
Wideband Information in MOM Obtained from 
Narrowband Data 

Fatih Kaburcuk, Serhend Arvas, Ercument Arvas and Jay K. Lee 

Department of Electrical Engineering and Computer Science  
Syracuse University, 

 Syracuse, NY 13244-1240, USA 
Email: fkaburcu@syr.edu, sarvas@syr.edu, earvas@syr.edu, leejk@syr.edu  

 
 

Abstract— When solving radiation and/or scattering problems, 
the Method of Moments can give wideband information by using 
a Model Based Parameter Estimation technique for the 
expansion coefficients. The parameters are obtained by 
computing the values of expansion coefficients and their 
frequency derivatives at a fixed center frequency. This requires 
computing the moment matrix and its frequency derivatives. The 
technique is illustrated for a thin wire scatterer. Piecewise 
sinusoids are used as expansion functions and point matching is 
used for testing. The moment matrix and its derivatives can then 
be computed analytically. Computed results show that depending 
on the number of derivatives used, accurate results, including 
resonances, can be obtained over an octave of bandwidth.  
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I. INTRODUCTION 
It is well known that a Model Based Parameter Estimation 

(MBPE) technique in Method of Moments (MOM) can be 
used to obtain wideband information from narrowband data 
[1]-[6]. This technique has also been used for the scattering 
problems involving two-dimensional as well as Body of 
Revolution (BOR) scatterers [7]-[8]. Here, using a thin wire as 
a scatterer at a fixed center frequency (f0), it is demonstrated 
that the current distribution induced on the wire can be 
obtained at frequencies away from f0 using the value of the 
expansion coefficient and its frequency derivatives at f0.  This 
requires the knowledge of the moment matrix, its inverse, and 
the derivatives of the moment matrix and excitation vector. 
When piecewise sinusoids are chosen as expansion functions 
and point matching is used for testing, the moment matrix, 
excitation vector and their derivatives can be found 
analytically.  
     The expansion coefficients are expressed as a rational 
function of frequency and its model coefficients. The model 
coefficients of the rational function can be determined using 
both frequency and frequency derivatives (FD) samples at f0.  

Once the model coefficients of the rational function are 
found for each expansion coefficient, the expansion 
coefficients can be obtained at any frequency away from f0 in 
the band. Using these expansion coefficients, the 
Backscattering Radar Cross Section (BSRCS) and the current 
distribution on a thin wire can be efficiently computed in the 
band.  

The numerical data obtained using MBPE are compared 
with results calculated a MOM solution using a point-by-point 
approach. 

II. BASIC PROCEDURE 

A. Model-Based Parameter Estimation 
     Starting with the well known MOM equation 
                       ∑ ����� = ����	
 ,   for � = 1,2, ⋯ , 
                     (1) 
 
The ���expansion coefficient in MOM is given by 
                                         �� = ∑ �������	
                                      (2) 

 
where Y is the inverse of the moment matrix Z, and V and I are 
the excitation and expansion coefficient vector, respectively. 
      The ��� expansion coefficient (��) can be expressed using 
MBPE technique as a rational function of frequency.  
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in which there are n+d+1 coefficients 
��’s and ���’s  to be 
determined (��� = 1). 
         The order of polynomials in both numerator and 
denominator affects the accuracy of the representation. In 
general, more model coefficients can be used to cover a wider 
frequency band. 
        For demonstration purpose, we assume three expansion 
coefficients which are expressed by rational functions of 
frequency as follows. 
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B. Computing Model Coefficients Using Both Frequency and 
Frequency-Derivative Information 
The model coefficients 
��’s and ���’s in (3) can be 

determined using both frequency and FD samples. 
Differentiating (3) 3 times with respect to � gives 

 ��(�)��(�) = 
�(�) ��4(�)��(�) + ��(�)��4(�) = 
�4(�) ��44(�)��(�) + 2��4(�)��4(�) + ��(�)��44(�) = 
�44(�)                (5) ⋮                                                                                           ��(7)(�)��(�) + 3 ��(78
)(�)��4(�) + ⋯ + 9 33 − :; ��(<)(�)��(78<)(�)                          + ⋯ + 3 ��4(�)��(78
)(�) + ��(�)��(7)(�) = 
�(7)(�)    
               
where 9 33 − :; is the binomial coefficient. The system of 3 + 1 
equations in (5) can be used to determine the model 
coefficients.  
      If the frequency-derivatives are known at only a single 
frequency ��, Equation (5) can be simplified by replacing � by � − ��, where � − ��  represents the frequency deviation from ��. Then setting ��� = 1 and 3 = > + ?, we have the 
following linear equations for the unknown coefficients. 
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where  ��< = 1:! ��(<)(0)       : = 0,1, … , 3 
 
where �� is regarded as a function of � − ��. Subsequently, we 
obtain the following matrix equation for the unknown model 
coefficients. 
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C. Computing Frequency Derivatives in a Moment-Method 
Model 

     The expansion coefficient ��(�) and its derivatives can be 
determined using the main MOM equation (1).  Differentiating 
(1) with respect to frequency, we obtain 

                         ∑ C�����4 + ���4 ��D = ��4��	
                              (8) 
 

Then the derivative of the ���expansion coefficient is given by 
                      ��4 = ∑ ������4 − ∑ ��E4 �E�E	
 ���	
                       (9) 
 
In general, the 3FG frequency derivative is given by 
 
  ��(7) = ∑ ��� H��(7) − ∑ 9 3:;7<	
 ∑ ��E(<)�E(78<)�E	
 I��	
         (10) 
 
where 9 3:; is the binomial coefficient, the superscript in 
parenthesis indicates the order of differentiation with respect 
to frequency, and N is the order of the moment matrix Z. Note 
that, each successive derivative involves only the inverse of 
the moment matrix and the derivative of the inverse matrix is 
not needed.  

Substituting the expansion coefficient �� and its 3 derivatives at center frequency f0 given in (10) into (7) one 
can readily obtain the 
��’s and ���’s of (3). Replacing the 
variable � by f-f0 in (3), �� can be written as  

      ��CJ−J0D = 
�0+
�1CJ−J0D+
�2(J−J0)2+⋯+
�>(J−J0)>

+��1CJ−J0D+��2(J−J0)2�⋯���?(J−J0)?           (11)    

III. SAMPLE NUMERICAL RESULTS 
     The method described above is applied to a thin wire 
scatterer of length L and radius a=L/148.4 which is illuminated 
by a plane wave incident on its broadside. Piecewise 
sinusoidal expansion functions and 65 expansion coefficients 
are used for the results. The tangential component of the 
electric field produced by such functions is analytically given 
in [9].  
     The current distribution and BSRCS at any frequency away 
from f0 are computed. Specifically, the numerical data 
obtained using MBPE using both frequency and 9FG order FD 
samples at f0=300 MHz are compared with the results 
calculated the MOM solution using a point-by-point approach. 
The computer program is implemented by using MATLAB. 
     In Fig.1 the solid curve shows the current distribution on 
the thin wire computed using MOM at f=1.65f0. The dashed 
curve shows the current distribution using MBPE with 9 
derivatives (n=3, d=6). Similarly, Fig.2 shows the current 
distribution at f=0.5f0. The physical length of the wire was 
L=1m. Since the solid and dashed curves agree very well, it is 
clear from these figures that MBPE technique can produce 
very accurate results over a 3:1 wide band of frequencies. 
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Fig. 1. Current distribution on the thin wire with L=1m at f=1.65fo 

 
Fig. 2. Current distribution on the thin wire with L=1m at f=0.5fo 

     In Fig.3 and Fig.4 the physical length L is taken to be 2m. 
The good agreement between the solid and the dashed curves 
suggests that MBPE technique with 9 derivatives (n=4, d=5) 
gives accurate results over an octave bandwidth. 
     The solid curve in Fig.5 shows the normalized BSRCS of 
the thin wire as a function of L/M using a logarithmic scale for 
the y-axis. It is computed by using regular MOM at 200 
equally spaced points from L/M=0.25 to L/M=2.25. The other 
three curves show the normalized BSRCS using MBPE. The 
red curve has 9 derivatives (n=4, d=5), the blue curve has 5 
derivatives (n=2, d=3), and the green curve is with 3 
derivatives (n=1, d=2). The center frequency of MBPE 
technique is corresponded to L/M = 1. It is clear from these 
curves that increasing the number of derivatives gives more 
accurate results.  It is also clear that with only 5 derivatives, 
one can obtain reasonably accurate results over a 2.0:0.4 band 
of frequencies. Note also that the resonances are captured 
accurately by the MBPE method.    

 
Fig. 3. Current distribution on the thin wire with L=2m at f=1.4fo 

 
Fig. 4. Current distribution on the thin wire with L=2m at f=0.7fo 

 
Fig. 5. Normalized BSRCS of the thin wire for different 3, 5, and 9th FD 

     In Fig.6, the solid curve shows the normalized BSRCS 
using MOM at 200 equally spaced points from L/M=0.25 to L/M=2.25. The other two curves show the normalized BSRCS 
using MBPE with the same number of derivatives being equal 
to 9. The red curve has the numerator of order 3, while the 
blue curve has the numerator of order 4. The blue curve seems 
to be slightly better.   
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Fig. 6. Normalized BSRCS of the thin wire for different number of model 
coefficients in numerator and denominator with 9th FD 

IV. SUMMARY AND CONCLUSION 
     It is well known that MOM can provide wideband 
information based on narrowband data when it is used with the 
MBPE scheme [1]-[8]. Here, this fact was once again 
demonstrated by using the example of the thin wire scatterer. 
Because of the special expansion functions chosen [9], the 
moment matrix and its frequency derivatives were obtained 
analytically.  

The current distribution and the backscattering radar cross-
section (BRSCS) at any frequency away from the center 
frequency f0 are computed. They are in very good agreement 
with the results obtained by repeated use of regular MOM. 

In general, it was observed that the large number of 
derivatives used the more accurate results were obtained over 
a wider frequency range. One can also obtain more accurate 
results by choosing different orders for the numerator and the 
denominator polynomials representing the expansion 
coefficients. 
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