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Abstract

An  area-efficient systolic architecture for real-
time, programmable-coefficient finite itmpulse response
(FIR) filters is presenied. A technique called pipelined
clustering is introduced to derive the archilecture in
which a number of filler tap computations are multi-
plezed in an appropriately pipelined processor. This
multiplezing is made possible by the fact that the pro-
cessor is clocked at the highest possible frequency under
the given technology and design constraints. Reduction
i hardware proportional to the ratio of data arrival
period and clock period is achieved. The proposed sys-
tolic architecture 1s 100% efficient and has the same
throughput and latency and approzimately the same
power dissipation as an unclustered array. The archi-
tecture 1s completely specified, including a description
of the multiplezers and synchronisation delays that are
required.

1 Introduction

Real time filters are characterised by the feature
that the rate of arrival of data is fixed and hence the
filter has to deliver a certain computational through-
put. When both the data rate and filter order are
high, this requires enormous hardware resources. In
fixed coefficient filters, both the area and the latency of
each filter tap is reduced through the use of canonical
signed digit representation whereby each filter coeffi-
cient is hard-wired in the corresponding tap [1]. Such
an approach is however not possible in programmable-
coefficient finite impulse response (FIR) filters which
1s the domain of our interest.

For programmable-coefficient filters, the area can
be reduced by a maximal reuse of hardware. In this
paper, we introduce a technique called pipelined clus-
tering which is used to derive a systolic FIR filter ar-
chitecture that uses minimal hardware to sustain the
required data rate under the given technology and
design constraints. The technology and design con-
straints are encapsulated as a lower bound on the pe-
riod of the system clock: T),,;,. Thus given Ty, and
the data period Tya44, [—%ﬁ‘fj filter tap computations
are multiplexed on a physical multiply-add unit which

is appropriately pipelined. Further, the resulting sys-
tolic architecture that is derived using pipelined clus-

tering is 100% efficient and has the same throughput,
latency and approximately the same power dissipation
as an unclustered full-sized array.

The technique of pipelined clustering that is used
to derive the area efficient systolic array for FIR filter-
ing is based on the principles of retiming, slowdown
and holdup (RSH) transformations [2], [3] and clus-
tering [4], [5], [6], [7]. It therefore appears that it is
equally applicable to other regular algorithms. It is su-
perior to other existing techniques [4], [6] in that it is a
synthesis methodology that results in an architecture
that is optimal for the given design and technology
constraints. Further, the resulting architecture is pre-
cisely specified and includes a complete description of
the multiplexers and synchronisation delays that are
required.

The paper is organised as follows. In Section 2, we
begin with a brief discussion on systolic carry-save FIR,
filters. In Section 3, the concept of abstract proces-
sor arrays for slow and fast data rates are introduced.
Pipelined clustering is presented in Section 4. The
features of this new methodology are also discussed
in the same section. In Section 5, we summarise our
work.

2 Systolic FIR Filters

The input, output relationship for an FIR filter can
be represented by the following difference equation [8]:

N-1
Yn = Z bian
1=0

where z,, y, are the input and output of the filter at
time n respectively, b;’s are the coefficients of the filter
and NV is the order of the filter [1].

Our emphasis in this paper will be on systolic archi-
tectures for the realisation of coefficient programmable
carry-save FIR filters. Various methodologies have
been reported in the literature to arrive at different
systolic realisations of FIR filters [2], [9], [10], [11]. A
simple observation is that RSH transformations when
applied to the direct-form architecture of FIR filter
can lead to all the existing systolic realisations [12].

The carry-save methodology is widely used in FIR
filters [1]. The basic idea is to postpone the time con-

6th International Conference on VLSI Design — January 1993

0-8186-3180-5/92 $3.00 © 1992 IEEE

166



Figure 1. Systolic carry-save FIR filter architecture for order N.

suming carry propagation and hence reducing the crit-
ical path delay through the computational block [13].
The clock length of the carry-save FIR filter architec-
ture shown in Figure 1 is given by Trig = Tosm +
2XTCSA, where TCS]\/I and TCSA are the combina-
tional delays through the carry-save multiplier and
adder respectively. Out of all the existing systolic
architectures, the carry-save FIR filter architecture
shown in Figure 1 [2] has the best overall performarnce
fnei;ric and is particularly well suited for clustering
12].

The processing element, (PE) of the FIR filter archi-
tecture is shown 1n Figure 2. The implementation of
this PE uses two carry-save multipliers followed by re-
quired number of 6—2 compressor slices! to compress
s1X inputs to two outputs which are in carry and save
form [14]. Truncation can be incorporated in the de-
sign of the 6—2 compressor itself to restrict the output
word-length [13], thereby making all the PE’s consti-
tuting the full size systolic FIR filter array identical.
The function performed by the PE is s,y + Cout =
Sin F Cin + TinXbaj + ToyrXbajyy.
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Figure 2: Processor Element PE; of the carry-save
FIR filter architecture.

3 Abstract Processor Array

In this section, we introduce the notion of Abstract
Processor Array (APA) which is characterised by she
fact that the clock of the array is matched to the
incoming data rate, 1.e., Tyioer = Taaza, Where Tyaa
and Tioc1 are the mmput data and clock period respec-
tively. As per the definition of systolic arrays [4], [15]
the fundamental period é of the systolic full sized ar-
ray is equal to the input data period, i.e., § = Tyurq.
The processing element of the APA 1s denoted as Ab-
stract Processing Element (APE). Let C denote the

162 compressor is the tree implementation of an adder with
outputs in carry and save form.
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combinational delay through the APE and L(APA)
and 7(APA) denote the latency and throughput of
the APA respectively.

The APA is different depending on the relative val-
ues of Tyua and C. The salient features of the APA
for the slow (T4u0 > C) and fast (Tgata < C) data
rate cases are as follows:

3.1 Slow Data Rate

If Tyara > C, then the resuiting APA is same as the
full size processor array of Figure 1. The features of
this APA are summarised as follows:

e For an FIR filter of order N, the corresponding
APA requires ]'%] APE’s as shown in Figure 3.

e Latency of this APA is equal to &, i.e., L(APA)

e The throughput rate of the APA 1s equal to fj,
Le., T(APA) = f5, where f; = 1/6.

3.2 Fast Data Rate
If Tyata < C, then we introduce (I — 1) holdup reg-
isters through the input of the full size processor array

of Figure 1, where | = [-Tft 1. These holdup registers

are retimed to pipeline the processing elements which
results in the corresponding APA for the fast data rate
as shown in Figure 4. The (I — 1) delays shown at the
input of each multiplier in the APE (refer Figure 4)
indicates that the APE is pipelined into [ equal stages.
The features of this APA are summarised as follows:

o For an FIR filter of order N, the corresponding
APA require [Ni] APE’s as shown in Figure 4.

o The latency of the APA is equal to [ fundamental
periods, i.e. L{APA) =1 x §.

o The throughput rate is equal to fs, i.e. T(APA)
= f5, where f5=1/6.

Since each APE does a valid computation in
each clock period, the Hardware Utilisation Efficiency
(HUE) (see [4], (6], [15] for a formal definition) is
100%. This would appear to imply that a further re-
duction in the array size is not possible which main-
talns the same throughput and latency. The above
statement is true for the APA since T.j,.r 18 set as
Tdara as 1s typical in many current real-time systolic
systems. However, as will be made clear in the follow-
ing sections, by increasing the clock frequency to the
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Figure 4: The Abstract Processor Array for the FIR filter for order N for fast data rate.

maximum value possible under the given design and
technology constraints, enormous reduction in hard-
ware is possible.

4 Pipelined Clustering

The technique of clustering [4] is essential to re-
duce the number of processor elements in the final
physical processor array implementation. We propose
a new methodology of Pipelined Clustering which is
used to arrive at an efficient and reduced size proces-
sor array implementation from the Abstract Processor
Array (APA). The method as applied to FIR filtering
can be viewed as an extension of the passive and active
clustering of [4]. The resulting reduced size processor
array obtained by clustering is referred to as Physical
Processor Array (PPA) and the processor element of
this PPA 1s denoted by Physical Processor Element
(PPE). The following are some of the important fea-
tures of the PPA:

e The PPA is 100% efficient and the number of
PPE’s is minimum.

o the PPA is systolic.
e L(PPA) = L(APA).
e T(PPA) = T(APA).

Pipelined Clustering is a 4-step process which con-
sists of slowdown, holdup and retiming followed by
mapping of PE’s of the Abstract Processor Array onto
Physical Processor Element (PPE) and scheduling of
computations on the clustered array.

With the given Ty.:, and a lower bound on the
clock period Tonin, if Tyata < Thmin, then a physical
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realisation of the filter is not possible. When Tyg¢q >
Trin, with the application of pipelined clustering the
number of PPE’S in the PPA can be reduced by a
factor of ‘p’ as compared to the number of APE’s in

the APA, where p = | Td“'“_l > 1. The clock that

mzn

is used in the PPA is given by Tiocr = —Tffil, thus
Teiock > Tmin. The number of stages by which the
PPE has to be pipelined is n, where n = [ k] > 1.

The resulting PPA for the case p > n is the cluster-
ing of APA corresponding to slow data rate. Similarly
the resulting PPA for the case p < n is the clustering
of APA corresponding to the fast data rate. Note that
p < nimplies n > 1. Independent of whether the data
rate is slow or fast, the following four steps involved in
the method of pipelined clustering are applied to the
APA shown in Figure 3.

Stepl: Slowdown the entire APA by a factor of p,
where p = [_—%:L: .

Introduce (n — 1) holdup registels through

the input of the APA, where n = | Tdock]

and Tijoer = ——41;“-&. Retime these registers

to pipeline the APE’s into n equal stages.

‘p> number of locally-interconnected APE’s
are mapped onto one PPE with appropri-
ate control overhead circuitry and synchro-
nisation delays. An APE; of the APA gets
mapped onto PPE; according to the rela-

tion j = [I’—)J

Step2:

Step3:

Step4: The computations of these mapped APE’s

are started serially on a PPA according to
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Figure 5: Physical Processor Array for a general case of Pipelined Clustering where k = fﬂl’lf)ll] -1

the same spatial order in which APE’s are
present in the APA. For example, on PP Ey,
the computation of APEj is started in the
first clock cycle, that of APE; in the second
clock cycle, and so on.

The schematic circuit diagram of a PPA for a gen-
eral case of pipelined clustering is shown in Figure 5.
Note that the clustering is locally sequential and glob-
ally parallel [16]. The switching function of the various
muxes that are present in the PPE’s are discussed in
the section on control overhead circuitry. The expres-
sions for the number of delays required in the accumu-
lated and feedback path will be derived using timing
analysis in the section on synchronisation delays.

4.1 Control Overhead Circuitry
Since the clock of the PPA implementation is
Td)""‘ , every data cycle is divided into p clock

Terock =

cycles. For any value of p and n the control overhead
circuitry consists of six muxes.

e Muxl, mux2 and mux3, mux4 (refer Figure 5)
are used as input and coefficient selectors to the
multipliers in the PPE. Muxl, mux2, mux3 and
mux4 are of size p to 1 and select a different input
combination for each clock cycle as per step 4 of
pipelined clustering. Mux5 and mux6 are output
and input selectors for the PPE respectively and
are of size 2 to 1 for all values of p and n.

o Position of mux5h for various possible values of p
and n are described as follows:

— Slow data rate ( p > n ): Mux5 is con-
nected to position I for all the clock cycles
of a data period except the nth clock cycle
in which it is connected to position .

— Fast data rate case ( p < n ): Mux5 is in
position I for all the clock cycles of a data
period except in the kth clock cycle ( where
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k=pifn mod p =0, otherwise ¥ = n mod
p ) in which it is connected to position I.

o Position of mux6 for various possible values of p
and n are described as follows:

— Slow data rate with no pipelining of
PPE (p >n and n = 1 ); Mux6 is con-
nected to position I'V for all the clock cycles
of a data period except the pth clock cycle
in which it is connected to position II1.

— Slow data rate with pipelining of PPE
(p>nandn >1): Mux6 is connected
to position IV for all the clock cycles of a
data period except the (n — 1)th clock cycle
in which 1t is connected to position [11.

— Fast data rate case ( p < n ): Mux6
1s connected to position I V for all the clock
cycles of a data period except kth clock cycle
iwhere k=pif(n—1) mod p= 0, otherwise

= (n—1) mod p ) mn which it is connected
to the position I11.

4.2 Synchronisation Delays

On a time axis normalised to Tk, let 0,p,2p, ...
denote the data arrival instants. Therefore,
[0,p], [p, 2p], ..., [kp, (k + 1)p], ... are the data periods.
In any data pellod at any PPE), the computations

of APE;,, APE;,,, APE;,,0, ..., APE;, +p-1 are
scheduleéj serlally in the p clock cycles. W]th clock =
—Iﬁpﬂi, where p = | 7;,:::] and n = [7=—1], we will

derive the expression for synchromsamon delays that
are required in the accumulated and feedback path by
using the following timing analysis.
Accumulated Path

Let us consider the computations of processing el-
ements PPFEy and PPE; of the PPA in any general
data period {kp,(k + 1)p], where k € Z*. When the
computation of APE,_, starts at PPE; at time in-
stant (k + 1)p — 1 in the data period [kp, (k + 1)p], in



its last pipelining stage at time instant (k+1)p+n—2,
it requires the result of APE, computed at PPE; in
the previous data period [(k — 1)p, kp] which will be
available at time instant (£ — 1)p 4+ n. Hence, there
is an interval of 2p — 2 clock cycles between the time
instant at which the computation of APFE, is ready
and the time instant at which APFE,_; requires the
result from APFE,. This implies that 2p — 1 number
of delays are required in the accumulated path.

Feedback Path

Let us consider the computations of APE; and
APF, which are mapped on to PPEj in any general
data period [kp, (k + 1)p], where k € Zt. When the
computation of APFEy starts at PP Ey at time instant
kp in the data period [kp, (k 4 1)p], in its last pipelin-
ing stage at tume instant kp + n — 1, it requires the
result of APFE;, computed at PPEj in the previous
data period [(k — 1)p, kp] which will be available at
time instant {k — 1)p + n -+ 1 (computation of APFE;
in data period [(k — 1)p, kp] started at time instant
(k—=1)p+1). Hence, there is an interval of p — 2 clock
cycles between the time instant at which the result of
APF is ready and the time instant at which APFj
requires the result from APE,. This implies that p—1
number of delays are required in the feedback path.

Summary

From the above analysis, it follows that both for
slow and fast data rate cases, 2p — 1 number of delays
are required in the accumulated path and p—1 number
of delays are required in the feedback path.

4.3 Features of Pipelined-Clustered FIR
Filters
Following are the features of the PPA arrived at by
using pipelined clustering.

e The Physical Processor Array is systolic and the
fundamental period of the systolic PPA is p clock
cycles which is same as one data period, i.e., § =
PX Tetock = Tygta- The number of delays that are
required in the feedback path of the PPE of the
PPA is equal to p—1,i.e., & = p—1 (refer Figure
5). In order to maintain the systolic nature of the
PPA, 2p — 1 number of delays that are present
in the accumulated path of the PPE have to be
split into y and z number of delays and placed in
each PPE as shown in Figure 5. The splitting is
accomplished as follows:

— Slow data rate: y number of delays that
are required at position [ of the PPE 1s equal
to p — n and z number of delays that are
required at position 777 of the PPE is equal
top+n—1.

— Fast data rate: y number of delays that are
required at position / of the PPE is equal to
p—n mod p and z number of delays that are
required at position 1] of the PPE is equal
to p+ (n mod p) — 1.

¢ When p = | and n = 1, the PPA is same as
the APA corresponding to the slow data rate and
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when p = 1 and n > 1, the PPA is the same as
the APA corresponding to the fast data rate.

e Throughput: Due to the systolic nature of the
PPA, the terminal processor places a valid output
at the end of every data period. Since there is an
output in each data period, the throughput of this
PPA is fusta which is same as fs, 50 T(PPA) =
T(APA).

e Latency: The latency of the PPA is the same as
the latency of the corresponding APA. In the slow
data rate case, the computation of APEy which
18 mapped onto PPFE, goes through n pipelining
stages and the output gets latched at the end of
the same data cycle. So in this case latency is one
data cycle which is the same as § of the APA. For
the fast data rate case, it takes more than one
data period for the output of APFEy to be ready
since n > p. In this case the latency is [%]6 which

1s the same as that of the corresponding APA.
Hence L(PPA) = L(APA).

¢ I/0 Bandwidth: The number of inputs and
outputs and the 1/O bandwidth of a PPE is the
same as that of the corresponding APE.

¢ Pipelinability: Pipelining of the APE can be
achieved up to a 6—2 compressor delay. Fur-
ther pipelining below the 6—2 compressor delay
can be achieved by introducing additional holdup
registers and then retiming them. However this
will require modification in the APE configura-
tion and will also add to more input-output la-
tency.

¢ Power Dissipation: The dynamic power dissi-
pation of the PPA is the same as that of the cor-
responding APA. This is because in the PPA 1/p
as many processors are being clocked at p times
the frequency as compared to the APA. The above
analysis ignores the power dissipation in the over-
head circuitry.

e The control overhead which mainly consists of
muxes is constant and the size of these muxes
depends upon the clustering factor p. The num-
ber of synchronisation delays in each PPE is also
dependent upon the clustering factor p.

4.4 Mapping to Fixed Size Array

The above technique is directly applicable to the
problem of mapping an APA onto a fixed size PPA for
non real-time apphcations. The objective is to max-
imise the throughput subject to the constraint that
the number of PPE’s Ny in the PPA is fixed and the
lower bound on the clock of the system is Tiin .

If the abstract processor array has N APE’s, then
the mapping factor p is given by p ]’%ﬂ As
discussed in the features of pipelined clustering, the
throughput of the PPA is fs; = 1/6, where § is the
fundamental period of the systolic PPA. Since the fun-
damental period ¢ of the PPA is p clock cycles, hence



throughput = Tm,lnx . So one can use the T,,;, as

the clock period for the PPA to get the maximum

throughput of —-m.
5 Conclusions

In sum, we have presented an area efficient systolic
architecture for real-time, programmable-coefficient
FIR filters. The technique of pipelined clustering has
been introduced and used to derive the architecture in
which p = —;ﬂf number of APE’s are mapped onto

one PPE. The precise multiplexing and synchronisa-
tion delays that are required have also been derived.
It has been shown that the reduced size PPA has the
same latency, throughput and power dissipation (ig-
noring the power dissipated in the overhead circuitry)
as the full sized array.

While the technique of pipelined clustering has
been introduced in this paper in the specific context
of synthesising area efficient systolic FIR filters, it can
quite clearly be used for any systolic array. We have
for example, successfully used it to develop a high
clock speed reduced size array for IR filtering.

The approach developed in this paper does not ex-
plicitly consider the problem of minimising the num-
ber of synchronisation delays. In this context it is
interesting to note that if one clusters the APE’s in
the reverse direction, i.e., schedules the computations
of the APE’s on the PPE in the order which is the
reverse of that given in Section 4, then the resulting
clustered array is multirate systolic [15] and has fewer
synchronisation delays but more input-output latency.
For more complex regular algorithms, the identifica-
tion of the optimal cluster and the minimisation of
the number of synchronisation delays will be consid-
erably more difficult than for the case of FIR filters.
Techniques available in [16] and [17] may be useful in
solving these problems.
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