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Abstract 
An area-eficzent systolic architecture for  real- 

time, programmable-coeBcient jinite impulse response 
(FIR) filters is presented. A technique called pipelined 
clustering i s  introduced t o  derive the architecture in 
which a number of jilter t a p  computations are multi- 
plexed in an appropriately pipelined processor. This 
multiplezing is m a d e  possible b y  the fact  that the pro- 
cessor is clocked at  the highest possible frequency wnder 
the given. technology and design constraints. Reduction 
in hardware proportional to the ratio of data arrival 
period and clock period is ach,ieved. The proposed sys- 
tolic architecture is 100% eficient and has the sam,e 
throughput and latency and approximately the same 
power dissipation as  a n  unclustered array. The archi- 
tecture i s  completely specified, including a description, 
o f the  m.uHip1exer.s and synchron.isation delays that are 
requ ired. 

1 Introduction 
Real time filters are cha,racterised by the feature 

tha t  the rate of arrival of data  is fixed and hence the 
filter has t,o deliver a certain computational through- 
put.  When both the data  rate and filter order are 
high, this requires enormous hardware resources. In 
fixed coefficient filters, both tlie area and the latency of 
each filter t ap  is reduced through tlie use of canonical 
signed digit representation whereby each filter coeffi- 
cient is hard-wired in the corresponding tap [l]. Such 
an approa.ch is however not possible in progranimable- 
coefficient finite impulse response [FIR) filters which 
is the domain of our interest. 

For programmable-coefficient filters, the area can 
be reduced by a maximal reuse of hardware. In this 
paper, we introduce a technique called pipelined clus- 
tering which is used to derive a systolic FIR filter ar- 
chitecture that  uses minimal 1ia.rdware to  sustain the 
required da.ta ratme under tlie given technology and 
design constraint>s. The technology and design con- 
straints are encapsulated as a lower hound on the pe- 
riod of the system clock: Tmin. Thus given T,,i,, and 
the da ta  period Tautu, filter tap computations 
are multiplexed on a physical multiply-add unit which 
is appropriately pipelined. Further , the resulting sys- 
tolic a.rchitecture that, is derived using pipelined clus- 

tering is 100% efficient and has the same throughput, 
lateiicy and approximately the same power dissipation 
as an unclustered full-sized array. 

The technique of pipelined clustering that  is used 
to derive the area efficient systolic array for FIR filter- 
ing is based on the principles of retiming, slowdown 
and holdup (RSH) transformations [ a ] ,  [3] and clus- 
tering [4], [ 5 ] ,  [6], [7]. I t  therefore appears tha t  it is 
equally applicable to other regular a1 orithms. I t  is su- 
perior to other existing techniques [4f [6] in that  it is a 
synthesis methodology that  results in an architecture 
that is optimal for the given design and technology 
const,raints. Further , the resulting architecture is pre- 
cisely specified and includes a complete description of 
the multiplexers and synchronisation delays that  are 
required. 

The paper is organised as follows. In Section 2 ,  we 
begin with a brief discussion on systolic carry-save FIR 
filters. In Section 3, the concept of abstract proces- 
sor arrays for slow and fast da ta  rates are introduced. 
Pipelined clustering is presented in Section 4. The  
features of this new methodology are also discussed 
in the same section. In Section 5, we summarise our 
work. 

2 Systolic FIR Filters 
The input,  output relationship for an  FIR filter can 

be represented by the following difference equation [8] : 

N - 1  

yn = bixn-i 
i = O  

where x,, yn are the input and output  of the filter a t  
time n respectively, bi’s are the coefficients of the filter 
and N is the order of the filter [l]. 

Our emphasis in this paper will be on systolic archi- 
tectures for the realisation of coefficient programmable 
carry-save FIR filters. Various methodologies have 
been reported in the literature to  arrive at different 
systolic realisations of FIR filters [a], [9], [lo], [ll]. A 
simple observation is that  RSH transformations when 
applied t,o the direct-form a.rchitecture of FIR filter 
can lead to all the existing systolic realisations [la]. 

The carry-save methodology is widely used in FIR 
filters [l]. The basic idea is to  postpone the time con- 

6th International Conference on VLSI Design - January 1993 

166 
0-8186-3180-5/92 $3.00 0 1992 IEEE 



I n  >Wjyb-J& 

J n  -. . . 0 

C ? l  -. . . 0 

d d d d d d 

Figure 1: Systolic carry-save FIR filter architecture for order N 

suming carry propaga.tion and hence reducing the crit- 
ical path delay through the computat,ional block [13]. 
The clock length of the carry-save FIR filt,er arcliitw- 
ture shown in Figure 1 is given by TFIR = Tcsn~ + 
2 x T c s ~ ,  where T~.si\.r and T C ~ A  are the combilia- 
tional delays through the carry-save multiplier and 
adder respectively. Out of all the existing systolic 
architectures, the ca,rry-save FIR filter architecture 
shown in Figure 1 [2] ha.s the best overall perforinarice 
metric and is part,icularly well suited for clustering 

The  processing element (PE) of tlie FIR filter archi- 
tecture is shown in Figure 2.  The iinpleinentation of 
this P E  uses two carry-save multipliers followed by re- 
quired number of 6-2 compressor slices' to  cornpress 
six inputs t>o two outputs which are in c,arry and siive 
form [14]. Truncation can be incorporakd in the de- 
sign of the 6-2 compressor itself to restrict the output 
word-length [13], t,hereby making all tlie PE's cons8ti- 
tuting the full size systolic F1R filter array identical. 
The function performed by the PE is s,,t + tout = 

D21. 

s in  + Cin + xin X b s i  + ZOllt X b % i + l .  

Figure 2: Processor Element PEi of the carry-save 
FIR filter architectmure. 

3 Abstract Processor Array 
In this section, we introduce the notion of Abstra,ct 

Processor Array (APA) which is characterised by ,:,he 
fact that, the clock of the array is matched to ,the 
incoming data  rat,e, i.e., T c l o c k  = Tdatn, where Tdnta 
and T c l o c k  are the input data  arid clock period respec- 
tively. As per the definition of systolic arrays [4], [15] 
the fundamental period 5 of the systolic full sized ar- 
ray is equal to  the input data  period, i.e., 5 = T d c L t n .  
The processing elemelit of the APA is denoted as ilb- 
stract Processing Eleirieiit, (APE). Let C denote the 

' 6 4 2  compressor is the tree implementation of an addcr with 
outputs in carry and save form. 

combinational delay through the APE and ,C(APA) 
and 'T(APA) denote the latency and throughput of 
the APA respectively. 

The APA is different depending on the relative val- 
ues of Tdata and C. The salient features of the APA 
for the slow ( T d a t a  2 C) and fast (Tdata < C) data  
rate cases are as follows: 
3.1 Slow Data Rate 

If T d a t a  2 C ,  then the resulting AI'A is sarm as the 
full size processor array of Figure 1. The  feaixres of 
this APA a.re summarised as -Follows: 

0 For an FIR filter of order N, the  corresponding 
APA requires 

= 6. 

i.e., I ( A P A )  = fs, where fs = 1/S. 

APE'S as shown in Figure 3.  

0 Latency of this AF'A is equal to 6,  i.e., L(APA) 

0 The t#hrougliput rate of the APA is equal to fs, 

3.2 Fast Data Rate 
If T 'da ta  < C ,  then we introduce ( 1  - 1) holdup reg- 

isters through the input of the full size processor array 
of Figure 1, where 1 = [-A?. These holdup registers 
are retimed to pipeline the processing elements which 
results in the corresponding APA for the fast da ta  rate 
as shown in Figure 4. The ( I  - 1) delays shown at the 
input, of each multiplier in the APE (refer Fjgure 4) 
indica.tes that  the APE is pipelined into 1 equal1 stages. 
The features of this APA are summarised as follows: 

0 For an FIR, filter of order N ,  the corresponding 

Tdaia 

APA require 

periods, i.e. C(APA) = 1' x 6. 

= f d ,  where fs = 1,'s. 

APE's as shown in Figure 4. 

0 The latency of the APA is equal to 1 fundamental 

The throughput rate is equal to f ~ ,  i.e. T(APA) 

Since each APE does a. valid computakion in 
each clock period, the Hardware Utilisation Efficiency 
(HUE) (see [4], [6], [15] for a formal definition) is 
100%. This would appear to  imply that  a further re- 
duction in  the array size is not possible which main- 
tains the same throughput and latency. The above 
stateiiient. is true for the APA since Tclock is set as 
T d a l a  as is typical in many current real-time systolic 
systems. However, as will be made clear in the follow- 
ing sect,ions, by increasing the clock frequenc,y to the 
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Figure 3: The Abstract Processor Army for the FIR filter for order N for slow da ta  rate. 
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Figure 4: The  Abstract Processor Array for the FIR filter for order N for fast da t a  rate. 

maximuni value possible under the given design and 
technology constraints, enormous reduction in hard- 
ware is possible. 

4 Pipelined Clustering 
The technique of clustering [4] is essential to re- 

duce the number of processor elements in the final 
physical processor array implementation. We propose 
a new methodology of Pipelined Clustering which is 
used to arrive a t  an efficient and reduced size proces- 
sor array implementation from the Abstract Processor 
Array (APA). The  method as applied to  FIR filtering 
can be viewed as an extension of the passive and active 
clustering of [4]. The  resulting reduced size processor 
array obtained by clustering is referred to  as Physical 
Processor Array (PPA) and the processor element of 
this PPA is denoted by Physical Processor Element 
(PPE) .  The  following are some of the important fea- 
tures of the PPA: 

0 The PPA is 100% efficient and the nuinher of 
PPE’s is minimum. 

0 the PPA is systolic 

C(PPA) = C(APA). 

0 I ( P P A )  = ‘T(APA). 

Pipelined Clustering is a 4-step process which coil- 
sists of slowdown, holdup and retiming followed by 
mapping of PE’s of the Abstract Processor Array onto 
Physical Processor Element (PPE)  and scheduling of 
coniputat,ions on the clustered array. 

With the given Tdnta and a lower bound on the 
clock period T,,,,, if T d n t o  < T,,in, then a physical 

realisation of the filter is not possible. When T d a t a  2 
T,71in, with t,he application of pipelined clustering the 
number of PPE’s in the PPA can be reduced by a 
fact,or of ‘p’ as compared to the number of APE’s in 
the APA, where y = 2 1. The  clock that  
is used in the PPA is given by Tclock  = , thus 
T c l o c k  2 Tmin. The number of stages by which the 
P P E  has to be pipelined is n, where n = 2 1. 

The resulting PPA for the case p 2 n is the cluster- 
ing of APA corresponding to slow da ta  rate. Similarly 
the resulting PPA for the case p < n is the clustering 
of APA corresponding to  the fast da ta  rate. Note that 
p < n implies n > 1. Independent of whether the data  
ratme is slow or fast, the following four steps involved in 
the inethod of pipelined clustering are applied to  the 
APA shown in Figure 3 .  

Stepl: 

Step2: 

Step3: 

Step4: 

Slowdown the entire APA by a factor of p ,  
where p = Le]. 
Introduce ( n  - 1) holdup registers through 
the input of the APA, where n = 
and Tclock = *. Retime these registers 
to pipeline the APE’S into n equal stages. 
‘p’ number of locally-interconnected APE’s 
are mapped onto one P P E  with appropri- 
ate control overhead circuitry and synchro- 
nisation delays. An APEi of the APA gets 
mapped onto PPEj according to the rela- 
tion j = 
The computat#ions of these mapped APE’s 
are started serially on a PPA according to  
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Figure 5: Physical Processor Array for a general case of Pipelined Clustering where k = [m1 - 11. 
P 

the same spatial order in which APE'S are 
present in the APA. For example, on PPEo, 
the computation of APE0 is started in the 
first clock cycle, that  of APE1 in the second 
clock cycle, and so on. 

L = p if n mod1 p = 0, otherwise L = n mod 
p ) in which it is connected to  position I .  , 

0 Position of mux6 for various possible values of p 
and n are described as follows: 

The schetnatic circuit diagram of a PPA for a gen- 
eral case of pipelined clustering is shown in Figure 5. 
Note that  the clustering is locally sequential and glob- 
ally parallel [16]. The switching function of the variclus 
muxes that  are present, in the PPE's are discussed in 
the section on control overhead circuitry. The expres- 
sions for the number of delays required in the accuniu- 
lated and feedback path will be derived using timing 
analysis in the section on synchronisation delays. 
4.1 Control Overhead Circuitry 

Since the clock of the PPA implementation is 
TclOck = *, every data  cycle is divided into p clock 
cycles. For any value of p and 1% the control overhrad 
circuitry consists of six muxes. 

0 Muxl,  mux2 and inux3, mux4 (refer Figure 5) 
are used as input and coefficient selectors to t,he 
inultipliers in the PPE. Muxl ,  inux2, 111~x3 and 
inux4 are of size y to 1 and select a different input 
combination for each clock cycle as per step 4 of 
pipelined clustering. Mux5 and muxG are output 
and input selectors for the P P E  respectively and 
are of size 2 to  1 for all values of p and 11. 

0 Position of niux5 for various possible values of p 
and 7% are described as follows: 

- Slow data rate ( y 2 n ):  Mux5 is coii- 
nected to  position I I  for all the clock cycles 
of a data  period except the nth clock cycle 
in which it is connected to position I .  

- Fast data rate case ( p < 11 ): Mux5 is in 
position 11 for all the clock cycles of a data  
period except in the k t h  clock cycle ( where 

- Slow data rate with no pipeliniing of 
PPE ( p 2 n. and n = 1 ): Mux6 is con- 
nected to  position I'V for all the clock cycles 
of a data  perilod except the pth clock cycle 
in which it is connected to  position I I I .  

- Slow data rake with pipelining of PPE 
( p 2 n and n > 1 ): Mux6 is coinnected 
to position IV for all the clock cycles of a 
data  period except the (72 - 1)th clock cycle 
in which it is connected to  position I I I .  

- Fast data rate case ( p < n ): Mux6 
is connected to  position IV for all the clock 
cycles of a data  period except kth clock cycle 

where le = p if (n-1) mod p = 0, otherwise 
= (n - 1) mod p ) in which it is connected 

to  the position I I I .  

4.2 Synchronisation Delays 
On a time axis normalised to  T c , o c k ,  let O,p ,  2p ,  ... 

denote the data. arrival instants. ThLerefore, 
[o,p], bl ap], ..., [ k p ,  ( k  $- 1)p], ... are the data  periods. 
In any data  period, at  any PPEi,  the computations, 

schedule8 serially in the p clock cycles. With 
of APEi , APEip+l, APE;,+2, ..., APEip+f -~  ay - 
derive the expression for synchronisation delays that, 
are required in the accumulated and feedback path by 
using t,he following timing analysis. 
Accumulated Path 

Let us consider the (computations of processing el- 
ements PPEo and PPEl of the PPA in any general 
data period [ k p ,  ( k  + l)p], where k E 2+. When the 
computation of APEp--l starts at P P E o  a t  time in- 
stant (k + l )p - 1 in the datii period [ k p ,  ( k  $- l)p], in 

-$-, T d a  a where p = I"-"] and n = [L we willi T,,,,  T c i o c ~ l  

169 



its last pipelining stage at time instant ( k + l ) p + n - 2 ,  
it  requires the result of APE, computed at PPEl in 
the previous data  period ( k  - l)p,kp] which will be 
available at time instant i k - 1)p + w. Hence, there 
is an interval of 2 p  - 2 clock cycles between the time 
instant at which the computation of 4 P E ,  is ready 
and the time instant a.t which APEp-l requires the 
result from APE,. This implies that  2 p  - 1 number 
of delays are required in the a.ccumulated path.  
Feedback Path 

Let us consider the computations of APE0 and 
APE1 which are mapped on tso PPEo in any general 
data  period [ k p ,  ( k  + l)p], where k E Zt. When tJhe 
conipulation of APE0 sta.rts at PPEo a l  time iristarit 
k p  in the da ta  pcriod [ k p ,  ( I C  + 1 ) p ] ,  in its last pipeliii- 
ing stage at time instant k p  + n - 1, it requires the 
result of APEl coniputed at PPE” in the previous 
data  period [ (k  - l ) p , k p ]  which will be available a t  
time instant ( k  - 1 ) p  + n + 1 (computation of APE1 
in data  period [ ( k  - l ) p ,  kp]  started a t  time instant 
( k  - l ) p  -/- 1). Hence, there is an interval of p - 2 clock 
cycles between t,he time inst,ant at, which the result of 
APE1 is ready and the time instant at which APE0 
requires the result from APEl.  This implies that  p -  1 
number of delays are required in the feedback path. 
Summary 

From the above analysis, it  follows that both for 
slow and fast d a h  rate cases, 2 p  - 1 number of delays 
are required in the accumulated path and p -  1 number 
of delays are required in the feedback path. 
4.3 Features of Pipelined-Clustered FIR 

Following a.re the fea.tures of t,lie PPA arrived a t  by 
Filters 

using pipelined clust,ering. 

e The Physical Processor Array is systolic and the 
fundamental period of the systolic PPA is p clock 
cycles which is same as one data  period, i.e., S = 
p x  T e l o c k  = T d a t n .  The number of delays that are 
required in the feedback path of the P P E  of the 
PPA is equal to p -  1, i.e., 2 = p -  1 (refer Figure 
5). In order to maintain the syst,olic nature oftlie 
PPA, 2p - 1 rruriibrr of delays that are present 
in the accumula.ted path of the P P E  have to be 
split into y and z number of delays and placed in 
each PPE as shown in Figure 5. The splitting is 
accomplished as follows: 

Slow data rate: y numbcr of delays that 
are required at position I ofthe P P E  is equal 
to p - n and z number of delays that are 
required a t  position IT1  of the P P E  is equal 
t,o f’ + n - 1 

- Fast data rate: y number ofdehys  that are 
required a t  position I of the P P E  is equal to 
p -  n, mod p and z number of delays that are 
required at position 111 of the P P E  is equal 
to  p + ( T I  mod p )  - 1. 

e When p = 1 and 71 = 1, t,he P P A  is same a.s 
the APA c,orresponding to the slow data  rate and 

e 

e 

e 

e 

e 

e 

4.4 

when p = 1 a.nd n, > 1, t>he PPA is t8he sa,me a.s 
the APA corresponding to the fast da ta  rate. 

Throughput: Due to  the systolic nature of the 
PPA, the terminal processor placcs a valid output 
at the end of every da.ta period. Since there is an 
output in each data  period, the throughput of this 
PPA is fda ta  which is same as f b ,  so T ( P P A )  = 
7( APA). 

Latency: The latency of the PPA i s  the same as 
the latency of the corresponding APA. In the slow 
data  rate case, the computation of APE0 which 
is mapped onto PPEo goes through n pipelining 
stages and the output gets latched at the end of 
the same data  cycle. So in this case latency i s  one 
data  cycle which is the same as S of the APA. For 
the fast data  rate case, it  takes more than one 
data  period for the output of APE0 to be ready 
since n > p .  In this case the latency is b which 
is the same as that  of the corresponding APA. 
Hence C ( P P A )  = C(APA).  

I/Q Bandwidth: The number of inputs and 
outputs and the 1/0 bandwidth of a P P E  is the 
same as that  of the corresponding APE.  

Pipelinability: Pipelining of the APE can be 
achieved up to a 6 1 2  compressor delay. Fur- 
ther pipelining below the 6-2 compressor delay 
can be achieved by introducing additional holdup 
registers and then retiming them. However this 
will require modification in the APE configura- 
tion and will also add to  more input-output la- 
tency. 

Power Dissipation: The dynamic power dissi- 
pation of t,he PPA is the same as that, of the cor- 
responding APA. This is because in the PPA l /p  
as many processors are being clocked at p times 
the frequency as compared to  the APA. The above 
analysis ignores the power dissipation in the over- 
head circuitry. 

The control overhead which mainly consists of 
muxes is constant and the size of these muxes 
depends upon the clustering factor p .  The num- 
ber of synchronisation delays in each PPE is also 
dependent upon the clustering factor p .  

Mapping to Fixed Size Array 
The above technique is directly applicable to  the 

problem of niapping an APA onto a fixed size PPA for 
non real-time applica.tions. The objective is to max- 
imise the throughput subject to the constraint that  
the number of PPE’s No in the PPA is fixed and the 
lower bound on the clock of the system is T,,,i,. 

If the abstract processor array has N APE’S, then 
the mapping factor p is given by p = As 
discussed in the features of pipelined clustering, the 
throughput of the PPA is f6 = 1/S, where S is the 
funda.menta.1 period of t>he systolic PPA. Since the fun- 
damental period S of the  PPA is p clock cycles, hence 
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throughput = 1 T , , , x p .  So one can use the Tmill as 
the clock period for the PPA to get, the maxiniunn 
throughput of 

5 Conclusions 
In sum, we have presented an area efficient systolic 

architecture for real-time, programmable-coefficient 
FIR filters. The  technique of pipelined clustering has 
been introduced and used to derive the architecture in 
which P = Ttt;Z number of APE’S are mapped onto 
one PPE.  The  precise multiplexing and synchronisat- 
tion delays that  are required have also been derived. 
I t  has been shown tha.t the reduced size PPA has the 
same latency, throughput and power dissipat,ioii (ig- 
noring tlie power dissipated in the overhead circuitry) 
as the full sized array. 

While the technique of pipelined clustering has 
been introduced in this paper in the specific context 
of synthesising area efficient systolic FIR filters, it  ca.n 
quite clea.rly be  used for any systolic array. We have 
for example, successfully used it to develop a high 
clock speed reduced size array for IIR filtering. 

The approach developed in this paper does not es- 
plicitly consider the problem of minimising the num- 
ber of synchronisation delays. In this context it is 
interesting to note that  if one clusters the APE’s in 
the reverse direction, i.e., schedules the computations 
of the APE’s on t.he P P E  in the order which is the 
reverse of that  given in Section 4,  then the resulting 
clust,ered a.rray is multirate systolic, [15] a,nd has fewer 
synchronisat8ioii delays but, more input-output, latency. 
For more complex regular algorithms, the identifica- 
tion of the optimal cluster and tlie minimisation of 
the nuniber of synchronisation delays will be consid- 
erably more difficult than for the case of FIR filters. 
Techniques available in [16] and [17] may be useful in 
solving these problems. 
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