
Experiences Designing a Multi-Tier Architecture for
a Decentralized Blockchain Application in the

Energy Domain
Denis Rangelov, Nikolay Tcholtchev, Philipp Lämmel, Ina Schieferdecker

Fraunhofer Institute for Open Communication Systems (FOKUS)
Berlin, Germany

{firstname.lastname}@fokus.fraunhofer.de

Abstract—In recent years the emergence of the Ethereum
Blockchain has introduced a new alternative perspective on how
web applications can be build. More precisely, the Ethereum
Blockchain allows the development of applications, where pro-
gramming code can be executed in a decentralized manner
with no restrictions imposed by a central authority. However,
as it is the case with many emerging technologies, there is a
fair amount of trade-offs that have to be considered when this
technology is used as a platform for implementing decentralized
applications. In this work we present two architectural designs
for building decentralized applications (DApps) based on the
Ethereum Blockchain technology. Within this context, we discuss
the inherent strengths and weaknesses of each of the architectural
designs as well as the set of challenges that we faced during the
development process.

Index Terms—blockchain, architectures, decentralized applica-
tions, P2P

I. INTRODUCTION

Despite being primarily discussed within the context of
cryptocurrencies, the original Bitcoin [1] paper introduced the
Blockchain technology which has a wide range of applica-
tions exceeding the digital currency domain. Put simply, a
Blockchain, as the name suggests, is a fully replicated data
structure used in a peer-to-peer (P2P) network that consists
of blocks that are linked to each other with hash pointers.
Each block in the chain has a digital fingerprint, also known
as ”hash” and stores a set of transactions. Changing any of
the transactions inside a block automatically changes its hash,
which in turn invalidates all the following blocks in the chain.

In addition, adding a new block to the chain requires running
a consensus algorithm (one of which is the so-called ”proof-
of-work”) within the peer-to-peer network. This algorithm
determines whether or not a peer in the network is allowed to
add a new block to the chain or not. In case a new block is
added to the chain, all peers in the network are notified and
the new block is broadcasted to them.

With this context in mind, the Blockchain technology is
considered to be tamper- and censorship-proof since no cen-
tral authority or individual entity can change the transaction
history or prevent transactions from happening.

These properties of the Blockchain make it a very com-
pelling technology for a multitude of different domains with

one of the most promising ones being the energy trading
market. In particular, the advancement and growing availability
in the field of renewable energy sources [2] has the potential
to allow the users of electric energy to change their role from
consumers to producers. That being the case, producing energy
could potentially enable users to complete energy trades where
a person who generates more energy, sells the generated
amount for a small profit. With that comes the question: Is it
possible to execute the above-mentioned energy transactions
in a peer-to-peer manner without the need for a middleman or
a central authority?

As already suggested, being tamper- and censorship-resis-
tant makes the Blockchain a potential candidate for enabling
peer-to-peer energy trading. However, not all Blockchain-
related technologies are created equal. For instance, the
Blockchain network that Bitcoin uses for performing cryp-
tocurrency transactions is very unlikely to satisfy the needs of
a decentralized energy trading system. Fortunately, there is a
technology that allows developers to write their own business
logic and deploy decentralized applications (also known as
DApps) to a public Blockchain where they are running. One
of the Blockchain implementations that allows this type of
operations is called Ethereum [3].

This work presents multiple different ways to organize an
Ethereum-based decentralized application in terms of architec-
tural design. After introducing two available options for struc-
turing such decentralized application, in section 3 we present
a case study based on one of the described architectures. The
case study encompasses an energy trading platform developed
at the Fraunhofer FOKUS Institute and it is based on the
Ethereum Blockchain. After describing the platform, in the
sections that follow we will address the main challenge that
we faced during the development process and namely - the
integration of the Ethereum and standard database accounts. To
conclude the paper, in the last section some closing thoughts
and a future outlook will be presented.

II. ALTERNATIVE ARCHITECTURAL APPROACHES

In this section, the main goal is to present two different
architectural design patterns that should be considered when
building a Decentralized Application (DApp) deployed on the



Ethereum Blockchain. The different approaches presented in
this section are not unique to Blockchain-based applications,
but when examined within that context they introduce a set of
up- and downsides that deserve special attention.

The two architectural designs that the section illustrates
differentiate from one another by the role of the end user in the
communication flow and the location of the Ethereum account
credentials. The first approach allows the client to directly
communicate with the Ethereum Blockchain network. The
second one utilizes a proxy which forwards the request from
the client to the Ethereum Blockchain network by executing
transactions on behalf of the user.

These two approaches are the subject of a comprehensive
discussion that comes in the following subsections. This
discussion includes not only the details about each of the
architectural patterns itself, but it also examines the inherent
advantages and disadvantages that each pattern represents.

Lastly, it is important to clarify that the goal of the
subsections to follow is not to present an exhaustive list of
all possible architectural design options. Rather, the scope
of the discussion throughout this work will be limited to
two approaches which have the widest range of practical
applications.

1) Client-Blockchain Network Architecture: This is a pat-
tern where the end user executes the transaction by directly
communicating with the Ethereum Blockchain. Instead of
connecting to an intermediary or a proxy server, the Front-End
component directly connects to the Blockchain network and
allows the client to execute transactions. Figure 1 illustrates
this idea.

Fig. 1. Client-Blockchain Network Architecture

One of the standard ways for implementing the above-
mentioned architecture is to use the MetaMask browser plugin
[4]. MetaMask allows users to create new Ethereum accounts
and execute Ethereum transactions within their browser. There
are multiple benefits of using MetaMask. For instance, it
comes with an out-of-the-box user interface that presents the
transaction flow in a visual manner to the end user. In addition,
there is no overhead during the setup of the plugin, since
MetaMask is installed just like any other browser plugin. What
is more, by using MetaMask the Ethereum wallet credentials
are managed by the client (i.e. stored in the browser) instead of
being managed by an intermediary service. Finally, end users
need no prior knowledge about the transaction execution flow,
since MetaMask provides a high level of abstraction when
users interact with the Ethereum Blockchain.

At the same time, MetaMask introduces a fair share of
downsides as well. Probably the most noticeable one is that in
order for the user to be able to execute transactions and utilize

the functions of the Front-End application, the browser needs
to have MetaMask installed. This makes the application less
interoperable because it is very unlikely that clients visiting
the application’s website will have MetaMask already pre-
installed. Of course, developers can address this issue by
checking if the browser already supports MetaMask and if
not they can use another provider. However, this is not a
very straightforward process since in most cases it requires
access to a full Ethrereum node that allows incoming traffic
from the client’s host. Put simply, users who are visiting
the DApp without having MetaMask installed remain in a
disadvantageous position.

Another disadvantage is that users using the MetaMask
plugin are forced to rely on the Ethereum nodes that the plugin
uses under the hood. Although MetaMask is open-source1 and
changing the default Ethereum nodes that MetaMask relies on
is possible, this task requires at least somewhat specialized
knowledge and it is highly inapplicable for the general public.

Finally, the last drawback of using MetaMask is the storage
of the Ethereum account’s private key for which MetaMask
uses the browser storage. As mentioned above, storing the
Ethereum wallet credentials close to the client has obvious
benefits and it makes the DApps that use this approach
purely decentralized from the standpoint that each user is
responsible for managing its own credentials. However, storing
sensitive data inside the browser leaves opportunities for
security exploits when visiting unknown websites with the
same browser (e.g. using cross-site scripting attacks [5]). To
address this issue, there are other solutions (e.g.Parity [6],
MyEtherWallet [7]) that allow the user to manage and store
its wallet credentials on the local disk but they have their own
fair share of up- and downsides.

All in all, knowing and assessing the strengths and weak-
nesses of MetaMask is very important especially considering
how widely used MetaMask is for building client rich ap-
plications with a direct communication link to the Ethereum
Blockchain network. To summarize, regardless of the individ-
ual technology used to achieve the desired architecture, there is
a set of general architectural design considerations that remain
always valid.

If we take a step back from the Blockchain domain, we can
logically divide the architectural pattern presented in Figure 1
into two distinct layers similar to what is commonly known
as two-tiered architecture [8]. Figure 2 emphasizes this idea.

Although in practice this model is not completely accurate
because the Blockchain is fully replicated, decentralized, P2P
system, it is still a useful abstraction that can be used to
illustrate the main advantages and disadvantages of the archi-
tectural design model. These can be summarized as follows:

Advantages:
• Reduced development overhead and cost
• Shorter development cycle
• Enhanced user experience (UX)
Disadvantages:
• Most of the business logic concentrated in one component

(i.e. Front-End)

1https://github.com/MetaMask



Fig. 2. 2 Tier architecture model within the context of the Ethereum
Blockchain (Adapted from [8])

• Scalability limitations with the Front-End node as a
limiting factor

• Limited separation of concerns
What is immediately noticeable is that most of the benefits

are related to ease of use, development effort and user ex-
perience. The reason for that is that by establishing a direct
communication between the client’s browser and the Ethereum
Blockchain network, the developers behind the decentralized
application are not required to implement and manage an
intermediary node. In addition, in the case where MetaMask
is used, users can rely on the interfaces that the plugin itself
provides, which results in even less development overhead.

However, despite the operational and user experience ben-
efits, developing a decentralized application which directly
communicates with the Ethereum Blockchain network makes
developing a DApp with more complex functionality a chal-
lenging task. The reason is that most of the business logic of
the application with this architectural pattern has to be handled
by the Front-End which does not scale well for business logic
operations.

2) Client-Proxy-Blockchain Network Architecture: In the
subsection that follows the main goal will be to summarize
the ideas and properties of another architectural design where
instead of communicating directly with the Blockchain net-
work, the client sends a requests to an intermediary/proxy
node which in turn forwards them to the Ethereum Blockchain
network.

Fig. 3. Client-Proxy-Blockchain Network Architecture

This setup is depicted in Figure 3. The main idea here is
that the transaction execution logic is relocated from the Front-
End to the intermediary proxy server. In other words, the

intermediary node serves the purpose of executing Ethreum
transactions on behalf of the end user. One way to achieve
this type of functionality on a server node is to use the
web3.js library2. Web3.js supports a large number of API’s
that allow the proxy server to not only sign transactions3 and
create new Ethereum accounts4 on behalf of the user, but it
also provides API’s for deploying Smart Contracts5 on the
Ethereum network.

Within the context of this architectural design, there are
some benefits and drawbacks that become immediately no-
ticeable:

Advantages:
• Better Separation of Concerns (SoC)
• Support for wider range of functionalities (e.g. compile6

and deploy Smart Contracts)
• Better load distribution among the components (business

logic off-loaded from the client to the proxy)
Disadvantages:
• Increased maintenance and development costs
• Scalability limitations with the intermediary node as a

limiting factor
• Storing Ethereum account credentials away from the user
• Decreased performance due to network delays
The first major advantage of this architecture, as listed

above, is that it allows for a better Separation of Concerns.
In other words, each of the components is responsible for
its own set of functionalities and there is little to no overlap
with the responsibilities of the rest of the components of the
decentralized application [9]. This means that the load on the
system could be distributed more evenly across all components
rather than overloading one single component (as it is the case
with the Client-Blockchain network model presented above).
In effect, there is more room for making the complexity of
certain operations transparent for the end user which means
that the decentralized applications supporting this architectural
design are able to support more functionalities (e.g. the inter-
mediary node can compile and deploy Smart Contracts without
affecting the user experience).

In terms of disadvantages, the first noteworthy limitation of
this architectural design is that it introduces more operational
costs. In essence, having more components not only increases
the duration of the development cycle but it also requires
additional server management and maintenance. These are
all factors that not only affect the time it takes for an
application to be deployed in a production environment but
it also increases the monetary cost of the project.

In addition to increased development and maintenance over-
head, the discussed architecture presents certain performance
limitations as well. In particular, the intermediary node could
potentially be a bottleneck and/or a single point of failure.
This downside should be considered thoroughly, since attacks

2https://web3js.readthedocs.io/en/1.0/
3https://web3js.readthedocs.io/en/1.0/web3-eth-

accounts.html#signtransaction
4https://web3js.readthedocs.io/en/1.0/web3-eth-accounts.html#web3-eth-

accounts
5https://web3js.readthedocs.io/en/1.0/web3-eth-contract.html#deploy
6https://github.com/ethereum/solc-js#readme



targeting single-point-of-failure components (e.g. Denial of
Service attacks [10]) might cause server failures and disrupt
the communication flow of the whole system. By the same
token, due to the presence of an additional component, the per-
formance of the decentralized application would be affected by
larger network delays caused by the additional round trip times
(RTT) involved in the interaction among the components.

Finally, with this architectural design the Ethereum wallet
credentials are generated and managed by the proxy node. In
other words, with this architecture, when a client wants to
execute a Blockchain transaction, the proxy node performs
the transaction on behalf of the user by using the account
credentials. This strategy works only for environments where
there is an established trust between the intermediary node
and the rest of the participants in the system (e.g. private
Blockchains). Therefore, the applications of this approach are
more restricted.

III. CASE STUDY: A BLOCKCHAIN-BASED ENERGY
TRADING PLATFORM

The current section aims at providing a comprehensive
overview of the architecture of an energy trading platform
developed at Fraunhofer FOKUS and can serve as an ex-
ample of the Client-Proxy-Blockchain Network architectural
model presented in section 2. The presented architecture was
developed in the scope of a thesis [11] supervised in a joint
effort involving the Technical University of Berlin and the
Fraunhofer FOKUS institute.

The content that follows describes in detail the components
that deliver the main functionality on the platform. In par-
ticular, the section opens up with an introduction of each
component and its main purpose. Immediately after that, the
section continues with a discussion and an overview of the
main challenge caused by the architectural design decisions
and the way in which this challenge was addressed.

A. Components

Figure 4 illustrates the underlying components of the energy
trading platform. Fundamentally, the primary roles in terms
of functionality are taken by the Front-End, the Authentica-
tion Service, the Blockchain Service and the Infrastructure
Gateway. These four components are connected to each other
through business logic that includes authentication as well as
Blockchain-related operations.

1) Front-End: In the simplest terms, the Frontend compo-
nent handles what the end users sees in the browser. This
means that it is responsible for handling all interactions
between the user and the energy trading platform. Creating
a new user account, using a existing credentials to login
or executing an energy transaction are a couple of example
operations that the Frontend component handles on behalf
of the user. These operations often times involve complex
message exchange among the components on the platform
(Figure 4) and therefore the Frontend should handle them
transparently [8].

Fig. 4. Energy Trading Platform Components (As described in [11])

2) Authentication Service: The Authentication Service, as
the name suggests, handles the authentication and authoriza-
tion on the platform. This includes the verification of user
credentials, issuing and validating authorization tokens, as well
as the management of the communication with the NoSQL
database where user accounts are stored. Additionally, besides
validating the authorization tokens itself, the Authentication
Service also maintains a REST endpoint for sharing a public
key that allows other services on the platform to verify if
a specific token was originally signed by the Authentication
Service.

3) Blockchain Service: The Blockchain Service serves as
an intermediary between all components on the platform
and the private Ethereum Blockchain network hosted by
Fraunhofer FOKUS. Its primary goal is to deliver proxy-
like functionality, where each Blockchain-related operation is
interfaced with a REST endpoint which allows the rest of the
modules on the energy trading platform to seamlessly execute
Blockchain transactions.

In addition to handling incoming HTTP requests from the
modules on the platform, the Blockchain Service is also re-
sponsible for compiling and deploying Smart Contracts to the
private Ethereum network and also for creating and managing
Ethereum accounts on behalf of the users on the platform. This
means that all users have two accounts - one managed by the
Blockchain Service used for executing Blockchain transactions
and one managed by the Authentication Service, where all the
personal user data is stored. However, as mentioned earlier
in the Front-End subsection, from the user’s perspective the
explicit creation and integration of the two accounts is handled
”silently” behind the scenes.

4) Infrastructure Gateway: The component described in the
current subsection presents functionality that lies outside of
the scope of this paper. However, the general ideas presented
below are still valid.

Similar to how the Blockchain Service handles the
Blockchain-related operations, the Infrastructure Gateway is
responsible for dealing with all grid-related operations. This
includes but is not limited to registering new smart meters
and collecting smart meter readings. With this in mind, it is
important to clarify that theoretically the platform can manage
the collection of smart meter readings even without a sep-



arate component dedicated to this task. However, delegating
the grid-related operations to another module might lead to
complicated code base, bottlenecks, single point of failures
and poor performance overall. That being the case, using the
Infrastructure Gateway component as link between the Smart
Grid and the Blockchain network makes a lot of sense from
architectural and implementation standpoint.

B. Main Challenges

The primary purpose of this section is to describe in more
detail the main challenge that was encountered with the current
architecture of the energy trading platform. In particular, the
main question that the current sections aims at answering is:

What approach can be used for integrating the Ethereum
wallet credentials with the user accounts maintained in a
traditional SQL or NoSQL store7?

Integration of Accounts
One of the most notable challenges faced during the de-

velopment of the energy trading platform described above
was the integration of the accounts stored in the database8

and the Ethereum accounts used for executing Blockchain
transactions. The reason why this type of account integration
is challenging is because to sign a Blockchain transaction
the user needs access to the private key of the Ethereum
account. However, the only entity that has access to the private
key of the Ethereum account on the energy trading platform
is the Blockchain Service. Since the private key cannot be
transmitted over the network or shared with any of the rest of
the components on the platform, there should be a mechanism
that allows the end user to initiate Blockchain transactions by
sending a request to the Blockchain Service, however without
transfering any Ethereum account credentials. In other words,
when a client makes a request from the Front-End (i.e. a
web application accessed over the browser) the Blockchain
Service must be able to verify the identity of the user before
executing the requested transaction. That being the case, the
identity verification process by default should require a claim
transfer from the Front-End component to the Blockchain
Service. More precisely, when a user sends a request to the
Blockchain Service the request should contain a verifiable
piece of data (i.e. the claim) that contains information about
the user identity. Since the Blockchain Service executes a
transaction on behalf of the user only after its identity is
confirmed, it is safe to say that the integration of the two
types of accounts is an integral part of the transaction initiation
process.

With this in mind, the communication flow during trans-
action initiation can be divided logically into two distinct
phases: user sign-up (where the user creates a new Ethereum
wallet and a new account with personal data) and transaction
execution process (where the Blockchain Service verifies the
user credentials and executes the Blockchain transaction on

7The corresponding store is architecturally integrated with the Authentica-
tion Service component

8The NoSQL database integrated on the platform is used for storing off-
chain personal user account information. This information is used primarily
by the Authentication Service and the Front-End components

their behalf). These two phases are the focus of the discussion
that follows:

1) Phase 1 (Sign-up): At a first glance, there is not an
obvious reason for linking the user sign-up to the transaction
initiation process. However, as mentioned above, executing
Blockchain transactions with the current architecture requires
the Front-End component to provide a form of identification
with each transaction initiation request it sends. There is
variety of ways for generating pieces of data that can be
used for authorization purposes. The one used throughout the
development of the energy trading platform is JSON Web
Token (JWT) [12]. In the most simplest terms, JWTs are
tokens encoded as a Base64 strings that contain a header, a
payload and a signature [13]. The function that generate¡s the
signature uses the payload as an input which makes it nearly
impossible to successfully tamper with the data inside the
token. Additionally, JWTs can be signed both using symmetric
and asymmetric approaches [14].

Figure 5 depicts the process of creating a new account
on the energy trading platform and the generation of the
aforementioned JSON Web Token.

Fig. 5. Sign-up communication flow on the energy trading platform (Adapted
from ...)

In the first step of the registration flow, the user sends a
request to the Authentication Service component. Immedi-
ately after the request is received, the Authentication Service
forwards a query to the database which in turn creates a
new user account. After the new account is stored in the
database, the Authentication Service generates a JSON Web
Token (JWT). The JWT’s payload contains the username,
email and a database id that uniquely identifies the user. The
newly generated token is then signed with the private key of
the Authentication Service. It is important to mention here
that the energy trading platform uses asymmetric cryptography
(in particular the RSA algorithm [15]) to sign and verify the
tokens.

Going back to Figure 5, in the step called ”Create new
Ethereum account” the Authentication Service sends a request
to the Blockchain Service to generate new Ethereum account



credentials. In turn, Blockchain Service stores a key-value
entry in an in-memory database9. The key-value pair uses the
unique database id generated by the database as a key, and
the Ethereum account credentials as a value. Therefore, by
providing the user’s database id, the Blockchain Service can
retrieve the Ethereum account credentials.

After generating the Ethereum account, the Blockchain
Service sends back a response to the Authentication Service,
which then returns the newly generated JWT to the client and
that serves as an indication that the registration process was
successful. Executing the sign-up flow in the described man-
ner, serves as an initial setup used for performing Blockchain
transactions later on in phase 2.

2) Phase 2 (Executing Blockchain Transactions): Figure 6
illustrates the steps involved in the execution of Blockchain
transactions on the energy trading platform. It is important
to clarify here that the following description ¡assumes that at
the moment of the first issued request, the Blockchain Service
has already acquired the public key used for the verification
of JWT from the Authentication Service.

Fig. 6. Execution of Blockchain Transactions on the energy trading platform

In the first step of the flow presented in Figure 6 the Front-
End component sends a request to the Blockchain Service for
performing a Blockchain transaction. Attached to the request
header, the client sends a JSON Web Token and attached
to the request body, the client sends the account password.
In turn, the Blockchain Service verifies the JWT by using
the public key of the Authentication Service. In addition to
the validity check of the token, which proves that the JWT
was signed by the Authentication Service, the Blockchain
Service executes a second authorization check. In particular,
the Blockchain Service asks the Authentication Service if the
received password belongs to the owner of the JWT. If that
is the case, the user has successfully presented two types
of proof of identity - on one hand the signed JSON Web

9The main reason behind using an in-memory database is maintaining
control over the Ethereum account credentials on one machine while at the
same time achieving a high level of performance

Token that includes the identity claim and on the other the
account password which only the account holder should have
access to. After successfully verifying the authorization rights
of the client, the Blockchain Service extracts the database id
from the JWT’s payload. This id, as mentioned in ”Phase
1”, serves as the key for retrieving the Ethereum account
data stored in the in-memory database. After querying the
Ethereum account credentials, the Blockchain Service uses
them to sign the transaction on behalf of the user. Furthermore,
after performing the Ethereum transaction, the Blockchain
Service returns a response to the end user with the result of
the initial request.

C. Discussion

In summary, by using the two phases described above, the
user can successfully perform Ethereum transactions in an
architectural model where an intermediary node connects the
Front-End component to the Ethereum Blockchain network.
What is more, because of the two-phase setup, there is a
secure integration between the standard database account and
the Ethereum wallet of the end users. That being the case, even
though the described process includes two phases, in general,
”Phase 1” is executed only once (during the user sign-up),
and it sets up the authorization mechanisms that ”Phase 2”
utilizes during the execution of Ethereum transactions.

The analysis of the main outcomes of this work clearly
show that when it comes to the development of decentralized
applications which integrate the Ethereum Blockchain in the
technology stack, there are inherent architectural trade-offs
that should be considered. Some of the areas that are strongly
affected by the architectural design of the decentralized appli-
cation are scalability, performance, security and user experi-
ence. That being the case, choosing the right architecture for a
DApp is not a trivial task and requires careful and meticulous
analysis [11].

IV. CONCLUSION AND FUTURE WORK

In this work, we present two architectural designs relevant
for the development of decentralized applications (DApp)
using the Ethereum Blockchain technology. The practical ap-
plication of one of the approaches is illustrated by examining
the architecture of an energy trading platform developed at
Fraunhofer FOKUS. Within this context, we address one
of the main challenges faced during the implementation of
the platform and namely - integrating the standard database
accounts with the Ethereum wallet credentials.

With regards to future work, one of the most significant
challenges in terms of impact and severity of consequences
is security. Although we briefly touched this topic, it is
one that deserves a more in-depth analysis and has a large
impact on the system. Therefore, security and its architectural
implications on DApps are an area that will require further
future evaluation. Within this context, it is an ongoing effort
to implement and support mechanisms that ensure that the
energy trading platform presented in this work is protected
against security attacks (e.g. DoS attacks [10], Sybil attacks
[16], etc.). Working in this direction would provide us with



better insights into the potential ways in which certain security
mechanisms affect the performance, the user experience and
the structure of most decentralized applications.

ACKNOWLEDGEMENT

This work was funded by the Federal Ministry for Economic
Affairs and Energy under the funding number 03SIN514. The
authors are responsible for the content of this publication.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf, 2008.

[2] M. Liserre, T. Sauter, and J. Y. Hung, “Future energy systems: Inte-
grating renewable energy sources into the smart power grid through
industrial electronics,” IEEE Industrial Electronics Magazine, vol. 4,
no. 1, pp. 18–37, March 2010.

[3] V. Buterin, “Ethereum: A next-generation smart contract and decen-
tralized application platform,” https://github.com/ethereum/wiki/wiki/
White-Paper, 2013.

[4] Metamask. brings ethereum to your browser. Accessed 22-May-2019.
[Online]. Available: https://metamask.io/

[5] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A client-side
solution for mitigating cross-site scripting attacks,” in Proceedings
of the 2006 ACM Symposium on Applied Computing, ser. SAC ’06.
New York, NY, USA: ACM, 2006, pp. 330–337. [Online]. Available:
http://doi.acm.org/10.1145/1141277.1141357

[6] Parity ethereum. the fastest and most advanced ethereum client.
Accessed 23-May-2019. [Online]. Available: https://www.parity.io/
ethereum/

[7] Ethereum’s original wallet. Accessed 23-May-2019. [Online]. Available:
https://www.myetherwallet.com/

[8] A. S. Tanenbaum and M. V. Steen, Distributed Systems: Principles and
Paradigms, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2001.

[9] M. Patterns and P. Team, Microsoft Application Architecture Guide, 2nd
Edition (Patterns and Practices). Microsoft Press; Second edition,
2009, ch. Key Principles of Software Architecture.

[10] K. Elleithy, D. Blagovic, W. Cheng, and P. Sideleau, “Denial of service
attack techniques: Analysis, implementation and comparison,” Journal
of Systemics, Cybernetics and Informatics, vol. 3, pp. 66–71, 01 2006.

[11] D. Rangelov, “Design and development of a front-end and business logic
components for blockchain utilization in the energy domain,” Master’s
thesis, Technical University Berlin, Berlin, 2 2019.

[12] M.Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),”
Internet Requests for Comments, RFC 7519, 5 2015. [Online].
Available: https://tools.ietf.org/html/rfc7519

[13] Introduction to json web tokens. Accessed 22-May-2019. [Online].
Available: https://jwt.io/introduction/

[14] H. Delfs and H. Knebl, Introduction to Cryptography. Principles and
Applications. Springer, Berlin, Heidelberg, 2015.

[15] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

[16] J. R. Douceur, “The sybil attack,” in Revised Papers from the First
International Workshop on Peer-to-Peer Systems, ser. IPTPS ’01.
London, UK, UK: Springer-Verlag, 2002, pp. 251–260. [Online].
Available: http://dl.acm.org/citation.cfm?id=646334.687813


