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Abstract—The backhaul traffic is becoming a major concern
in wireless and cellular networks (e.g., 4G-LTE and 5G) with
the increasing demands for online video streaming. Caching the
popular content in the cache memory of the network users
(e.g., mobile devices) is an effective technique to reduce the
traffic during the networks’ peak time. However, due to the
dynamic nature of these networks, users privacy settings, or
energy limitations, some users may not be available or intend
to participate during the caching procedures. In this paper,
we propose caching schemes for device-to-device communication
networks where a group of users show selfish characteristics.
The selfish users along with the non-selfish users will cache the
popular content, but will not share their useful cache content
with the other users to satisfy a user request. We show that our
proposed schemes are able to satisfy any arbitrary user requests
under partial cooperation of the network users.

Index Terms—Cache networks, D2D networks, Selfish user

I. INTRODUCTION

The data traffic in wireless and mobile networks is expo-

nentially growing during the recent years specially due to the

expanding demands of multimedia contents such as YouTube

videos [1]. The massive resultant backhaul traffic in wireless

networks can be reduced by bringing the popular content

forward closer to the edge of the network. This technique

is called “caching“ which basically is storing the popular

content in resources closer to the end users such as base

stations, routers, and mobile devices in order to serve the users’

requests. A caching scheme generally consists of two phases:

caching (or placement) phase and delivery phase. The caching

phase carries out during the off-peak time of the network

when the network is not congested to duplicate and distribute

the popular content across the network. The delivery phase

is carried out during the peak time of the network when the

network is congested in order to serve the users’ requests by

the contents cached in the network.

A novel approach of caching is recently introduced by

Maddah-Ali et al. in [2] known as “coded caching“ where

it aims to jointly optimize the caching and delivery phase

in order to achieve a global caching gain (i.e., caching gain

which is attained from aggregate global cache size). The cache

placement in this approach is based on constructing a multicast

opportunity for all users at the same time. In other words, the
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server can deliver any arbitrary users demands by a number

of coded multicast transmissions.

Since the introduction of the coded caching, this approach

received a considerable attention due to its noticeable caching

gain (i.e., achieving local and global gain at the same time)

over the conventional schemes. The centralized nature of the

caching scheme in [2] is quite far from the real wireless

communication networks. For example, due to the mobility

in cellular networks, the number of active users during the

delivery phase might not be the same as in the caching phase.

A “decentralized“ approach of coded caching is proposed in

[3] where during the placement phase each user randomly and

independently caches some parts of each file. Then, during the

delivery phase, the server (or base station) takes the advantage

of the multicast opportunities which has been created during

the caching phase to satisfy the user requests.

Several works can be found in literature studying caching

schemes for Device-to-Device (D2D) communication net-

works [4]–[8]. A one-hop D2D network is considered in [5]

where each user caches a subset of files randomly. It has been

shown that the throughput per user varies as a function of the

user cache size over the file library size under this scheme

for sufficiently large number of users and files. The coded

caching for D2D communication networks is studied in [7].

In the proposed model, there exists no central server (or base

station) in the network to control the caching and delivery

phases while all users contribute by multicasting their useful

cache content to other users during the delivery phase in order

to satisfy any user request.

In cellular networks it is likely that some of the users have

left the network during the delivery phase which makes their

cache content not available for the other users during the

delivery phase. Moreover, it is likely that some of the users will

not participate during the delivery phase due to their privacy

settings or their energy saving concerns.

In this paper, we consider a partially cooperative D2D

communication network without a central server (or base

station) where some of the users are selfish. More precisely,

although all of the users will cache the file library in their

cache memory, only a group of non-selfish users participate

in delivery phase by transmitting their useful cache content.

Obviously, all of the users including selfish users can receive

these transmissions to recover their requested file. We propose

a “deterministic” and “random” caching scheme where we
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show that these schemes can satisfy any arbitrary user requests

at the presence of selfish users in the network (i.e., partial

cooperation of the users). We also establish the necessary

conditions and achievable rates of these schemes.

The remainder of this paper is organised as follows. In

Section II, we introduce the network model and the math-

ematical tools and definitions which we will be using in

our proposed caching schemes. In Sections III and IV we

present our deterministic and random caching schemes for

D2D networks with selfish users, respectively. We discuss the

caching and delivery procedures and provide examples, the

corresponding necessary conditions and achievable rates. We

then conclude the paper in Section V.

II. PROBLEM STATEMENT

Our proposed network consists of K users U =
{u1, . . . , uK} each with a cache memory of size MB bits.

The users of the network are divided into two groups of

selfish and non-selfish users specified by the subsets S and T ,

respectively, such that U = S∪T . All users are in the coverage

range of each other such that they all can communicate with

each other.

Definition 1 (File Library). The file library is a set of N
popular demanding files (e.g. videos) Ω = {ω1, . . . , ωN} each

of size B bits.

We assume that each user ui makes an arbitrary request

rk from the file library Ω independent from the other users.

Denote the request vector of all users by R = (r1, r2, . . . , rK),
where rk ∈ Ω for all k ∈ {1, . . . ,K}.

Definition 2 (Caching Function). The caching function con-

sists of a function φu to map the file library into the cache

memory of user u such that φu : FNB
2 → F

MB
2 .

Definition 3 (Delivery Functions). The delivery functions

consist of two functions ψu : F
MB
2 × ΩK → F

RuB
2 and

Ψu : F
B

∑
v∈Tu

Rv

2 × F
MB
2 × ΩK → F

B
2 , respectively, for

generating the transmitted message of user u and for decoding

the received messages at user u, where Tu is the set of

users whose messages are received at user u and Ru is the

transmission rate of user u.

The caching and delivery functions are the essential tools to

characterize the caching and delivery procedures as follows.

Caching Phase: During the caching phase, the cache content

Γu of each user u is generated and stored in its cache memory

by employing the caching function such that Γu = φu(ωn :
∀ωn ∈ Ω).

Delivery Phase: During the delivery phase, each non-selfish

user u generates its transmitted message Xu,R = ψu(Γu,R)
as a function of its cache content Γu and the user request

vector R. Furthermore, each user u decodes its requested file

ω̂u,R = Ψu({Xv,R : ∀v ∈ Tu},Γu,R) as a function of the

received messages Xv,R from all the transmitter nodes v ∈ Tu,

its cache content Γu, and the request vector R.

During the caching phase all of the users in U will generate

their cache content as a function of the file library Ω. However,

only non-selfish users in T will participate during the delivery

phase. Then, the worst-case error probability is given by

Pre = max
R

max
u∈U

P (ω̂u,R 6= ωu) .

Definition 4 (Achievable rate). Let R =
∑

u∈U Ru where

Ru is the transmission rate of non-selfish user u to satisfy a

request vector R. Then, the Memory-Rate pair (M,R) (i.e.,

R(M)) is achievable if R(M) is achievable for any arbitrary

request vector R. In other words, the rate R(M) is said to

be achievable if for any ǫ > 0 and sufficiently large file size

B there exists a caching-delivery scheme such that Pre ≤ ǫ.

III. DETERMINISTIC CACHING

In this section we propose a deterministic caching scheme

where each user will cache a predetermined parts of each

file. As it is proposed in [2] and [7], deterministic caching

procedure will create a multicasting opportunity among all

users during the delivery phase in order to retrieve their

requested file. As mentioned earlier, only non-selfish users

will transmit their cache content during the delivery phase.

Let t = MK
N

be an integer between 1 and K − 1. Note that

when t ≥ K , each user can cache all the N files.

• Caching phase: The caching procedure consists of the

following steps:

1) Each file ωn ∈ Ω is divided into t
(

K
t

)

subfiles.

2) The subfiles of each file are partitioned into
(

K

t

)

groups,

each of which has t subfiles. Each group is indexed by

a specific subset of t users.

3) For every file in the library, its subfiles in each

group will be cached in the corresponding subset

of users. For example, the subfiles in the group

with index {ui1 , ui2 , . . . uit} will be cached in users

ui1 , ui2 , . . . , uit .

This caching procedure guarantees that any subset of t
users share the same t subfiles of each file in the library.

Furthermore, each user caches a total of
(

K−1
t−1

)

tN subfiles.

Since each subfile is of size B/[t
(

K
t

)

] bits, the total number

of bits stored in the cache of each user is tNB/K = MB,

which satisfies the cache memory constraint.

Example 1. Consider a network of K = 4 users each of which

has cache size M = 3 and a file library Ω = {ω1, ω2, ω3, ω4}
of size N = 4 files. Since t = 3, then each file are divided

into 12 subfiles and any subset of t = 3 users will cache the

same 3 subfiles from each file. The cache content of each user

is depicted in Figure 1 which follows from the aforementioned

caching phase.

In contrast to the delivery phases proposed in [3] and [7]

where a base station has access to the whole file library and is

responsible for all the transmission or a fully cooperative users

during the delivery phase, in our proposed scheme, a group

of selfish users will not participate during the delivery phase

in order to transmit their useful cache contents. Therefore, the



ω1,1,ω1,2,ω1,3,ω1,4,ω1,5,ω1,6,ω1,7,ω1,8,ω1,9

ω2,1,ω2,2,ω2,3,ω2,4,ω2,5,ω2,6,ω2,7,ω2,8,ω2,9

ω3,1,ω3,2,ω3,3,ω3,4,ω3,5,ω3,6,ω3,7,ω3,8,ω3,9

ω4,1,ω4,2,ω4,3,ω4,4,ω4,5,ω4,6,ω4,7,ω4,8,ω4,9

ω1,1,ω1,2,ω1,3,ω1,4,ω1,5,ω1,6,ω1,10,ω1,11,ω1,12

ω2,1,ω2,2,ω2,3,ω2,4,ω2,5,ω2,6,ω2,10,ω2,11,ω2,12

ω3,1,ω3,2,ω3,3,ω3,4,ω3,5,ω3,6,ω3,10,ω3,11,ω3,12

ω4,1,ω4,2,ω4,3,ω4,4,ω4,5,ω4,6,ω4,10,ω4,11,ω4,12

ω1,1,ω1,2,ω1,3,ω1,7,ω1,8,ω1,9,ω1,10,ω1,11,ω1,12

ω2,1,ω2,2,ω2,3,ω2,7,ω2,8,ω2,9,ω2,10,ω2,11,ω2,12

ω3,1,ω3,2,ω3,3,ω3,7,ω3,8,ω3,9,ω3,10,ω3,11,ω3,12

ω4,1,ω4,2,ω4,3,ω4,7,ω4,8,ω4,9,ω4,10,ω4,11,ω4,12

ω1,4,ω1,5,ω1,6,ω1,7,ω1,8,ω1,9,ω1,10,ω1,11,ω1,12

ω2,4,ω2,5,ω2,6,ω2,7,ω2,8,ω2,9,ω2,10,ω2,11,ω2,12

ω3,4,ω3,5,ω3,6,ω3,7,ω3,8,ω3,9,ω3,10,ω3,11,ω3,12

ω4,4,ω4,5,ω4,6,ω4,7,ω4,8,ω4,9,ω4,10,ω4,11,ω4,12

u1 u2

u3 u4

Fig. 1: The users cache memory content of a network with

K = 4 users of cache size M = 3 and a file library of size

N = 4 with deterministic caching.

non-selfish users have to compensate for the selfishness of the

selfish nodes through transmitting more useful information to

other users. Our scheme can tolerate at most t−1 selfish users

in the network.

• Delivery phase: Let U ⊂ U be a subset of t + 1 users.

Furthermore, let U = S ∪ T , where S and T are the sets of

selfish and non-selfish users in U, and |S| ≤ t− 1. Consider a

user uk ∈ U. The subset of users U\{uk} shares t subfiles that

are useful for uk in order to retrieve its requested file. Denote

the set of these t subfiles by PU,k. If user uk obtained all

subfiles in PU,k, for all U ⊂ U with uk ∈ U and |U| = t+ 1,

then it would have a total of
(

K−1
t

)

t useful subfiles. Since

there are
(

K−1
t−1

)

t subfiles of its requested file in its own cache

memory, user uk would have obtained its whole requested file.

In other words, user uk needs to obtain one distinct subfile

from each user in U\{uk}. This implies that each user ui ∈ U

can provide one useful subfile to each user in U \ {ui}, and

these t useful subfiles that user ui can deliver are distinct.

We consider the following cases for all U ⊂ U of size

|U| = t+ 1:

1) First, S = ∅. Then, T = U. In this case, to deliver the t
useful subfiles to each user in U, each user ui ∈ T will

multicast the XOR of these t subfiles which are useful

for the remaining t users in U \ {ui} by transmitting
⊕

uk∈U\{ui}

Γrk,U\{uk},

where, Γrk,U\{uk} is a subfile of the file rk which is

requested by uk and is stored in the cache memory of

all users in U \ {uk} but is missing in uk . Each user in

U \ {ui} can extract its required subfile using the side

information in its cache.

2) Next, S 6= ∅ and |S| < |T |. For each non-selfish user

in T , it just broadcasts the same packet as in Case 1.

For each selfish user us ∈ S, we pick an arbitrary user

ut ∈ T to transmit on behalf of us. According to the

delivery procedure in Case 1, us should transmit a packet

in the form of
⊕

uk∈U\{us}

Γrk,U\{uk},

where Γrk,U\{uk} is a subfile of file rk requested by user

uk which is cached in all users in U\{uk} but is missing

in user uk’s cache memory. Since us is selfish and does

not participate in the delivery process, a user ut in T is

picked to transmit
⊕

uk∈U\{us,ut}

Γrk,U\{uk},

which means that user ut transmits the XOR of the same

subfiles as us except the one which is useful for user ut
itself. In order to compensate for all the selfish users, a

set of |S| arbitrary helpers are picked from T , which

is denoted by H. Each helper in H transmits in the

above way on behalf of a user in S. Note that each

helper misses one subfile from its requested file which

is stored in the cache memory of the selfish user it

transmits on behalf of. In order to compensate for these

missing subfiles, a user is picked from T \H to transmit

the XOR of these |S| missing subfiles. Note that such

a user can always be found since |S| < |T |. Each user

in H can then extract its missing subfile using the side

information in its cache.

3) Last, S 6= ∅ and |S| ≥ |T |. For each non-selfish user

in T , it just broadcasts the same packet as in Case 1.

By assumption, |U| = t + 1 and |S| ≤ t − 1, which

implies |T | ≥ 2. We let all users in T be the helpers of

|T |− 1 selfish users in S. The delivery procedure is the

same as in Case 2. Afterwards, we remove the |T | − 1
selfish users from S to obtain S ′. Either the procedure

in Case 2 or in Case 3 is repeated depending on whether

|S ′| is smaller than |T | or not. The delivery procedure

ends when the transmissions of all selfish users have

been compensated for.

Example 2. Consider the network in Example 1 where S = 2
of the users are selfish. Let the request vector be R =
(ω1, ω2, ω3, ω4). There exists only one subset of t+1 = 4 users

which is U = {u1, u2, u3, u4}. Without loss of generality, let

S = {u1, u2} be the set of selfish users. Therefore, |S| = |T |
where the delivery procedure lays on Case 3. Therefore, non-

selfish users T = {u3, u4} multicast ω1,11 ⊕ ω2,8 ⊕ ω4,3 and

ω1,12⊕ω2,9⊕ω3,6 which are useful for users {u1, u2, u4} and

{u1, u2, u3}, respectively. In order to compensate for selfish

user u1, user u3 multicasts ω2,7 ⊕ ω4,1 which is useful for

users {u2, u4} and u4 unicasts ω3,4 which is useful for user

u3. Moreover, in order to compensate for selfish user u2, user

u3 multicasts ω1,10 ⊕ ω4,2 which is useful for users {u1, u4}
and u4 unicasts ω3,5 which is useful for user u3.

Theorem 1. Let M , N , K , and S be the cache size of each

user, number of the popular files, number of users, and number

of the selfish users in the network, respectively. For t = MK
N

∈
Z
+, the following rate is achievable:

R(M) =
1

t
(

K
t

)

S
∑

i=0

(

S

i

)(

K − S

t+ 1− i

)

(

t+ 1 +

⌈

i

t− i

⌉

)

(1)

Proof. The number of (t + 1)-subsets of U which contain i
selfish users is given by

(

S
i

)(

K−S
t+1−i

)

. Consider the number of



transmissions in such a subset. Since each non-selfish user

transmits according to Case 1, the t+ 1− i non-selfish users

will first transmit a total of t+1−i packets. Next, they need to

compensate for the non-participation of the selfish users. Let q
and r be the quotient and remainder when dividing i by t− i.
Then the rule in Case 3 will be repeatedly applied for q times,

which require a total of q(t+ 1 − i) transmissions. If r = 0,

the delivery phase ends; otherwise, the rule in Case 2 will be

applied, which requires r + 1 transmissions. Let I(r > 0) be

the indicator function which equals 1 if r > 0 and equals 0

otherwise. Consequently, the total number of transmissions by

this subset of users is
[

t+ 1− i
]

+
[

q(t+ 1− i) + r + I(r > 0)
]

= t+ 1+ q + I(r > 0)

= t+ 1+

⌈

i

t− i

⌉

Since the length of each transmission is 1

t(Kt )
of the file size,

the statement then follows.

IV. RANDOM CACHING

Due to the dynamic nature of the wireless networks, the

deterministic caching policy may not be able to fully advan-

tage D2D networks proposed in this paper. The deterministic

caching approach, as explained in Section III, requires full

control on the caching phase since some predetermined sub-

files of each file must be placed in the cache memory of each

user. In a wireless D2D network, however, devices may leave

or join the network at any time. Therefore, a decentralized or

random caching policy is more realistic and practical as it fits

better these networks characteristics.

In contrast to the decentralized caching algorithm proposed

in [3], randomly caching the bits of each file in D2D networks

does not guarantee a successful recovery of the requested files

due to the lack of a server (or base station) during the delivery

phase to provide the subfiles that are not cached in any user. In

order to overcome this issue, we follow the caching procedure

in [7], where an MDS-code is employed to encode the library

files before caching by the users. Consequently, any user can

retrieve its requested file by having access to a subset of

sufficient encoded symbols.

• Caching phase: Every file ω1, . . . , ωN of length B bits is

divided into I subfiles each of size B
I

bits. Each subfile is con-

sidered as a symbol in F2B/I . Then, each file is encoded using

an (I, I
r
) MDS-code over F2B/I , where r is the appropriate

code rate which we will establish its necessary condition. Each

user u ∈ U then randomly selects a set of MI
N

indices which

indicate the corresponding encoded symbols of each file to be

cached in the memory of user u.

By the end of the caching phase, the encoded symbols of

any file ωi for i = 1, . . . , N can be partitioned as ωi,P where

P ⊂ {1, . . . ,K} such that ωi,P identifies the encoded symbols

of file ωi cached exclusively in the users of set P . For instance,

for a network with N = 4 files, ω1,{2,4} specifies the encoded

symbols of file ω1 cached in users u2 and u4, but not cached in

any other user. Similarly, ω1,∅ specifies the encoded symbols

of file ω1 which are cached in no user. Let Γωi,P be the block

(i.e., concatenation) of encoded symbols of file ωi specified

by ωi,P . As a consequence, the cache memory content of any

user u ∈ U can be presented as Γω1,P ,Γω2,P , . . . ,ΓωN,P for

all P ⊂ U and u ∈ P .

During the caching phase, each user caches MI
N

out of I
r

encoded symbols of each file. Therefore, the probability that a

given encoded symbol of any file is cached in an arbitrary user

is given by Mr/N . According to the Law of Large Numbers,

the number of encoded symbols of any file ωi exclusively

cached by a set of users P is given by

|ωi,P | ≈ (
Mr

N
)|P|(1 −

Mr

N
)K−|P| I

r
, (2)

with a high probability for large number of symbols I .

The delivery phase we are going to propose for D2D

networks with selfish users guarantees that each user u at the

end of the procedure has access to the encoded symbols of

its requested file cached in all non-selfish users. Obviously, if

there exist no selfish user in the network, each user can have

access to all encoded symbols of its requested file which are

cached in all other users [7].

Example 3. Consider a network with a file library of N = 4
files and K = 4 users each of which has a cache size M = 2.

Assume user u1 requests file ω1. As mentioned earlier, the

cached symbols of encoded file ω1 in user u1 can be presented

as Γω1,{1}
, Γω1,{1,2}

, Γω1,{1,3}
, Γω1,{1,4}

, Γω1,{1,2,3}
, Γω1,{1,2,4}

,

Γω1,{1,3,4}
, and Γω1,{1,2,3,4}

. At the end of the delivery phase,

user u1 will also have access to the encoded symbols of file ω1

cached in all of the other users (due to the fully cooperative

network), namely Γω1,{2}
, Γω1,{3}

, Γω1,{4}
, Γω1,{2,3}

, Γω1,{2,4}
,

Γω1,{3,4}
, and Γω1,{2,3,4}

. In other words, all of the encoded

symbols of file ω1 cached in all subsets P ⊂ {1, 2, 3, 4} of the

users are known by user u1 at the end of the delivery phase.

A. Rate of the MDS Code

Now we initiate a discussion on the rate of the MDS-code

which is used in the caching phase.

Proposition 1. For a network with K users each of cache

size M and a file library of size N , the number of the known

encoded symbols of any requested file at each user by the end

of the delivery phase is

I

r

K
∑

i=1

(

K

i

)(

Mr

N

)i (

1−
Mr

N

)K−i

. (3)

Proof. Each user has access to all encoded symbols of its

requested file cached in all subset of users P ⊂ U . The

statement follows from (2) and the fact that there are
(

K

i

)

subsets of size i.

Theorem 2. For a network with K users each of cache size

M and a file library of size N where MK
N

> 1, any arbitrary

request vector R = (r1, r2, . . . , rK) is recoverable by the users

if all the files of the library are encoded using an MDS-code



with rate r such that r < 1 is the real positive root of the

polynomial

f(r) ,
K−1
∑

i=0

(

K

i

)(

−
M

N

)K−i

rK−i−1 + 1 = 0. (4)

Proof. Since the I symbols (i.e., subfiles) of each file are en-

coded by an (I, I
r
) MDS-code, any I symbols of the encoded

file is sufficient to recover the requested file. Therefore, the

the number of symbols of the requested file known by the

requesting user in (3) must satisfy

I

r

K
∑

i=1

(

K

i

)(

Mr

N

)i (

1−
Mr

N

)K−i

≥ I, (5)

which can be re-written as

1

r

[

(1 −
Mr

N
)K − 1

]

+ 1 = f(r) ≤ 0. (6)

Since f(1) > 0 and f(0) = 1 − MK
N

< 0, the polynomial

equation f(r) = 0 must have a real root r ∈ (0, 1).

Note that the condition MK
N

> 1 is required so that the

total memory size of the K users is larger than the size of the

whole library of files.

Example 4. Consider the same network as in Example 3.

Then, the polynomial in (4) is given by

(1/2)4r3 − 4(1/2)3r2 + 6(1/2)2r − 4(1/2) + 1 = 0.

The real positive root of the polynomial is r = 0.91 which

specifies the rate of the MDS-code to encode the library files.

Encoding the library files with this rate guarantees that any

arbitrary request vector is recoverable by the users.

Theorem 3. For a network with K users each with a cache of

size M such that S out of K users are selfish, and a file library

of size N where
M(K−S)

N
> 1, any arbitrary request vector

R = (r1, r2, . . . , rK) is recoverable by the users if all the files

of the library are encoded using an MDS-code with rate r
such that r < 1 is the real positive root of the polynomial

K−S−1
∑

i=0

(

K − S

i

)(

−
M

N

)K−S−i

rK−S−1−i + 1 = 0. (7)

Proof. Note that Theorem 2 is true because each user is able

to access the cache of K − 1 other users at the end of the

delivery phase. When S out of the K users are selfish, each

selfish user can access the cache of K − S non-selfish users

while each non-selfish user can access the cache of K−S−1
other non-selfish users, so the request of a non-selfish user

is harder to satisfy. The statement then follows directly from

Theorem 2 by replacing K by K − S.

B. Delivery phase and the achievable rate

Now, we propose the delivery algorithm of our D2D random

caching scheme where a subset of users in the network are

selfish. Before describing the procedure, we need to define

some notations first. Let Γωi,P ⊕Γωi,P′ be the XOR of these

two symbol blocks. In general, these two symbol blocks may

not be of equal length. In that case, we zero-pad the shorter one

so that the two blocks are of the same length. The notation can

be generalized to more than two symbol blocks. Besides, in

our delivery procedure, a symbol block is usually divided into

a certain number, say f , of disjoint, equal-length segments. We

call such a segment an 1
f

-segment of a symbol block. Consider

the case where there are several users, each of which has a

symbol block. These symbol blocks are of the same length

but their contents can be different. Each user transmits an
1
f

-segment of its own symbol block. If the offsets of these
1
f

-segments are all different, then we say that those segments

are disjoint.

• Delivery phase: In each iteration of the delivery procedure,

a subset U ⊂ U of size |U| = u for all u = K,K − 1, . . . , 2
is selected. Let S ⊂ U and T ⊂ U be the subsets of selfish

and non-selfish users in U, and let |T | = t. Do the following

for each U that contains one or more non-selfish users:

1) If |T | = 1, then let the only user u ∈ T transmits
⊕

v∈U,v 6=u Γωv ,U\{v}.

2) If |T | ≥ 2, then

• Pick an arbitrary user u∗ from T . User u∗ transmits

a disjoint 1
t−1 -segment of

⊕

u∈T ,u6=u∗ Γωu,U\{u}.

• Each user u ∈ T \ {u∗} transmits a disjoint 1
t−1 -

segment of
⊕

v∈U,v 6=u Γωv,U\{v}.

Now, we establish the achievable rate based on the delivery

algorithm proposed earlier.

Theorem 4. For a network with K users each of cache size

M such that S out of K users are selfish, and a file library of

size N which are encoded by a MDS-code of rate r satisfying

the condition in Theorem 3, the following rate is achievable:

R(M) =
1

r

K
∑

i=2

R(i)

(

Mr

N

)i−1 (

1−
Mr

N

)K−i+1

where R(i) is given by

R(i) =
i−2
∑

j=0

(

S

j

)(

K − S

i− j

)

i− j

i− j − 1
+ (K − S)

(

S

i− 1

)

.

(8)

Proof. The function R(i) in (8) counts the number of trans-

missions for each subset of i users. In the first term of (8),
(

S
j

)(

K−S
i−j

)

is the number of the subsets of i users which

contain i − j ≥ 1 non-selfish users. Each of such subsets

transmits 1
i−j−1 -segment of i − j packets according to the

Case 2 of the delivery phase. In the second term of (8),

(K − S)
(

S
i−1

)

is the number of the subsets of i users which

contain only one non-selfish user and each of which transmits

one packet according to the Case 1 of the delivery phase.

Moreover, the number of the encoded symbols which are

transmitted by each non-selfish user in a subset of i users

is I
r

(

Mr
N

)i−1 (
1− Mr

N

)K−i+1
. Since the size of each symbol

is B
I

bits, then the theorem follows.



Example 5. Consider a network with K = 5 users each of

which has a cache memory of size M = 2 while S = 2
users are selfish, and a library of size N = 5 files. In order

to satisfy any arbitrary request, all files must be encoded by

a MDS-code of rate r = 0.44 follows from (7) in Theorem

3. Assume, without loss of generality that users u1 and u2
are selfish and the request vector is R = (ω1, ω2, ω3, ω4, ω5).
Then, the delivery phase will be carried out for all subsets U ⊂
U of size |U| = 5, 4, 3, 2. Suppose, U = {1, 2, 3, 4, 5} which

contains three non-selfish users T = {3, 4, 5}. Following the

Case 2 of the delivery phase, we choose u∗ = u3. Then, u3 will

transmit 1
2Γω4,{1,2,3,5}⊕Γω5,{1,2,3,4}. Moreover, users u4 and

u5 will respectively transmit 1
2Γω1,{2,3,4,5} ⊕ Γω2,{1,3,4,5} ⊕

Γω3,{1,2,4,5}⊕Γω5,{1,2,3,4} and 1
2Γω1,{2,3,4,5}⊕Γω2,{1,3,4,5}⊕

Γω3,{1,2,4,5} ⊕ Γω4,{1,2,3,5}. Now, let U = {u1, u2, u3} which

contains only one non-selfish user T = {u3}. Following the

Case 1 of the delivery phase, user u3 will transmit Γω1,{2,3}⊕
Γω2,{1,3}. The same procedure will be carried out for all other

U. At the end of the delivery phase, all users will have access

to all encoded symbols cached in the network except the ones

cached in selfish users. The transmission rate for this network

setting is R(2) = 3.05 following from Theorem 4.

The performance of the “deterministic“ and “random“

caching schemes in a partially cooperative D2D network is

depicted in Figure 2 for two different network settings. Figure

2a and 2b compare the achievable rates of deterministic and

random caching schemes for a network with parameters K =
100 users, S = 10 selfish users, N = 50 files and K = 50
users, S = 10 selfish users, N = 100 files, respectively. The

simulation results show that although the deterministic scheme

has a slightly better performance (i.e., smaller transmission

rate), the gap vanishes as the cache memory size M increases.

The lower bounds depicted in Figure 2 is based on the cut-set

argument [7] and is given by

R∗(M) ≥ max
l={1,2,...,min{K,N}}

(

l −
l

⌊m
l
⌋
M

)

,

where, R∗(M) is the optimal achievable rate defined as

R∗(M) , inf {R(M) : R(M) is achievable}.

V. CONCLUSIONS

In this paper, we consider partially cooperative D2D caching

networks where a group of users are selfish. All users cache

the file library during the caching phase while only non-selfish

users transmit their useful cache content to other users. We

propose a deterministic caching scheme where the users’ cache

content is a deterministic function of the file library. We also

propose a more realistic decentralized caching scheme where

users randomly cache some parts of the files. We show that

any arbitrary user request is recoverable under our proposed

caching schemes at the presence of selfish users in the D2D

networks.
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(a) K = 100, N = 50, S = 20.
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(b) K = 50, N = 100, S = 10.

Fig. 2: Performance of the deterministic and random caching

schemes in a partially cooperative D2D networks with S
selfish users out of K users and a file library of size N files.
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