decentralized, Internet-Scale Applications DISSERTATION (Doctoral
dissertation, University of California, Irvine).

[20] Berners-Lee, Tim, Roy Fielding, and Larry Masinter. "RFC 2396:
Uniform resource identifiers (URI): Generic syntax, August 1998."
Status: Draft Standard.

[21] Monnin, A., Delaforge, N., & Gandon, F. (2012, June). CoReWeb: From
linked documentary resources to linked computational resources. In
Proceedings of the WWW2012 Conference Workshop PhiloWeb
2012:“Web and Philosophy, Why and What For.

[22] Guinard, D., & Trifa, V. (2009, April). Towards the web of things: Web
mashups for embedded devices. In Workshop on Mashups, Enterprise
Mashups and Lightweight Composition on the Web (MEM 2009), in
proceedings of WWW (International World Wide Web Conferences),
Madrid, Spain (p. 15).

[23] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data
processing on large clusters." Communications of the ACM 51.1 (2008):
107-113.

[24] Namiot, D., & Sneps-Sneppe, M. (2014, June). On software standards
for smart cities: API or DPI. In ITU Kaleidoscope Academic
Conference: Living in a converged world-Impossible without
standards?, Proceedings of the 2014 (pp. 169-174). IEEE.

