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Abstract—The development of small form-factor handheld
electronics is pacing the personal devices market, followed by
the increasing number of various applications. Some of those
applications also cover computation-hungry use-cases, such as
image or video processing and compression, among others.
Historically, wearable and handheld devices were not designed to
execute computationally intensive operations for reasons ranging
from limited battery capacity to radiated heat. Offloading compu-
tationally heavy tasks to a comparatively more powerful and less
energy-dependent device can help prolong the battery lifetime of a
wearable. This paper analyzes different task offloading scenarios
from the wearable to a device located at the network edge.
Such a device can be a smartphone paired with the wearable
or an edge server co-located with the cellular base station.
A comprehensive performance evaluation conducted under a
wide variety of realistic settings in terms of task demands,
processing capabilities, and data rate, unveils the circumstances
in which offloading is convenient and when it is not, in terms of
meaningful metrics.

Keywords—Task Offloading, Edge, Computing, Wearables, Inter-
net of Things

I. INTRODUCTION

With the technological development and Information and
Communication Technology (ICT) evolution, wearable devices
such as smartwatches, smart glasses, smart shoes, wrist bands,
etc., are getting increasingly popular these days [1, 2]. These
devices are capable of connecting to the Internet directly or
through a gateway such as a user smartphone, hence they
are part of the general Internet of Things (IoT) architecture
that aims to connect millions of objects to the Internet for
seamless access and control [3]. Wearables are getting more
and more powerful and equipped with plenty of sensors
capable of providing a plethora of different applications for
everyday use [4]. These applications are aimed to improve
the overall quality of life [S] and include, for instance, health
monitoring, activity recognition, localization, and tracking, as
well as various gaming and fun applications [6, 7].

However, wearables still face numerous challenges such as
those related to security and privacy aspects, form factor,
weight, comfort, etc. [8]. In particular, the major bottleneck
lies in the limited computational power and battery lifetime of
the devices [9, 10], which restrict their usage. Therefore, as

the need for more and more processing power by applications
increases, the device’s power consumption also gets higher
hence downgrading the overall user experience.

Over the years, many solutions have been proposed to
conserve the limited resources of wearables [11]. More re-
cently, the concept of Mobile Edge Computing (MEC) has
emerged, allowing resource-constrained mobile devices to of-
fload computationally intensive tasks to nearby devices, e.g.,
edge servers co-located with Base Stations (BSs), Access
Points (APs), having high energy and computational capabili-
ties [12].

More in detail, task offloading to the edge refers to the
process of transferring some input data over wireless links
to a comparatively more powerful edge server, where they
are processed, and getting the results back to the requesting
device [13, 14].

Besides purpose-built edge servers, today’s smartphones are
equipped with powerful chipsets employing multicore proces-
sors, thus, acting themselves as edge devices and enabling
users to enjoy many complex and computationally intensive
applications on wearables through the offloading of tasks
such as image processing, machine learning algorithms for
face, text, and activity recognition, augmented reality appli-
cations, etc.; which would quickly deplete the battery of a
mobile device otherwise [15, 16].

Several works connected to the area of task offloading for
wearables and other resource-constrained devices are proposed
in the literature, e.g., [16-21].

In general, task offloading helps increase resource-
constrained devices’ storage and computing capabilities as
added benefits apart from energy conservation. However, the
achieved benefits are not always straightforward and need to
be analyzed case-by-case to decide when, what, and where to
offload. Indeed, in some cases, energy spent by the wearable
in communication towards the task executor can be much
higher than the energy spent for local computation, thus
making task offloading not convenient. Additionally, under
some circumstances, task offloading may increase the overall
task accomplishment time due to multiple reasons, for instance,
due to a large amount of input data to be transferred over a low
throughput wireless link [22]. Hence, it is crucial to estimate
the benefit of task offloading in terms of energy consumption



and whether the latency demands of applications are met.
In such a context, complementing the existing works, the
main contributions of this paper are as follows:

e We study a two-tier edge architecture for task offloading
from wearables to the edge, which encompasses a smart-
phone and an edge server as candidate task executors.

e We analyze the performance of task execution at wear-
able devices by identifying the limits.

e We explain to which extent and under which circum-
stances task offloading to the edge may bring improve-
ments. To this aim, we analyze two meaningful metrics,
i.e., task accomplishment time and energy consumption
due to mobile devices’ computing and communication
procedures involved in the task offloading (i.e., wearable
and smartphone). Such analysis is provided through a
comprehensive and flexible analytical playground under
a large variety of realistic settings regarding computing
task requirements, device capabilities, and the distance
between involved devices.

The rest of the paper is organized as follows. In Section II,
we present the system model. Section III provides the numeri-
cal results and performance evaluation of the proposed model,
and Section IV concludes the work with our major findings
and hints on future works.

II. SYSTEM MODEL

This section presents the reference architecture followed
by the main assumptions and mathematical formulation for
deriving the performance metrics of interest.

A. Reference architecture and main assumptions

As an example, we consider an architecture involving a
wearable device such as Google Glass [23], paired with the
user’s smartphone, through a short-range wireless link, acting
as a gateway towards the Internet, as shown in Figure 1. The
smartphone, in its turn, is connected through a BS that hosts
an edge server. Without loss of generality, we refer to the
glass as the wearable device which needs to run a processing-
hungry task, such as an Augmented Reality (AR) glass’s image
and video processing/streaming. The user can use the AR
glass to capture image stream/video on the go for several
applications, such as face recognition, automatic license plate
recognition, etc.

Such a computing task is expressed in terms of the input
data (e.g., the image to be processed), D (in bits), and the
number of CPU cycles/bit required to process the task, C. A
program profiler monitoring all the program parameters can be
used to estimate C' [24]. Program profilers utilize information
such as acquired memory, execution time, thread CPU time,
number and type of instructions, and function calls, for this
purpose [25].

As depicted in Figure 1, any image processing is a com-
putationally intensive task for a wearable device if carried out
locally, see scenario . Therefore, we try to analyze whether
offloading the task from the wearable to nearby devices such as

the smartphone and edge server can help conserve the
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Fig. 1: Reference architecture and scenarios of interest: (1) —
Local execution on wearable; (2) — Offloading to the smart-
phone; (3) — Offloading to the edge server.

Edge server

energy resources of the wearable device while also satisfying
the latency requirements for the application. For this purpose,
we analyze the energy consumption and task accomplishment
time performance for three different scenarios. The wearable
can carry out local processing, resulting in increased task
accomplishment time due to the low computational capacity,
thus, degrading the overall user experience. Alternatively, the
wearable can choose to offload the task to the smartphone
or edge server with comparatively much higher computation
resources at the cost of extra energy spent by the wearable to
transfer data to the task executor and receive the processed re-
sults.

The following main assumptions hold for our study:

e In contrast to conventional wearables, many latest wear-
able devices are equipped with multiple connectivity op-
tions such as Bluetooth, Bluetooth Low Energy (BLE),
Wi-Fi, millimeter Wave, and/or Long Term Evolu-
tion (LTE) communication interfaces [26]. However,
low power technologies such as Bluetooth/BLE are not
feasible for task offloading due to their low data rates,
thus, making task offloading completely infeasible due
to huge communication delays [27]. Therefore, for an
outdoor scenario, we assume that the wearable device
connects to the user’s smartphone over Wi-Fi, further
accessing the edge server through a cellular network.

e The targeted task is atomic in the sense that it can not
be further divided into subtasks.

e The output data size is much smaller than the input
data in applications such as face recognition, automatic
license plate recognition, etc. Therefore, the time for
transferring it from the task executor (smartphone/edge
server) to the wearable can be safely neglected [16, 28].

B. Mathematical Formulations

of interest for all three cases, i.e., local task execution on

the wearable, @ offloading to the smartphone, and @ of-
floading to the edge server. In particular, we derive the task

A theoretical background is leverésd to estimate the metrics



accomplishment time and the energy consumption spent for the
overall task execution. The main notations used throughout this
paper are summarized in Table 1.

1) Local task execution on the wearable: A wearable device
operates independently and carries out all the execution locally
without offloading.

Task Accomplishment Time: The task accomplishment time
for executing a task locally on the wearable device T, can be
estimated as follows [20]:

DxC
Ty = o ey
where F,, denotes the processing power available on the
wearable device in terms of CPU cycles per second.

Energy Consumption: This metric can be estimated by
considering the CPU power consumption that is proportional
to the product of CPU frequency F,, and square of supply
voltage to the chip, V2, similar to the work in [29]. Hence,
the power consumption can be expressed as:

P, =a(V? x F,), (2)

where « is the effective switched capacitance of each proces-
sor, which is related to the chip architecture [30]. Moreover,
it has been found that the voltage supply V' is approximately
linearly proportional to the clock frequency of the CPU [29].
Thus, equation (2) can be rewritten as:

P, = oF3. (3)

Therefore, for an input data size of D bits and the computa-
tional intensity of the task C' cycles/bit, the energy consump-
tion for executing a task locally on the wearable device, E,,,
can be estimated as:

Ey =P, xT,=aF3(D x C). “4)

2) Task offloading to smartphone: A wearable is usu-
ally coupled with the user’s smartphone (see Figure 1, sce-
nario ( 2 )), the nearest device available for task offloading with
comparatively higher resources than a wearable.

Task Accomplishment Time: The total time consumed in
offloading a task for execution at the smartphone 75 can be
defined as the sum of the time consumed in input data delivery
to the smartphone over the Wi-Fi link, T}, and the task
execution delay at the smartphone, T, ,:

Ts = Td,s + Tem,s- (5)

The data rate for the wearable device, R,,, to offload a task
for execution at the smartphone over Wi-Fi can be estimated as
follows [31]:

DSxMxCR=xSS

R, = ST ) (6)
where DS represents the number of data subcarriers that
transmit modulated data, M represents the modulation order in
terms of the number of bits each data subcarrier can represent,
CR represents the coding rate, SS defines the number of
spatial streams used, and ST is the symbol interval time. An
upper bound of 54Mbps can be achieved for a Wi-Fi (802.11g)

link based on the values of the above parameters as mentioned
in Table I.

Hence, the transmission time, Ty ¢, for offloading a task
from the wearable device to the smartphone over the Wi-Fi
interface would be: D

Ry

Similar to equation (1), the computation delay for executing
a task at the smartphone T, , is given as:
DxC

Tew,s = . 8
=% ®)

Energy consumption: The overall energy consumption in
offloading a task for execution at the smartphone, Es can be
expressed as:

Es = Et,w + E’r,s + Eex,s + Ew,idla (9)

where E} ,, is the energy consumed by the wearable to transmit
input data to the smartphone as:
PiwxD
Et,w = a .
RU}

The energy consumed by the smartphone to receive input
data from the wearable is calculated as:
P.sxD

R,
where P, ; is the instantaneous power spent during reception
over Wi-Fi as per the measured values in [32].

The energy consumed in executing the task on the smart-
phone is given as:

T4 = @)

(10)

Er,s = (11)

Eeps = aF2(D x C). (12)

Finally, the energy spent at the wearable device during
idling, while the task gets executed at the smartphone, can
be estimated as:

w,idle X Tez,s~ (13)

where P, ;qic is the power spent by the wearable in idle state.

3) Task offloading to the edge server: Computationally
heavy tasks that will consume much higher resources if ex-
ecuted locally can be offloaded to the edge server from the
wearable, as in Figure 1, scenario . If the task is offloaded
to the edge server, the smartphone will act as a relay node and
receive the input data from the glass and forward it to the edge
server and vice versa for communicating the results back.

Task Accomplishment Time: The total time consumed in
offloading the task from wearable to the edge server can be
defined as:

Ew,idle =

Te = Td,s + Td,e + Te:c,e; (14)

where Tj . is the time taken in offloading the task from the
smartphone to the edge server over the cellular network, and
T,z e is the time consumed in executing the task at the edge
server. Without loss of generality, we refer to the LTE technol-
ogy for the cellular network. For the uplink transmission from
the smartphone to the edge server, the intracell interference is



well mitigated in the LTE network [33]. Therefore, the data
rate experienced by the smartphone can be given as [20]:

Ry = W, log, <1 + M) , (15)

N,

where W, gives the user bandwidth, and P; , denotes the
transmission power of the smartphone, H . denotes the
channel gain from the smartphone to the BS, including path
loss and fading, and NN, is the Gaussian noise power in the
channel. Channel gain H; . is the reciprocal of path loss. As
per the 3GPP standardization [34], for a general non-line-of-
sight (NLOS) case, the path loss can be estimated as:

PLy1os(d) = 36.710g,0(d) + 26log o (f.) +22.7,  (16)

where d is the distance between the smartphone and the BS (in
meters) and f, is the carrier frequency (in GHz)'.
Hence, T} . can be given as:

Tie= 5, A7)

and, similarly to equation (1), the computation delay for
executing the task at the edge 7, can be estimated as:

DxC
F., ~’
where F, is the computational capacity of the edge server.
Energy consumption: The overall energy consumption in
offloading a task for execution at the edge server can be
expressed as:
Ee = Et,w + Er,s + Ed,e + Eez,e + Ew,idle + Es,idle; (19)

where Eg . is the corresponding energy consumption at the
smartphone for delivering the input data to the edge server
over cellular network and can be expressed as:
Ed’e _ Pt,s X D
R
The smartphone energy consumed while idling, i.e., when
the task is executed at the edge server, is calculated as:

s,idle X Tex,e~ (21)

The energy consumed at the wearable device (the task is
offloaded from the smartphone to the edge server and executed
at the edge server) is calculated as:

Ew,idle = Ru,idle X (Td,e + Tex,e)~ (22)

Finally, the energy consumed in executing the task on the
edge server is:

Ter,e = (18)

(20)

Es,idle =

Eepe =aF2(D x O). (23)

However, being co-located with the BS with no huge energy
constraint, compared to the other battery-powered devices in
our system model, namely the wearable and the smartphone,
the energy consumed in receiving input data from the smart-
phone and processing it on the edge server, is considered
negligible.

IThe estimation in equation (16) is applicable for the carrier frequency
range of 2-6GHz for different antenna heights with the maximum modeling
distance range of 2,000 m between the mobile station and the base station,
which suits our considered scenario [34].

TABLE I: Main system parameters

Notation Description Values [Ref.]
D Input data size 0.2-2 MB [15]
C Task computational intensity 102 cycles/bit [35, 36]
Fy, Computational capacity of the wearable device 1GHz [23]
Fy Computational capacity of the smartphone 2.2GHz [37]
F. Computational capacity of the edge server 20GHz [20]
DS Number of data subcarriers over Wi-Fi channel 48 [31]
M Number of bits each data subcarrier represents 6 [31]
CR Coding rate 3/4 [31]
SS Number of spatial streams used 1 [31]
ST Symbol interval time 4ps [31]
Py idie Idle power consumption at the wearable 22mW [38]
Py w Wearable transmission power over Wi-Fi 1.28W [32]
« Effective switched capacitance constant 10728 [30]
fe Carrier frequency for communication between 2.1GHz [39]
smartphone and LTE base station
Ws Channel bandwidth for smartphone over cel- 1MHz [20]
lular network (assuming system bandwidth of
20MHz and 20 users/cell)
Ps idie Idle power consumption at the smartphone 30mW [40-42]
(with display turned off)
Py s Transmission power of smartphone over cellu- 0.2W [20]
lar network
Py s Reception power of smartphone over Wi-Fi 0.94W [32]
No Noise power over cellular channel —113dBm [36]
d Distance between the smartphone and the BS 100, 300, 600 m [20]

III. NUMERICAL RESULTS

Different sets of numerical results are derived under settings
summarized in Table I, unless separately stated.

A. Local task execution on the wearable

Figure 2 shows the values of the task accomplishment
time on the wearable device (no offloading) while increasing
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Fig. 2: Task accomplishment time for local task execution on
the wearable with varying CPU frequencies and input data
sizes.
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Fig. 3: Energy consumption for local task execution on the
wearable with varying CPU frequencies and input data sizes.

the input data size and for several computational capabilities
of the wearable, in terms of CPU frequency, in the range
of 0.5GHz to 1.2GHz. Evidently, higher CPU frequencies
allow achieving lower task accomplishment time. Hence, task
offloading is more beneficial for those devices that have lower
computational capacity.

Figure 3 shows the corresponding energy consumption on
the wearable device with local computation. A device with a
higher CPU frequency can achieve lower task execution time
but at the cost of high energy consumption since it is directly
proportional to the square of the CPU frequency as follows
from equation (4).

B. Local task execution vs. offloading to the edge

In the second set of results, first, we analyze the overall
time spent in the execution of a task (when varying input data
sizes) for the discussed three scenarios, i.e., when the task
is executed locally on the wearable device, when offloading
to the smartphone (through a 54Mbps Wi-Fi link), and when
offloading to the edge server co-located with a BS that may
be located at different distances (100m, 300m, and 600m)
from the smartphone (through an LTE link). Different distance
settings are considered since, in reality, a user carrying the
wearable device and the paired smartphone may be located
in different positions within the LTE cell, hence experiencing
different radio link performance.

As expected, Figure 4 shows that with an increasing input
data size, the task execution time increases for all scenarios.
Local task execution on the wearable device performs worst
due to the smallest computational resources compared to other
scenarios. Whereas, offloading to the edge server when the
user is far from the BS shows the second-worst performance.
The reason is that when the smartphone gets further from
the BS, the link quality degradation causes a significant
decrease in the data rate, thus, resulting in prolonged task
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Fig. 4: Task accomplishment time with varying input data sizes
for: (1) local task execution at the wearable, (2) task offloading
to the smartphone, (3) task offloading to the edge server (d =
100, 300, 600m).
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Fig. 5: Task accomplishment time for two different input
data sizes (D = 0.42MB and D = 2MB) when varying
distance between the smartphone and edge server for: (7)
local task execution at the wearable, (2) task offloading to
the smartphone, (3) task offloading to the edge server.

execution time. Offloading to the edge server when the user
is closer to the LTE BS shows the best performance, both
due to high data rates achieved in communication and the
high computational resources available at the edge server.
Offloading to the smartphone performs somewhere in the
middle as compared to other scenarios. However, varying data
rates over Wi-Fi (54Mbps in our case) certainly will have an
impact on the task accomplishment time. Therefore, it might
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be beneficial to offload time-critical tasks to meet the desired
latency requirements as well as to conserve energy on the
wearable device.

Figure 5 depicts the task accomplishment time when varying
the distance, d, between the smartphone and the BS, the edge
server is co-located with. Here, curves for two different input
data sizes, i.e., D = 0.42MB and D = 2MB, have been shown,
corresponding to small and large input data, respectively.
Offloading to the edge server becomes significantly costly
as the user is far from the server and for large input data
since more traffic needs to be exchanged over the wireless
short-range and long-range links. Moreover, it can be observed
that a task accomplishment time below 1s is achievable for
smaller input data sizes when the task is offloaded to a close
edge server.

It is also relevant to observe each operational phase’s
contribution, i.e., communication and computation, to the
overall task accomplishment time and energy consumption.
Figure 6 shows the corresponding breakdown of the task
accomplishment time for all three task execution scenarios.
Notably, the smartphone transmission time is comparatively
higher as compared to the wearable transmission time due to
the reduced data rate over a shared cellular network, which
further increases as the user gets farther from the BS. Finally,
the edge computation time is much smaller as compared to
all other components because the edge server has the highest
computational resources in the system model.

Figure 7 shows the energy consumption breakdown for
all the three task execution scenarios. In the case of local
execution on the wearable device, the total energy consumption
originates only from computation at the wearable device. The
cumulative system energy consumed in offloading the task to

I \Wearable Computation
[ Wearable Transmission

1 | smartphone Reception
I \Vearable idle

- | [ smartphone Computation
[ smartphone Transmission
| | I Smartphone idle

Energy Consumption (Joules)

1 2 3a 3b 3c
Task Execution Scenarios

Fig. 7: Energy consumption breakdown for an input data size
of 2MB for: (1) local task execution at the wearable, (2)
task offloading to the smartphone, (3a) task offloading to the
edge server (d=100m), (3b) task offloading to the edge server
(d=300m), (3c) task offloading to the edge server (d=600m).

the smartphone comprises energy spent by the wearable in
transmitting the input data to the smartphone, energy expended
by the smartphone in receiving the input data from the wear-
able device, and in executing the task. Additionally, while the
task gets executed at the smartphone, the wearable operates
in idle mode, thus, consuming some energy. Interestingly,
the computation part is significantly higher as compared to
communication for the second scenario. Finally, offloading the
task to the edge server involves energy spent by the wearable in
transmitting the input data to the smartphone, energy consumed
by the smartphone to receive input data from the wearable
over the short-range link, and transmission further towards the
edge server over the long-range link. In this case, the wearable
shows idle energy consumption until the output of the task
is sent back to it from the smartphone. In comparison, the
smartphone remains idle when the task gets executed on the
edge server, which is comparatively much smaller.

C. Impact of task processing requirements

The nature of a task in terms of processing demands,
besides the input data size, also highly affects the overall task
accomplishment time and energy consumption.

Figure 8 shows the effect of varying the computational
intensity on the overall task accomplishment time for the three
task execution scenarios. For the case of local execution on the
wearable, it can be observed that task execution time increases
significantly with the increase in computational intensity due to
the heavier processing load on the resource-limited wearable.
Moreover, it can be observed that offloading to the smartphone
always seems convenient for the wearable as the task com-
putational intensity increases. However, based on the user’s
distance from the BS, offloading to the edge server becomes
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300, 600m).

more beneficial as the computational intensity increases. For
instance, even when a user is far from the BS, offloading to the
edge server performs better than offloading to the smartphone
for very computationally intensive tasks, i.e., for 1600 CPU
cycles/bit and beyond. This is because, thanks to the larger
processing capabilities of the edge server, the execution time
is significantly shorter than the time spent for transmitting over
a low-throughput long-range link.

Finally, Figure 9 shows the corresponding variation in
the overall energy consumption for the wearable and the
smartphone for different computational intensities (C' = 500,
1000, 2000 CPU cycles/bit) for the three offloading scenarios.
Not surprisingly, as the computational intensity increases, the
energy consumption gets higher at the devices where the task is
executed. Moreover, it is worth observing that the energy spent
by the smartphone in case of offloading to it is significantly
higher than the energy spent by the wearable when it executes
the task locally. However, this is not a big issue since smart-
phones are typically less energy-constrained than wearables.
Energy consumption values are significantly low and almost
comparable (with larger values for the smartphone) at both
the wearable and the smartphone when the task is offloaded
to the edge server.

IV. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the performance of task offloading
for wearables in terms of task accomplishment time and
energy consumption in a two-tier edge architecture involving
a smartphone and an edge server as task executors. Our
findings reveal that offloading to the smartphone is always
more convenient than local execution at the wearable both to
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Fig. 9: Energy consumption per device for an input data size
of 2MB with varying task computational intensity for: (/)
local task execution at the wearable, (2) task offloading to the
smartphone, (3) task offloading to the edge server (d = 300m).

conserve the limited energy resources at the wearable and to
experience a lower latency in accomplishing the task.

Particularly, offloading to the edge server is almost always
better than executing at the smartphone. However, suppose
the smartphone is at the cell border (experiencing harsh
propagation conditions), it is convenient to execute the task at
the smartphone to reduce the task accomplishment time, unless
the smartphone is low on battery or the task is significantly
computation-heavy. However, we expect that this downside of
task offloading, which is due to costly long-range communica-
tion, can be minimized by improving cellular connectivity of
smartphones, e.g., through Reflective Intelligent Surfaces (RIS)
or by leveraging edge capabilities provided by high-density
small cells.

Local task execution at the wearable is preferred over
offloading for not computation-heavy tasks. The reason behind
is that the delay contribution due to the transfer of input data
over wireless links may dominate the overall task accomplish-
ment time.

As part of future work, we plan to conduct a simulation-
based study to validate the theoretical analysis and jointly
optimize the task accomplishment time and energy consump-
tion for both the wearable and smartphone. Additionally, a
split computing strategy to execute tasks partially at the edge
server and the smartphone/wearable, considered particularly
promising within the sixth generation (6G) realm, is another
meaningful research direction.
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