
An Area-Efficient Systolic Architecture for Real-Time VLSI
Finite Impulse Response Filters

V. Visvanathan Nibedita Mohanty S. Ramanathan

Computer Aided Design Laboratory
Indian Institute of Science

Bangalore-560012.

Abstract
An area-eficzent systolic architecture for real-

time, programmable-coeBcient jinite impulse response
(FIR) filters is presented. A technique called pipelined
clustering i s introduced t o derive the architecture in
which a number of jilter t a p computations are multi-
plexed in an appropriately pipelined processor. This
multiplezing is m a d e possible b y the fact that the pro-
cessor is clocked at the highest possible frequency wnder
the given. technology and design constraints. Reduction
in hardware proportional to the ratio of data arrival
period and clock period is ach,ieved. The proposed sys-
tolic architecture is 100% eficient and has the sam,e
throughput and latency and approximately the same
power dissipation as a n unclustered array. The archi-
tecture i s completely specified, including a description,
o f the m.uHip1exer.s and synchron.isation delays that are
requ ired.

1 Introduction
Real time filters are cha,racterised by the feature

tha t the rate of arrival of data is fixed and hence the
filter has t,o deliver a certain computational through-
put. When both the data rate and filter order are
high, this requires enormous hardware resources. In
fixed coefficient filters, both tlie area and the latency of
each filter t ap is reduced through tlie use of canonical
signed digit representation whereby each filter coeffi-
cient is hard-wired in the corresponding tap [l]. Such
an approa.ch is however not possible in progranimable-
coefficient finite impulse response [FIR) filters which
is the domain of our interest.

For programmable-coefficient filters, the area can
be reduced by a maximal reuse of hardware. In this
paper, we introduce a technique called pipelined clus-
tering which is used to derive a systolic FIR filter ar-
chitecture that uses minimal 1ia.rdware to sustain the
required da.ta ratme under tlie given technology and
design constraint>s. The technology and design con-
straints are encapsulated as a lower hound on the pe-
riod of the system clock: Tmin. Thus given T,,i,, and
the da ta period Tautu, filter tap computations
are multiplexed on a physical multiply-add unit which
is appropriately pipelined. Further , the resulting sys-
tolic a.rchitecture that, is derived using pipelined clus-

tering is 100% efficient and has the same throughput,
lateiicy and approximately the same power dissipation
as an unclustered full-sized array.

The technique of pipelined clustering that is used
to derive the area efficient systolic array for FIR filter-
ing is based on the principles of retiming, slowdown
and holdup (RSH) transformations [a] , [3] and clus-
tering [4], [5] , [6], [7]. I t therefore appears tha t it is
equally applicable to other regular a1 orithms. I t is su-
perior to other existing techniques [4f [6] in that it is a
synthesis methodology that results in an architecture
that is optimal for the given design and technology
const,raints. Further , the resulting architecture is pre-
cisely specified and includes a complete description of
the multiplexers and synchronisation delays that are
required.

The paper is organised as follows. In Section 2 , we
begin with a brief discussion on systolic carry-save FIR
filters. In Section 3, the concept of abstract proces-
sor arrays for slow and fast da ta rates are introduced.
Pipelined clustering is presented in Section 4. The
features of this new methodology are also discussed
in the same section. In Section 5, we summarise our
work.

2 Systolic FIR Filters
The input, output relationship for an FIR filter can

be represented by the following difference equation [8] :

N - 1

yn = bixn-i
i = O

where x,, yn are the input and output of the filter a t
time n respectively, bi’s are the coefficients of the filter
and N is the order of the filter [l].

Our emphasis in this paper will be on systolic archi-
tectures for the realisation of coefficient programmable
carry-save FIR filters. Various methodologies have
been reported in the literature to arrive at different
systolic realisations of FIR filters [a], [9], [lo], [ll]. A
simple observation is that RSH transformations when
applied t,o the direct-form a.rchitecture of FIR filter
can lead to all the existing systolic realisations [la].

The carry-save methodology is widely used in FIR
filters [l]. The basic idea is to postpone the time con-

6th International Conference on VLSI Design - January 1993

166
0-8186-3180-5/92 $3.00 0 1992 IEEE

I n >Wjyb-J&

J n -. . . 0

C ? l -. . . 0

d d d d d d

Figure 1: Systolic carry-save FIR filter architecture for order N

suming carry propaga.tion and hence reducing the crit-
ical path delay through the computat,ional block [13].
The clock length of the carry-save FIR filt,er arcliitw-
ture shown in Figure 1 is given by TFIR = Tcsn~ +
2 x T c s ~ , where T~.si\.r and T C ~ A are the combilia-
tional delays through the carry-save multiplier and
adder respectively. Out of all the existing systolic
architectures, the ca,rry-save FIR filter architecture
shown in Figure 1 [2] ha.s the best overall perforinarice
metric and is part,icularly well suited for clustering

The processing element (PE) of tlie FIR filter archi-
tecture is shown in Figure 2. The iinpleinentation of
this P E uses two carry-save multipliers followed by re-
quired number of 6-2 compressor slices' to cornpress
six inputs t>o two outputs which are in c,arry and siive
form [14]. Truncation can be incorporakd in the de-
sign of the 6-2 compressor itself to restrict the output
word-length [13], t,hereby making all tlie PE's cons8ti-
tuting the full size systolic F1R filter array identical.
The function performed by the PE is s,,t + tout =

D21.

s in + Cin + xin X b s i + ZOllt X b % i + l .

Figure 2: Processor Element PEi of the carry-save
FIR filter architectmure.

3 Abstract Processor Array
In this section, we introduce the notion of Abstra,ct

Processor Array (APA) which is characterised by ,:,he
fact that, the clock of the array is matched to ,the
incoming data rat,e, i.e., T c l o c k = Tdatn, where Tdnta
and T c l o c k are the input data arid clock period respec-
tively. As per the definition of systolic arrays [4], [15]
the fundamental period 5 of the systolic full sized ar-
ray is equal to the input data period, i.e., 5 = T d c L t n .
The processing elemelit of the APA is denoted as ilb-
stract Processing Eleirieiit, (APE). Let C denote the

' 6 4 2 compressor is the tree implementation of an addcr with
outputs in carry and save form.

combinational delay through the APE and ,C(APA)
and 'T(APA) denote the latency and throughput of
the APA respectively.

The APA is different depending on the relative val-
ues of Tdata and C. The salient features of the APA
for the slow (T d a t a 2 C) and fast (Tdata < C) data
rate cases are as follows:
3.1 Slow Data Rate

If T d a t a 2 C , then the resulting AI'A is sarm as the
full size processor array of Figure 1. The feaixres of
this APA a.re summarised as -Follows:

0 For an FIR filter of order N, the corresponding
APA requires

= 6.

i.e., I (A P A) = fs, where fs = 1/S.

APE'S as shown in Figure 3.

0 Latency of this AF'A is equal to 6, i.e., L(APA)

0 The t#hrougliput rate of the APA is equal to fs,

3.2 Fast Data Rate
If T 'da ta < C , then we introduce (1 - 1) holdup reg-

isters through the input of the full size processor array
of Figure 1, where 1 = [-A?. These holdup registers
are retimed to pipeline the processing elements which
results in the corresponding APA for the fast da ta rate
as shown in Figure 4. The (I - 1) delays shown at the
input, of each multiplier in the APE (refer Fjgure 4)
indica.tes that the APE is pipelined into 1 equal1 stages.
The features of this APA are summarised as follows:

0 For an FIR, filter of order N , the corresponding

Tdaia

APA require

periods, i.e. C(APA) = 1' x 6.

= f d , where fs = 1,'s.

APE's as shown in Figure 4.

0 The latency of the APA is equal to 1 fundamental

The throughput rate is equal to f ~ , i.e. T(APA)

Since each APE does a. valid computakion in
each clock period, the Hardware Utilisation Efficiency
(HUE) (see [4], [6], [15] for a formal definition) is
100%. This would appear to imply that a further re-
duction in the array size is not possible which main-
tains the same throughput and latency. The above
stateiiient. is true for the APA since Tclock is set as
T d a l a as is typical in many current real-time systolic
systems. However, as will be made clear in the follow-
ing sect,ions, by increasing the clock frequenc,y to the

167

Figure 3: The Abstract Processor Army for the FIR filter for order N for slow da ta rate.

: _ _ . _ _ _ _ _ A P E + . . ? . : : _ _ _ _ _ _ _ A R E , _ _ _ _ 4;; _ _ _ _ _ _ _ A R E + - - - < :: _ _ _ _ _ _ _ ARE+,. .-<:: _ _ _ _ _ _ _ A R E + . . . < ; : ____.__ A P E + ... d k ____....__ APE N d: rTi - 1

Figure 4: The Abstract Processor Array for the FIR filter for order N for fast da t a rate.

maximuni value possible under the given design and
technology constraints, enormous reduction in hard-
ware is possible.

4 Pipelined Clustering
The technique of clustering [4] is essential to re-

duce the number of processor elements in the final
physical processor array implementation. We propose
a new methodology of Pipelined Clustering which is
used to arrive a t an efficient and reduced size proces-
sor array implementation from the Abstract Processor
Array (APA). The method as applied to FIR filtering
can be viewed as an extension of the passive and active
clustering of [4]. The resulting reduced size processor
array obtained by clustering is referred to as Physical
Processor Array (PPA) and the processor element of
this PPA is denoted by Physical Processor Element
(PPE) . The following are some of the important fea-
tures of the PPA:

0 The PPA is 100% efficient and the nuinher of
PPE’s is minimum.

0 the PPA is systolic

C(PPA) = C(APA).

0 I (P P A) = ‘T(APA).

Pipelined Clustering is a 4-step process which coil-
sists of slowdown, holdup and retiming followed by
mapping of PE’s of the Abstract Processor Array onto
Physical Processor Element (PPE) and scheduling of
coniputat,ions on the clustered array.

With the given Tdnta and a lower bound on the
clock period T,,,,, if T d n t o < T,,in, then a physical

realisation of the filter is not possible. When T d a t a 2
T,71in, with t,he application of pipelined clustering the
number of PPE’s in the PPA can be reduced by a
fact,or of ‘p’ as compared to the number of APE’s in
the APA, where y = 2 1. The clock that
is used in the PPA is given by Tclock = , thus
T c l o c k 2 Tmin. The number of stages by which the
P P E has to be pipelined is n, where n = 2 1.

The resulting PPA for the case p 2 n is the cluster-
ing of APA corresponding to slow da ta rate. Similarly
the resulting PPA for the case p < n is the clustering
of APA corresponding to the fast da ta rate. Note that
p < n implies n > 1. Independent of whether the data
ratme is slow or fast, the following four steps involved in
the inethod of pipelined clustering are applied to the
APA shown in Figure 3 .

Stepl:

Step2:

Step3:

Step4:

Slowdown the entire APA by a factor of p ,
where p = Le].
Introduce (n - 1) holdup registers through
the input of the APA, where n =
and Tclock = *. Retime these registers
to pipeline the APE’S into n equal stages.
‘p’ number of locally-interconnected APE’s
are mapped onto one P P E with appropri-
ate control overhead circuitry and synchro-
nisation delays. An APEi of the APA gets
mapped onto PPEj according to the rela-
tion j =
The computat#ions of these mapped APE’s
are started serially on a PPA according to

I68

P a t h A c c u m u l a t e d

P a t h

Figure 5: Physical Processor Array for a general case of Pipelined Clustering where k = [m1 - 11.
P

the same spatial order in which APE'S are
present in the APA. For example, on PPEo,
the computation of APE0 is started in the
first clock cycle, that of APE1 in the second
clock cycle, and so on.

L = p if n mod1 p = 0, otherwise L = n mod
p) in which it is connected to position I . ,

0 Position of mux6 for various possible values of p
and n are described as follows:

The schetnatic circuit diagram of a PPA for a gen-
eral case of pipelined clustering is shown in Figure 5.
Note that the clustering is locally sequential and glob-
ally parallel [16]. The switching function of the variclus
muxes that are present, in the PPE's are discussed in
the section on control overhead circuitry. The expres-
sions for the number of delays required in the accuniu-
lated and feedback path will be derived using timing
analysis in the section on synchronisation delays.
4.1 Control Overhead Circuitry

Since the clock of the PPA implementation is
TclOck = *, every data cycle is divided into p clock
cycles. For any value of p and 1% the control overhrad
circuitry consists of six muxes.

0 Muxl, mux2 and inux3, mux4 (refer Figure 5)
are used as input and coefficient selectors to t,he
inultipliers in the PPE. Muxl , inux2, 111~x3 and
inux4 are of size y to 1 and select a different input
combination for each clock cycle as per step 4 of
pipelined clustering. Mux5 and muxG are output
and input selectors for the P P E respectively and
are of size 2 to 1 for all values of p and 11.

0 Position of niux5 for various possible values of p
and 7% are described as follows:

- Slow data rate (y 2 n): Mux5 is coii-
nected to position I I for all the clock cycles
of a data period except the nth clock cycle
in which it is connected to position I .

- Fast data rate case (p < 11): Mux5 is in
position 11 for all the clock cycles of a data
period except in the k t h clock cycle (where

- Slow data rate with no pipeliniing of
PPE (p 2 n. and n = 1): Mux6 is con-
nected to position I'V for all the clock cycles
of a data perilod except the pth clock cycle
in which it is connected to position I I I .

- Slow data rake with pipelining of PPE
(p 2 n and n > 1): Mux6 is coinnected
to position IV for all the clock cycles of a
data period except the (72 - 1)th clock cycle
in which it is connected to position I I I .

- Fast data rate case (p < n): Mux6
is connected to position IV for all the clock
cycles of a data period except kth clock cycle

where le = p if (n-1) mod p = 0, otherwise
= (n - 1) mod p) in which it is connected

to the position I I I .

4.2 Synchronisation Delays
On a time axis normalised to T c , o c k , let O,p , 2p , ...

denote the data. arrival instants. ThLerefore,
[o,p], bl ap], ..., [k p , (k $- 1)p], ... are the data periods.
In any data period, at any PPEi, the computations,

schedule8 serially in the p clock cycles. With
of APEi , APEip+l, APE;,+2, ..., APEip+f -~ ay -
derive the expression for synchronisation delays that,
are required in the accumulated and feedback path by
using t,he following timing analysis.
Accumulated Path

Let us consider the (computations of processing el-
ements PPEo and PPEl of the PPA in any general
data period [k p , (k + l)p], where k E 2+. When the
computation of APEp--l starts at P P E o a t time in-
stant (k + l)p - 1 in the datii period [k p , (k $- l)p], in

-$-, T d a a where p = I"-"] and n = [L we willi T,,,, T c i o c ~ l

169

its last pipelining stage at time instant (k + l) p + n - 2 ,
it requires the result of APE, computed at PPEl in
the previous data period (k - l)p,kp] which will be
available at time instant i k - 1)p + w. Hence, there
is an interval of 2 p - 2 clock cycles between the time
instant at which the computation of 4 P E , is ready
and the time instant a.t which APEp-l requires the
result from APE,. This implies that 2 p - 1 number
of delays are required in the a.ccumulated path.
Feedback Path

Let us consider the computations of APE0 and
APE1 which are mapped on tso PPEo in any general
data period [k p , (k + l)p], where k E Zt. When tJhe
conipulation of APE0 sta.rts at PPEo a l time iristarit
k p in the da ta pcriod [k p , (I C + 1) p] , in its last pipeliii-
ing stage at time instant k p + n - 1, it requires the
result of APEl coniputed at PPE” in the previous
data period [(k - l) p , k p] which will be available a t
time instant (k - 1) p + n + 1 (computation of APE1
in data period [(k - l) p , kp] started a t time instant
(k - l) p -/- 1). Hence, there is an interval of p - 2 clock
cycles between t,he time inst,ant at, which the result of
APE1 is ready and the time instant at which APE0
requires the result from APEl. This implies that p - 1
number of delays are required in the feedback path.
Summary

From the above analysis, it follows that both for
slow and fast d a h rate cases, 2 p - 1 number of delays
are required in the accumulated path and p - 1 number
of delays are required in the feedback path.
4.3 Features of Pipelined-Clustered FIR

Following a.re the fea.tures of t,lie PPA arrived a t by
Filters

using pipelined clust,ering.

e The Physical Processor Array is systolic and the
fundamental period of the systolic PPA is p clock
cycles which is same as one data period, i.e., S =
p x T e l o c k = T d a t n . The number of delays that are
required in the feedback path of the P P E of the
PPA is equal to p - 1, i.e., 2 = p - 1 (refer Figure
5). In order to maintain the syst,olic nature oftlie
PPA, 2p - 1 rruriibrr of delays that are present
in the accumula.ted path of the P P E have to be
split into y and z number of delays and placed in
each PPE as shown in Figure 5. The splitting is
accomplished as follows:

Slow data rate: y numbcr of delays that
are required at position I ofthe P P E is equal
to p - n and z number of delays that are
required a t position IT1 of the P P E is equal
t,o f’ + n - 1

- Fast data rate: y number ofdehys that are
required a t position I of the P P E is equal to
p - n, mod p and z number of delays that are
required at position 111 of the P P E is equal
to p + (T I mod p) - 1.

e When p = 1 and 71 = 1, t,he P P A is same a.s
the APA c,orresponding to the slow data rate and

e

e

e

e

e

e

4.4

when p = 1 a.nd n, > 1, t>he PPA is t8he sa,me a.s
the APA corresponding to the fast da ta rate.

Throughput: Due to the systolic nature of the
PPA, the terminal processor placcs a valid output
at the end of every da.ta period. Since there is an
output in each data period, the throughput of this
PPA is fda ta which is same as f b , so T (P P A) =
7(APA).

Latency: The latency of the PPA i s the same as
the latency of the corresponding APA. In the slow
data rate case, the computation of APE0 which
is mapped onto PPEo goes through n pipelining
stages and the output gets latched at the end of
the same data cycle. So in this case latency i s one
data cycle which is the same as S of the APA. For
the fast data rate case, it takes more than one
data period for the output of APE0 to be ready
since n > p . In this case the latency is b which
is the same as that of the corresponding APA.
Hence C (P P A) = C(APA).

I/Q Bandwidth: The number of inputs and
outputs and the 1/0 bandwidth of a P P E is the
same as that of the corresponding APE.

Pipelinability: Pipelining of the APE can be
achieved up to a 6 1 2 compressor delay. Fur-
ther pipelining below the 6-2 compressor delay
can be achieved by introducing additional holdup
registers and then retiming them. However this
will require modification in the APE configura-
tion and will also add to more input-output la-
tency.

Power Dissipation: The dynamic power dissi-
pation of t,he PPA is the same as that, of the cor-
responding APA. This is because in the PPA l /p
as many processors are being clocked at p times
the frequency as compared to the APA. The above
analysis ignores the power dissipation in the over-
head circuitry.

The control overhead which mainly consists of
muxes is constant and the size of these muxes
depends upon the clustering factor p . The num-
ber of synchronisation delays in each PPE is also
dependent upon the clustering factor p .

Mapping to Fixed Size Array
The above technique is directly applicable to the

problem of niapping an APA onto a fixed size PPA for
non real-time applica.tions. The objective is to max-
imise the throughput subject to the constraint that
the number of PPE’s No in the PPA is fixed and the
lower bound on the clock of the system is T,,,i,.

If the abstract processor array has N APE’S, then
the mapping factor p is given by p = As
discussed in the features of pipelined clustering, the
throughput of the PPA is f6 = 1/S, where S is the
funda.menta.1 period of t>he systolic PPA. Since the fun-
damental period S of the PPA is p clock cycles, hence

170

throughput = 1 T , , , x p . So one can use the Tmill as
the clock period for the PPA to get, the maxiniunn
throughput of

5 Conclusions
In sum, we have presented an area efficient systolic

architecture for real-time, programmable-coefficient
FIR filters. The technique of pipelined clustering has
been introduced and used to derive the architecture in
which P = Ttt;Z number of APE’S are mapped onto
one PPE. The precise multiplexing and synchronisat-
tion delays that are required have also been derived.
I t has been shown tha.t the reduced size PPA has the
same latency, throughput and power dissipat,ioii (ig-
noring tlie power dissipated in the overhead circuitry)
as the full sized array.

While the technique of pipelined clustering has
been introduced in this paper in the specific context
of synthesising area efficient systolic FIR filters, it ca.n
quite clea.rly be used for any systolic array. We have
for example, successfully used it to develop a high
clock speed reduced size array for IIR filtering.

The approach developed in this paper does not es-
plicitly consider the problem of minimising the num-
ber of synchronisation delays. In this context it is
interesting to note that if one clusters the APE’s in
the reverse direction, i.e., schedules the computations
of the APE’s on t.he P P E in the order which is the
reverse of that given in Section 4, then the resulting
clust,ered a.rray is multirate systolic, [15] a,nd has fewer
synchronisat8ioii delays but, more input-output, latency.
For more complex regular algorithms, the identifica-
tion of the optimal cluster and tlie minimisation of
the nuniber of synchronisation delays will be consid-
erably more difficult than for the case of FIR filters.
Techniques available in [16] and [17] may be useful in
solving these problems.
Acknowledgements

Department of Electronics, Government, of India..

References

Tmtn XP ‘

This work was funded in part by grants from the

[1] R . Jain, et.al., “FIRGEN: A coniputer-aided cle-
sign system for high perfornmnce FIR filter in-
tegrated circuits,” IEEE Transa.ctions on Signal
Processing, Vol. 39, No. 7, pp. 1655-1668, Jul
1991.

[a] L. Glasser and D. Dobberpulil, The Design
and Analysis of VLSI Circuits, Reading, MA :
Addison-Wesley, pp. 403-408, 1985.

[3] C. E. Leiserson, et.aI., “Optimizing synchronous
circuitry by retiining,” Proc. 3rd Caltech Coiif. 011
Very Large Sca.le Integration, pp. 87-116, 1985.

[4] Jichun Bu, “Systenia.tic design of regular VLSI
processor arra.ys,” P1i.D Dissertation, Delft lJni-
versity of Teclrnology, May 1990.

[5] J . Bu, E. F Depreterre and P. Dewilde, “A deslLgn
methodology for fixed-size systolic a.rrays,” Proc.
International Conference on Application Specific

Array Processing, P.rinceton, New Jersey, IEEE
Coniputer Society, pp. 591-602, Sep 1990.

[6] K. K. Parlii, C. Y. Wang, and A. P. Brown, “Syn-
thesis of control circuits in folded pipelinecl DSP
architectures,” IEEE: Journal of Solid-state Cir-
cuits, Vol. 27, No. 1, pp. 29-43, J an 1992.

[7] S. I(. Rao and T. I h i l a t h , “Regular iterative al-
gorithms and their implementation on processor
arrays,” Proc. IEEEE, pp.259-269, Mar 1988.

[8] A. V. Oppenheim and R. W. Schafer, Digital Sig-
nal Processing, Englewood Cliffs, N J : Prentice-
Hall, 1989.

[9] C. Y. Roger Cheii and Michael Z. Moricz, ‘,‘A de-
lay distribution methodology for the optimal sys-
tolic synthesis of linear recurrence algorithms,”
ZEEE lransactions on Gymputer-Aided Llesign,
Vol. 10, No. 6, pp. 685-69’7, Jun 1991.

[lo] G. J . Li and B. W. .Wall, “The design of optimal
systolic arrays,” IEEE Transactions on Comput-
ers, Vol. (3-34, No . 1 , pp. 66-77, J a n 1985.

[11] M. Sheera.n, “The design and verification of reg-
ular synchronous circuits,” IEE Proc., Vol. 133,
Pt .E, NO. 5, pp. 295-304, Sep 1986.

[12] Nibedita Mohanty, “Architectural synthesis of
systolic VLSI digital filters,” M.E Thesis, ECE
Dept., Indian Instit-ute of Science, June 1992.

[13] T . C. Noll, “Carry save arithmetic for high-speed
digital signal processing,” Proc. IEEE JSCAS,

[14] P. J . Song and G. D. Michelli, “Circuit and archi-
tecture trade-offs for high-speed multiplication,”
IEEE Jouriial of Solid-State Circuits, Vol. 26, No.
9, pp. 1184-1198, Sep 1991.

[15] Sailesh. I<. Rao, “Regular iterative algorithms
and their implementfation on processor arrays,”
Ph .D Dissertation, Stanford University, Oct 1985.

[16] A. Darte, “Regular partitioning for synthesizing
fixed-size systolic arrays,’’ Integration, Vol. 12,
No. 3 , pp. 293-304, Dec 3.991.

[17] H. V. Jagdish and T. Kailath, “Obtaining sched-
ules for’ digital systems,’” IEEE Transactions on
Signal Processing, Vol. 39, No. 10, pp. 2296-2316,
Oct 1991.

Vol. 2, pp. 982-986, 1990.

171

