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1 Introduction 
B-Spline curves and patches are increasingly being 

used in several areas of computer yaphics and ge- 
ometric modeling. The rationalize counterpart of 
B-Spline called the Non-Uniform Rational B-Spline 
(NURBS) is invariably used in all the present day ge- 
ometric modeling packages. For an interactive model- 
ing session, thousands of NURBS patches have to be 
computed and drawn per second. Such performance is 
beyond the reach of even the most advanced worksta- 
tions available today. Advances in hardware support 
for parametric curve and patch generation have thus 
acquired increased importance. 

Substantial progress has been made in the theoreti- 
cal aspects of B-Splines 13 and their applications [13]. 

solutions for B-Spline curves and surfaces. 
One of the early papers in this direction is the 

work of T.Li et a/.[$ where an architecture to gener- 

[3] el al., proposed a triangular architecture to gener- 
ate B-Spline curves using the deBoor-Cox algorithm. 
Mathias 191, has developed a similar architecture for 
Bezier curves using the de Casteljau algorithm. He has 
also developed architectures for B-Spline inversion and 
B-Spline generation [lo]. Recently, Megson [ll] has 
come up with a design to calculate the basis functions 
required to generate B-Splines. He has also developed 
a composite design to calculate B-Spline patches. 

In most of the above architectures the size of the 
hardware is tied to the size of the problem that is 
to be solved. Further, they require a large number 
of 1/0 pins. These limitations seriously restrict their 
practical implementation. Megson [ll] addresses some 
implementation issues. However, the architecture pro- 
posed there suffers heavily from excess hardware re- 
quirements and intimate coupling with the size of the 
problem. 

Apart from the above, two VLSI architectures to 
com Ute Uniform B-Spline curves have been presented 
in [67. A unified architecture to compute uniform ra- 
tional and non-rational B-Spline curve/patch is also 
presented in [7]. 

None of the above propose a hardware solution for 
the generation of NURBS curves and patches. In this 
paper we give a complete hardware solution for the 

However, very little wor I, has been done on hardware 

ate Bezier curves an a patches was proposed. De Rose 
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generation of NURBS patches. we show that our ar- 
chitecture performs better. 

2 Theory of B-Splines 
We define B-Splines curve by the equation 

n 

i=O 

The point on the curve a t  the parametric value U 
is denoted by P(u) .  There are (n  + 1) control points 
denoted by Pi. 

The blending function or the basis function is de- 
noted by N ~ , L ( u ) .  These basis functions will decide 
the extent to which a particular control point controls 
the curve. The parameter k is called the order (one 
more than the degree) of the curve. 

Ni ,k  is defined as follows. 

(2) 
1 i f  ti 5 U < li+l 

N i l 1  = { 0 otherwise 

The constants tis, called knot values, are specific 
instances of the parametric value U and are strictly in 
non-decreasing order. There are totally (n  + k + 1) 
knot values. All the knot values put together is called 
a knot vector. 

At any particular value of the parameter U only k 
basis functions will have non-zero values. Hence only 
IC control points will have control over the shape of 
the curve. These non-zero basis functions are called 
useful basis functions and the corresponding control 
points are called active control points. 

The useful basis functions are known apriori. If 
ti 5 U < t i t1 then the k useful kth order basis func- 
tions are i v i - k + l ,  i v i - k + 2 ,  + .  - ,  Ni,k. Using the first 
subscript of these useful basis functions, the active 
control points can also be found. 

While incrementin the parameter U ,  if it crosses 
t;+l,  then the basis knction Ni..k+l,k becomes zero 
and Ni+l,k joins the set of useful basis functions, 
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Similarly the active control point set also changes. 
These facts are used later in this paper. 

A Rational B-Spline curve is defined by the formula, 

(4) 

The term wi denotes the weight of the control point 
Pi. When wi tends to infinity, the curve is pulled 
towards Pi and when wi is zero, the control point Pi 
does not have any control over the curve. 

Rational B-Spline surface is defined by the formula, 

There is a grid of ( n  + l)(m + 1) control points for 
the surface. 
2.1 Basis Function Computation 

In the computation of a B-Spline curve or a sur- 
face, the basis function computation plays an impor- 
tant role. As seen from the Eqn.3, the basis function 
computation is recursive and apparently requires 2k-1 
function calls to itself. 

As there are only k useful basis functions and are 
known apriori, only those need be calculated. Hence 
the total number of calls to the basis function routine 
need only be k(2k  - 1). 

In the calculation of basis functions using Eqn.3 
many lower order functions return zero. If there are 
multiple knots (such as, t i  = ti+l = ti+2 = t i + S ) ,  
then the denominator of the Eqn.3 may become zero 
for certain calls to the basis function routine (such as 
Ni,lt Ni+l,l, Ni+2,1, Ni,2, Ni+1,2, Ni,3). 

The above two difficulties are overcome by using 
the following method [2]. 

At a particular value of the parameter U ,  only one 
basis function of order one is non-zero, because one 
can find only one i such that ti U < t i t1 as the t is  
are in non-decreasing order. From the Figure 1, we can 
see that from the non-zero first order basis function, 
k kth order basis functions can be calculated. The 
computation along the edges is given in the inset and 
whenever the two edges meet, an addition is performed 
to get the basis function value at the meeting node. 

In this method, every computation is indispensable 
and the denominator does not become zero. In what 
follows, this method is used to develop a new systolic 
architecture for the computation of basis functions. 

3 Systolic computation of basis func- 
tion 

Figure 2 shows the systolic linear array for the com- 
putation of the basis function. Each cell in the BFEA 
computes one level in the DAG shown in the Figure 
1, starting from the second level. Thus there are k - 1 
processing cells in the BFEA and from the last cell 
the k basis functions of order k are output. The value 
of Ni,l(u) is always one and is pumped to the first 

'i,1 

Ni.4 

\ 
I N. 

Nj,m+l 

Figure 1: Basis Function Computation Graph 

Figure 2: Basis Function Evaluation Array (BFEA) 
and the Controller 

Figure 3: Pattern of Input to the first cell of BFEA 
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Figure 4: One Processing Cell of BFEA 

cell of BFEA with its required knot values by the con- 
troller. From the Figure 1 and the method of comput- 
ing the basis functions explained in the previous sec- 
tion, it would be clear that the first cell requires the 
knot pair t i ,  &+I, The second cell requires one more 
pair t i - 1 , t j S 2  and so on. The k - l t h  cell requires, 
apart from the k - 2 knot pairs used by its preceding 
cells, the knot pair t i - k + 2 ,  t d + k - l .  Every processing 
cell communicates the knot pairs required by its suc- 
ceeding cells, It can be seen that all the processing 
cells are equally loaded with k steps of computation 
and communication. 

As there is no communication involved in the last 
cell, one useful basis function value is output every 
clock from that cell. As there is only one output line 
for the blending function, one useful result for every 
clock is the best we can achieve out of this linear ar- 
chitecture. 

One useful result at every clock and equal 
load to all processors show that the scheduling 
algorithm used is the optimal scheduling algo- 
rithm for the given linear array architecture 

Megson’s architecture for the generation of basis 
functions generates all n + 1 basis functions while this 
architecture generates only k basis functions. As k << 
n,  the time required to generate the curve/surface is 
drastically reduced. Further, this fact makes our ar- 
chitecture independent of the number of control points 

By identifying the symmetry in the calculation of 
consecutive basis functions, the hardware required for 
each cell (refer Figure 4) is greatly reduced. 

The pattern of input to the first cell is as shown in 
the Figure 3. There are three rows of input: one each 
for three input lines of the BFEA. The first row is the 
input to the line marked as Nj,j(u) in the Figure 4 
and the second and third rows specify the inputs to 
the two lines marked U - t i  and t i + .  - U ,  respectively. 
The entries in the second and thirdrows just give the 
indices of the knots involved in the calculation. The 
third row starts with an offset such that the index i+ l  
coincides with the index i in the second row. Note 
that the first order basis function is 1 only at that 
particular clock when the indices i and i + 1 coincide 

(n)  * 

and is zero at all other times. 
3.1 Time required for basis function gen- 

eration 
Each cell has a delay of five time units. The basis 

function of order 1 is pumped to the first cell at the 
kth clock. The time interval between the first input of 
a knot value and the generation of the corresponding 
basis function value of order k is 

T1 = k + 5 ( k  - 1) (6) 
The first term gives the time taken for the pumping 

of basis function of order 1. The second term gives the 
delay involved in k - 1 cells before the first output. 

Time required to get all the k outputs is 

(7) T2 = 2k + 5 ( k  - 1) - 1 

The inputs for the calculation of the second set of 
k basis functions are timed such that it follows the 
output of the first set of k basis functions values. The 
input and output timings, if the orders of the consecu- 
tive set of basis functions to be calculated are different, 
are discussed in [SI. The design of the controller shown 
in the Figure 2 is also explained in detail in [5]. 

4 Architecture for the Computation of 
NURBS Curve 

Using the above architecture to compute the ba- 
sis functions, the procedure explained below computes 
the NURBS Curve. The BFEA generates and pumps 
the useful basis functions to an Accumulating Cell 
(AC). The homogeneous coordinates of the active con- 
trol points (i.e. ziwi,  yiwa, ziwi, wi) are pumped to the 
AC by the controller. The numerator and the denom- 
inator of the Equation 4 are calculated simultaneously 
by multiplying the basis function values with Piwi and 
wi separately and adding these results independently 
in the AC. Finally the division is performed and the 
point on the curve is calculated. The product Pjwj is 
performed beforehand and is called a weighted control 
point. 

To calculate the next point on the curve, the para- 
metric value U is incremented, and the input to the 
BFEA is changed appropriately. Whenever U crosses 
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t i+l ,  the index i is incremented and the new set of 
active weighted control points and their weights are 
pumped to the AC for the calculation of the point on 
the curve. This process continues till all the points on 
the curve have been computed. 
4.1 Time required to calculate NURBS 

curve 
Time required to calculate all basis functions is T2. 

Delay involved in the AC for calculating the x coordi- 
nate is five time units [5]. Hence the time required to 
generate the x coordinate is 

T3 = (7k - 6) + 5 = 7k - 1 (8) 
The x coordinate of the second point on the curve 

is output k clocks after the x coordinate of the first 
point. If there are C points to be calculated on the 
curve, the time at  which the x coordinate of the last 
point is output is 

T4 = T3 + k(C - 1) = k(C + 6) - 1 (9) 
In subsequent clock pulses, the y and z coordinates 

Hence the total time required to calculate the whole 
of the last coordinate are also output. 

curve is 

T5 = T4 + 2 = k(C + 6) + 1 (10) 
Note that the above equation is independent of the 

number of control points n. 

5 NURBS Surface Computation 
Figure 5 pictorially represents the algorithm for the 

generation of a NURBS surface. In this figure the 
value of U lies between t 5  and t 6  and the value of v 
also lies between $5 and S6.  (The knot vector in the U 
direction is represented by t and that in the v direction 
is represented by s). The value of k is 4 and that of 1 
is 5 .  

Since for all the control points, except for those in 
the active control point grid, either or both the basis 
function values are zero, they need not be considered 
for the calculation of a point on the surface. Hence all 
the operations are done on the control points that are 
within the active control point grid. 

LIn developing a VLSI architecture to calculate the 
NURBS surface, the above a1 orithm is slightly mod- 
ified such that the number o ! multiplications are re- 
duced. 

The Equation 5 can be rewritten as follows. 

According to the algorithm presented above, every 
column of the control grid is multiplied with the use- 
ful basis functions shown below the grid. Then every 
row of this product is added to get a column of virtual 
control points. These virtual control points and their 
weights are represented by the terms inside the paren- 
thesis in the numerator and the denominator of the 

Control Points Virtual Control 
Pumpe.dtoVCC$ Points Pumped 
to PAC No. to AC by VCCA 

9.1 * 
NCiU 

%*I 

Basis ry, 
Functions 
Pumped %I 
to AC 

NZI 

hr 
t 

Point on 
the Surface 
Calculated 
by AC 

% 4b) F&) &0)$,9 P(;L') + k control pkd 

Basis Functions pumped to VCCA 

Figure 5 :  Algorithm used for Surface generation 

Equation 11 respectively. This column of virtual con- 
trol points is multiplied with the corresponding basis 
function values Nj,,(v) shown in Figure 5. Then this 
column of elements is added to get a point on the sur- 
face. 

5.1 Architecture for NURBS Surface 
Computation 

We derive the architecture for the NURBS sur- 
face computation as a straightforward extension to 
the curve architecture. The architecture to calculate 
a NURBS surface is shown in Figure 6. The Virtual 
Control point Calculating Array (VCCA), shown in 
the figure, calculates the virtual homogeneous control 
points. This VCCA is an array of Partial Accumulat- 
ing Cells (PACs). Each PAC is an inner product cell 
with a register to store the basis function value. 

Initially the useful basis function values in the direc- 
tion of U are calculated by BFEA and are pumped to 
the Virtual Control Point Calculatin Array (VCCA). 
These k basis function values, whicf corresponds to 
one column each of the active control point grid, are 
stored one in each of the k PACs. The controller 
pumps to each PAC, one column of active control 
points from the active control point grid. Each con- 
trol point is multiplied with the basis function value 
stored in the corresponding PAC register, added with 
the partial sum sent by the preceding PAC and the re- 
sult is sent to the next PAC. The kth PAC outputs the 
homogeneous coordinates of the virtual control points 
to the AC. With these control points and the lth order 
basis functions from the BFEA, the AC calculates a 
point on the surface. 

To Calculate the next point on the surface, the value 
of the parameter v is incremented and the lth order 
basis functions are calculated by BFEA. As the value 
of U has not been changed, the same basis function 
values that are already in the internal registers of the 
VCCA are used. Depending on the present value of v 
the new active control point grid is found and pumped 
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Figure 6: Architecture for the Computation of 
NURBS Surface 

to the VCCA as before. 
This continues till all the discrete values of v are 

considered. Then the value of v is reset to its initial 
value and U is incremented. The above explained pro- 
cess continues till all the values of U are considered. 
Note that only for every new value of U, k basis func- 
tions are calculated and these new values are stored 
in the PACs. 
5.2 Time required to calculate NURBS 

patch 
In the following calculation of time required to com- 

pute a NURBS patch, k is assumed to be equal to 
1. ('The architecture can handle patches with un- 
equa orders and the corresponding timing calculations 
are given in 51.) The time required to generate the 

input to the BFEA. In the input of the BFEA, a de- 
lay of one time unit is introduced to synchronize the 
arrival of the virtual control points and the Ith order 
basis functions to the AC. Let us assume that Cl num- 
ber of discrete values of U and C2 number of discrete 
values of v are to be considered. 

Time required to pump the input to the BFEA for 
the last point on the surface would be 

NURBS patc E, can be calculated with respect to the 

T6 = cl(k f 1 + C2I) - I (12) 
Computation of one row of surface points requires, 

k inputs for the kth order basis function generation, 
followed by a delay of one time unit, then followed 
by Cz times of 1 inputs for the generation of basis 
functions of order 1. There are C1 rows of surface 
points to be calculated. Hence the above quantity is 
multiplied by C1. This term would give the total time 
taken for all the input including the last point on the 

Figure 7: Curve Computation - Comparison 

Numbaofcontrolpoints ~ 
Number of antrd paints 

Figure 8: Surface Computation - Comparison 

surface. So to et the time at which the input for the 

from the above quantity. 
From the time T6 the time taken to calculate the 

last point is iven by T3 + 2. Hence the total time 
required to c3culate the whole surface is 

computation o f the last point starts, I is subtracted 

T7 = Cl(k + 1 + C2I) + 61 + 1 (13) 
It can be seen that above equation is independent of 
the number of control points n and m. 

6 Performance Evaluation 
The architecture presented above decouples the size 

of the problem to the extent possible by making it in- 
dependent of n and m. From the Equation 13 it is 
clear that the coefficient of C1 is large, making the 
timing more dependent on C1 than on Cz. Hence the 
proposed architecture performs well when the num- 
ber of discrete values of U is less than the number of 
discrete values of v. Further, this architecture per- 
forms better when a whole curve or a surface is calcu- 
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lated than when a few discrete points on the surface 
are needed, because the algorithm makes complete use 
of inter-dependency and the information sharing be- 
tween consecutive points on the curve/surface. 

Let us now compare the performance of this ar- 
chitecture with that of the architecture proposed by 
Megson 111. Assuming that the CI and C2 are pro- 

architecture proposed in this paper and by the archi- 
tecture proposed in [ll] to compute curve and surface 
are shown in Figures 7 and 8 respectively. 

Analyzing the hardware complexity of the archi- 
tecture proposed by Megson, it requires at most 
5maz(k, 1 +3(maz m, n)+l)  inner product cell equiv- 
alents an a \  3(m + 1 (n  + 6 + 2) memory registers for 
surfaces with (m+l)(n+l) control points and blending 
functions of degrees k and 1 and where S = 51% - 11. 
The architecture presented in this paper requires at 
most 7maz(k,  1 )  + 4 inner product cell equivalents, 
maz(k, I) x ( 5  + 4(maz(%, I )  ) buffer registers and 
4k l+  6 + 1 memory registers. ? t can be seen that both 
the processing element requirements and the memory 
requirements are much lesser than that of the Meg- 
son’s architecture. Note that the hardware require- 
ments specified here for this architecture is for the 
computation of NURBS whereas for Megson’s archi- 
tecture it is for the computation of just non-rational 
B-Splines. 

7 Conclusion 
To our knowledge the architecture presented here 

is the first unified architecture that can com- 
pute rational and non-rational uniform/non-uniform 
B-Spline curves and surfaces (When non-rational 
curves/surfaces are computed the weights of the con- 
trol points are set to unity.). The above architecture 
is also shown to be better than the architectures, for 
some of the subproblems, proposed in the literature. 

This architecture possesses characteristics that 
make it suitable for integration into the standard 
graphics pipeline of a graphics workstation: First, the 
architecture has a general linear structure with a small 
number of input lines and a single output line. Sec- 
ond, NURBS curves/surfaces are projection invariant. 
Hence, in the standard graphics pipeline, this architec- 
ture can be integrated after the transformation stage 
and before the clipping stage. The weights of the con- 
trol point are suitably transformed when perspective 
projection of the curve/surface is performed. How- 
ever, further work is needed to specify this integration 
more precisely. 
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