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Abstract 
This paper discusses a Genetic Algorithm-based 

method of generating test vectors for detecting faults in 
combinational circuits. The GA-based approach com- 
bines the merits of two techniques that have been used 
previously for generating test vectors - the directed 
search approach and the random test method. We em- 
ploy a variant of the traditional GA,  the Adaptive G A  
( A G A  ), to improve the e f i c a c y  of the genetic search. 
Two cost functions that are used for assessing the qual- 
ity of the vectors are discussed. 

The performance of the AGA-based test generation 
approach has been evaluated using ISCAS-85 bench- 
mark circuits, In  our approach, the number of vectors 
that need to be simulated for detecting all detectable 
faults is significantly smaller than that required for a 
random test method. Even when optimized input dis- 
tributions are used to generate the random test vec- 
tors, the A G A  sustains its superior performance over 
the random test method. 

1 Introduction 
While it is a common practice to verify tests using 

simulation, several test generation schemes based on 
fault-simulation have been proposed in the literature 
( see for instance 51 6][17] [11][2][13][4]). In some of 
these techniques [5 \ I  [6 fault simulation is employed in 
the fault propogation phase, although backtracking is 
still retained as an important component of test gen- 
eration. Other techniques [11][17][13][2] [4] completely 
avoid backtracking, and rely solely on fault simulation 
to generate tests for detecting the faults. 

Among test generation techniques that are based on 
fault simulation, directed search methods and random 
test methods form two distinct classes. Random test 
methods use input vectors that are derived from ran- 
domly generated Os and 1s to detect the faults. The 
Os and 1s of the random vectors are typically gener- 
ated from circuit-specific optimized distributions. In 
contrast, the directed search methods generate each 
vector from previouly generated vectors in a deter- 
ministic fashion. The criterion for choosing a vector 
for fault-simulation is usually the minimization of a 
cost associated with the vector. The search proceeds 
along a direction of decreasing cost, and terminates at  
a stage when further reduction in cost becomes infea- 
sible, i.e., the search terminates at  a local optimum. 

The probability that the local optimum corresponds 
to a test vector 

In this paper we use Genetic Algorithms [8][9][10], 
robust search and optimization techniques, to generate 
tests more efficiently than random test methods. GAS 
achieve an optimal tradeoff between exploitation and 
exploration, the two distinctive features of directed 
search and random search respectively. Section 2 is 
devoted to an overview of GAS. Section 3 describes 
a variant of the traditional GA - the Adaptive GA 
(AGA)- that we have used in implementing the test 
generation system. To facilitate the search towards 
the test vectors, it is imperative to associate a cost 
with each vector, irrespective of whether i t  is a test 
vector for some fault or not. In Section 4, we discuss 
two cost functions that are used to evaluate how good 
the vectors are. Implementation details and simula- 
tion results are presented in Section 5. The paper is 
concluded in Section 6. 

2 Overview of genetic algorithms 
Genetic Algorithms are probabilistic search meth- 

ods that employ a search technique based on ideas 
from natural genetics and evolutionary principles. 
They were conceived by Holland [lo] in 1975, and since 
then, they have emerged as eneral purpose, robust 
optimization techniques ( see 791, [lo]). 

Genetic Algorithms employ a random, yet directed 
search for locating the globally optimal solution. They 
are superior to gradient descent techniques as the 
search is not biased towards the locally optimal so- 
lution. On the other hand, they differ from random 
sampling algorithms due to  their ability to direct the 
search towards relatively ‘prospective’ regions in the 
search space. 

The GA may be viewed as an evolutionary process 
wherein the population of feasible solutions to the op- 
timization problem evolves over a sequence of gener- 
ations. During each generation, the fitness of each 
solution is evaluated, and solutions are selected for re- 
production based on the relative fit,ness values. 

Crossover causes the exchange of ‘genes’ between 
two randomly selected ‘parents’ to form new ‘off- 
spring’. The crossover occurs only with some prob- 
ability ( the crossover rate ), and when the solutions 

‘We refer to a vector that detects atleast one undetected 

is high, though not equal to one. 

fault as a ‘test vector’. 
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are not subjected to crossover, they remain unmodi- 
fied. M u t a t i o n  involves the modification of the values 
of each 'gene' of a solution with some probability ( the 
mutation rate ). 

3 Adaptive genetic algorithm 
In the traditional GA, the crossver and mutation 

rates ( p ,  and p ,  ) are defined statically prior to the 
execution of the GA. In the AGA, p ,  and p ,  are deter- 
mined for each solution in relation to its fitness value. 
Higher the fitness value, lower are the crossover and 
mutation rates. p ,  and p ,  are dynamic parameters 
and are adapted to each solution. p ,  and p ,  are var- 
ied as follows in the AGA : 

and 
- 

Pm = h(f" - f>/(fmar - f>, f 2 7, l(3) 

Pm = k.4, f < 7, (4) 
here 
f is the fitness of a solution 
f is the average fitness of the population 
ff is the higher of the fitnesses of the two solutions 
undergoing crossover 
fmas is the maximum fitness in the population 

The parameters k l ,  62,  k 3 ,  and k.4 are assigned the 
values 1.0 , 0.5 , 1.0 and 0.5 respectively. More details 
about AGA may be obtained in [14]. 

4 Cost functions 
From the previous discussions in Sections 2 and 3 

it is clear that the C A  focusses its search towards so- 
lutions with higher fitness values, i.e., solutions with 
lower associated costs. An appropriate cost has to be 
associated with every vector irrespective of whether it 
detects any fault in the circuit or not. 

We have experimented with two cost functions in 
our research. The first cost function , F1, is based on 
the distances the fault-effects of actzvated faults have 
been propogated in the circuit. The cost associated 
with each vector is given by the sum of the distances 
that the fault-effects of all the faults have propogated, 
and it decreases as the distances increase. This is given 
by : 

- 

C, = C(M - li) - di (5) 
zEF 

where 
C, : cost associated with vector v 
M : maximum number of gate levels in the circuit 
I ;  : gate level at which the fault i is located 
d; : gate level to which the fault-effect of i has been 
propogated 
F . the set of undetected faults 

A drawback of F1 is that it does not account for the 
cost of activating a fault. Thus there is no selective 

pressure in the GA that leach it to  generate vectors 
that can activate the faults. The activation of faults 
occurs purely by chance. 

With the second cost function, F2, we aim ist over- 
coming the drawback of F1. We associate with each 
vector a cost of activating a ]fault as well as a cost of 
propogating the fault effect. We use the idea of ac- 
t ive  s tate  of a gate to  determine this cost. Consider 
a gate that has inequiprobablle Os and 1s occurring at 
the output when equiprobable Os and 1s are applied 
at the inputs. We define the state that occurs with a 
lower probability to  be the acilive s tate  of the gate. For 
instance the active s tate  of an AND gate is 1, and for 
an OR gate it is 0. Intdively,  we may observe that 
it is easier to detect a fault that requires fewer gates 
to  be in the active state ( since we are considering a 
technique that uses random vectors ). As an illustra- 
tion, consider a fault at the clutput of a n-input AND 
gate. If the fault is a sa0 faiilt, then the only vector 
that detects the fault is an all-1s vector, i.e., ,the vec- 
tor that brings the gate into an active state. If the 
fault is a sal fault, thea any vector barring the all-1s 
vector will detect the f,ault. While the proba'bility of 
detecting the sal fault is close to  1.0, the probability 
of detecting the sa0 fault is &. Similarly a sa0 fault 
on any of the inputs can be detected only when the 
gate is in an active stake. A sal  fault on a specific 
input i can be detected only if all the inputs except- 
ing i are initialized to 1s and i is initialized to a 0. 
It is clear that a large percentage of the faults! are de- 
tected when the associated gates are in an active state, 
or in a near-active s tate ,  i.e., when all input:; except 
one correspond to  the vector that generates an active: 
state. It may be noted that the remaining faults can 
be easily detected using random vectors. It is also im- 
portant to note that the fault effect can be propogated 
through a gate only if it is in the active state. Based 
on the above ideas, F2 considers the fanin tree and the 
fanout tree of each fau1.t and evaluates the number of 
gates that are in the active state in the two trees. The 
number of gates in the fanin tree of the fault site that 
are in the active state gives the activation cost of the 
fault. Similarly the number of gates in the active state 
in the fanout tree of the fault is the propogation cost 
of the fault. The cost of the vector decreases linearly 
with increasing number of gates in the active state as 
follows : 

where 
Cv : the cost associated with the vector v 
a;,n : activation cost of fault i 

K : a sufficiently large number to  ensure that Cv is a 
positive 

5 Experiments and results 
Essential to the optimal performance of a GA are 

its control parameters : the population size , the mu- 
tation rate and the crossover rate. In the AGIA, since 
we use dynamic crossover and mutation rates, we only 

: propogation cost of fault i 



have to make a choice of the population size. A popu- 
lation size of 100 has been found to be a good setting 
after performing preliminary experiments. We use the 
uniform crossover operator of [15]. 

Our experiments are based on the ISCAS-85 [3] 
benchmark circuits. For each circuit, the AGA has 
been run until all detectable faults have been detected. 
In the first set of simulations we have used equiprob- 
able Os and 1s to  initialize the population. Also the 
mutations are generated with equiprobable Os and Is. 

We have been able to detect all detectable faults in 
all the circuits except c2670 ( we have not attempted 
c7552 due to restrictions on resources ), which is very 
resistant to  vectors generated from equiprobable Os 
and 1s. Table 1 gives the number of vectors that have 
been fault-simulated before all faults have been de- 
tected. The results are tabulated for the two cost 
functions F1 and F2. Also indicated is the number 
of random vectors needed to be simulated for detect- 
ing all the faults [ll]. The absolute fault coverage is 
also tabulated. 

I Circ. 1 Rand. 1 AGA -F2 1 AGA -F1 I Cov. 1 

Table 1: Number of vectors simulated for detecting all 
detectable faults 

It is clear that the AGA performs very well in com- 
parison to a random test method. Also obvious is the 
superior performance of F2, clearly indicating that the 
inclusion of the cost of activating the faults has im- 
proved the performance of the AGA. For c2670 the 
AGA failed to show any significant improvement in 
the fault detection rate after the 85% mark. 

In the second set of simulations we have used opti- 
mal input signal probabilities to generate the Os and 
1s of the vectors in the initial population of the AGA. 
We have obtained the optimal signal probabilities us- 
ing the method proposed in [ll]. The optimized signal 
probabilities have also been used to determine the dis- 
tributions of Os and 1s for the mutations. Table 2 gives 
the performance of the AGA with the cost function F2, 
when optimized signal probabilities are used. Also in- 
dicated is the number of pseudo-random vectors ( also 
generated using the optimized signal probabilities ) 
required for detecting all faults [11]. 

The data in Table 2 clearly indicates the superior 
performance of the AGA. For some circuits - c1355, 
c499, and c1908 - the number of vectors simulated in 
our method is almost 40-50% lesser than for Lisanke’s 
method. 

I Ckt. I Random I AGA - F2 1 

Table 2: Number of vectors simulated using optimized 
input signal probabilities 

To evaluate the efficiency of the GA-based tech- 
nique in terms of the consumed computing time, we 
have tabulated the computing overheads imposed by 
AGA and the signal probability evaluation. Table 3 
gives the computation times of the different compo- 
nents, the execution being on a CD4360 UNIX ma- 
chine. The columns of Table 3 give the total time, 
fault simulation time, time elapsed in computing the 
signal probabilities, the time consumed by AGA, and 
the percentage overhead in CPU time imposed by 
AGA and signal probability evaluation. For small 
circuits, the overheads are about 25%, but as the 
ciruit size increases, the overheads decreases to ap- 
proximately 10 %. The overhead due to signal prob- 
ability evaluation is the significant component, with 
the overhead due to the AGA being as low as 3% for 
the larger circuits. The trends indicated in Table 3 
are very encouraging, the overheads are nominal, and 
steadily decrease as the circuit size increases. 

I Ckt. I Total I Sim. I Dis. I AGA 1 % O H  1 
I c432 I 4.467 I 3.567 I 0.550 I 0.350 I 25.23 1 

Table 3: Computing overheads for GATES ( all figures 
are in seconds ) 

6 Conclusions 
Genetic Algorithms are being used successfully in a 

variety of problem domains : Structure optimization, 
Pipeline optimization VLSI Cell placement, etc. In 
this paper we have discussed the application of GAS 
to the task of generating test vectors for faults occur- 
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ing in combinational logic circuits. The motivation Ifor 
this work has been to improve upon the performance 
of random test methods by incorporating a directed 
search mechanism to locate the vectors, thereby ex- 
ploiting the information contained in the previously 
generated vectors. 

The results from our simulations on ISCAS-85 
benchmark circuits indicate that our approach is 
significantly superior to any previous random test 
method. We have been able to reduce the number 
of test vectors to  be simulated significantly : almost 
50% for some ISCAS-85 benchmark circuits. Moreofer 
the Genetic search can be integrated into any random 
test method, leading to an improvement in the perfor- 
mance of the random test method. The overheads in 
computation time due to AGA and signal probability 
evaluation are as low as 8 % for large circuits, and de- 
crease asymptotically as the circuit size increases. Test 
generation for faults in sequential digital circuits i; a 
significantly harder problem than for combinational 
circuits, due to the presence of stored internal states. 
Extending this work to encompass sequential circuits 
demands some tricky issues to be tackled : (i) how 
are costs to be associated with the storage elements? 
(ii) how are vectors to be generated in relation to the 
current state of the circuit? We are looking at  these 
problems and are trying to develop a general GA based 
test generation system that can handle sequential and 
combinational circuits. 
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