
A VLSP Architecture for the computation of NURBS Patches
(Extended Abstract)

Meenakshi Sundaram Gopi Swami Manohar
Supercomputer Education and Research Centre

Indian Institute of Science,
Bangalore 560012 INDIA

1 Introduction
B-Spline curves and patches are increasingly being

used in several areas of computer yaphics and ge-
ometric modeling. The rationalize counterpart of
B-Spline called the Non-Uniform Rational B-Spline
(NURBS) is invariably used in all the present day ge-
ometric modeling packages. For an interactive model-
ing session, thousands of NURBS patches have to be
computed and drawn per second. Such performance is
beyond the reach of even the most advanced worksta-
tions available today. Advances in hardware support
for parametric curve and patch generation have thus
acquired increased importance.

Substantial progress has been made in the theoreti-
cal aspects of B-Splines 13 and their applications [13].

solutions for B-Spline curves and surfaces.
One of the early papers in this direction is the

work of T.Li et a/.[$ where an architecture to gener-

[3] el al., proposed a triangular architecture to gener-
ate B-Spline curves using the deBoor-Cox algorithm.
Mathias 191, has developed a similar architecture for
Bezier curves using the de Casteljau algorithm. He has
also developed architectures for B-Spline inversion and
B-Spline generation [lo]. Recently, Megson [ll] has
come up with a design to calculate the basis functions
required to generate B-Splines. He has also developed
a composite design to calculate B-Spline patches.

In most of the above architectures the size of the
hardware is tied to the size of the problem that is
to be solved. Further, they require a large number
of 1/0 pins. These limitations seriously restrict their
practical implementation. Megson [ll] addresses some
implementation issues. However, the architecture pro-
posed there suffers heavily from excess hardware re-
quirements and intimate coupling with the size of the
problem.

Apart from the above, two VLSI architectures to
com Ute Uniform B-Spline curves have been presented
in [67. A unified architecture to compute uniform ra-
tional and non-rational B-Spline curve/patch is also
presented in [7].

None of the above propose a hardware solution for
the generation of NURBS curves and patches. In this
paper we give a complete hardware solution for the

However, very little wor I, has been done on hardware

ate Bezier curves an a patches was proposed. De Rose

1063-9667/95 $4.00 0 1995 IEEE

generation of NURBS patches. we show that our ar-
chitecture performs better.

2 Theory of B-Splines
We define B-Splines curve by the equation

n

i=O

The point on the curve a t the parametric value U
is denoted by P(u) . There are (n + 1) control points
denoted by Pi.

The blending function or the basis function is de-
noted by N ~ , L (u) . These basis functions will decide
the extent to which a particular control point controls
the curve. The parameter k is called the order (one
more than the degree) of the curve.

Ni ,k is defined as follows.

(2)
1 i f ti 5 U < li+l

N i l 1 = { 0 otherwise

The constants tis, called knot values, are specific
instances of the parametric value U and are strictly in
non-decreasing order. There are totally (n + k + 1)
knot values. All the knot values put together is called
a knot vector.

At any particular value of the parameter U only k
basis functions will have non-zero values. Hence only
IC control points will have control over the shape of
the curve. These non-zero basis functions are called
useful basis functions and the corresponding control
points are called active control points.

The useful basis functions are known apriori. If
ti 5 U < t i t1 then the k useful kth order basis func-
tions are i v i - k + l , i v i - k + 2 , + . - , Ni,k. Using the first
subscript of these useful basis functions, the active
control points can also be found.

While incrementin the parameter U , if it crosses
t;+l, then the basis knction Ni..k+l,k becomes zero
and Ni+l,k joins the set of useful basis functions,

326
8th International Conference on VLSI Design - January 1995

Similarly the active control point set also changes.
These facts are used later in this paper.

A Rational B-Spline curve is defined by the formula,

(4)

The term wi denotes the weight of the control point
Pi. When wi tends to infinity, the curve is pulled
towards Pi and when wi is zero, the control point Pi
does not have any control over the curve.

Rational B-Spline surface is defined by the formula,

There is a grid of (n + l)(m + 1) control points for
the surface.
2.1 Basis Function Computation

In the computation of a B-Spline curve or a sur-
face, the basis function computation plays an impor-
tant role. As seen from the Eqn.3, the basis function
computation is recursive and apparently requires 2k-1
function calls to itself.

As there are only k useful basis functions and are
known apriori, only those need be calculated. Hence
the total number of calls to the basis function routine
need only be k(2k - 1).

In the calculation of basis functions using Eqn.3
many lower order functions return zero. If there are
multiple knots (such as, t i = ti+l = ti+2 = t i + S) ,
then the denominator of the Eqn.3 may become zero
for certain calls to the basis function routine (such as
Ni,lt Ni+l,l, Ni+2,1, Ni,2, Ni+1,2, Ni,3).

The above two difficulties are overcome by using
the following method [2].

At a particular value of the parameter U , only one
basis function of order one is non-zero, because one
can find only one i such that ti U < t i t1 as the t is
are in non-decreasing order. From the Figure 1, we can
see that from the non-zero first order basis function,
k kth order basis functions can be calculated. The
computation along the edges is given in the inset and
whenever the two edges meet, an addition is performed
to get the basis function value at the meeting node.

In this method, every computation is indispensable
and the denominator does not become zero. In what
follows, this method is used to develop a new systolic
architecture for the computation of basis functions.

3 Systolic computation of basis func-
tion

Figure 2 shows the systolic linear array for the com-
putation of the basis function. Each cell in the BFEA
computes one level in the DAG shown in the Figure
1, starting from the second level. Thus there are k - 1
processing cells in the BFEA and from the last cell
the k basis functions of order k are output. The value
of Ni,l(u) is always one and is pumped to the first

'i,1

Ni.4

\
I N.

Nj,m+l

Figure 1: Basis Function Computation Graph

Figure 2: Basis Function Evaluation Array (BFEA)
and the Controller

Figure 3: Pattern of Input to the first cell of BFEA

327

’ -0 N i p) , N

Figure 4: One Processing Cell of BFEA

cell of BFEA with its required knot values by the con-
troller. From the Figure 1 and the method of comput-
ing the basis functions explained in the previous sec-
tion, it would be clear that the first cell requires the
knot pair t i , &+I, The second cell requires one more
pair t i - 1 , t j S 2 and so on. The k - l t h cell requires,
apart from the k - 2 knot pairs used by its preceding
cells, the knot pair t i - k + 2 , t d + k - l . Every processing
cell communicates the knot pairs required by its suc-
ceeding cells, It can be seen that all the processing
cells are equally loaded with k steps of computation
and communication.

As there is no communication involved in the last
cell, one useful basis function value is output every
clock from that cell. As there is only one output line
for the blending function, one useful result for every
clock is the best we can achieve out of this linear ar-
chitecture.

One useful result at every clock and equal
load to all processors show that the scheduling
algorithm used is the optimal scheduling algo-
rithm for the given linear array architecture

Megson’s architecture for the generation of basis
functions generates all n + 1 basis functions while this
architecture generates only k basis functions. As k <<
n, the time required to generate the curve/surface is
drastically reduced. Further, this fact makes our ar-
chitecture independent of the number of control points

By identifying the symmetry in the calculation of
consecutive basis functions, the hardware required for
each cell (refer Figure 4) is greatly reduced.

The pattern of input to the first cell is as shown in
the Figure 3. There are three rows of input: one each
for three input lines of the BFEA. The first row is the
input to the line marked as Nj,j(u) in the Figure 4
and the second and third rows specify the inputs to
the two lines marked U - t i and t i + . - U , respectively.
The entries in the second and thirdrows just give the
indices of the knots involved in the calculation. The
third row starts with an offset such that the index i+ l
coincides with the index i in the second row. Note
that the first order basis function is 1 only at that
particular clock when the indices i and i + 1 coincide

(n) *

and is zero at all other times.
3.1 Time required for basis function gen-

eration
Each cell has a delay of five time units. The basis

function of order 1 is pumped to the first cell at the
kth clock. The time interval between the first input of
a knot value and the generation of the corresponding
basis function value of order k is

T1 = k + 5 (k - 1) (6)
The first term gives the time taken for the pumping

of basis function of order 1. The second term gives the
delay involved in k - 1 cells before the first output.

Time required to get all the k outputs is

(7) T2 = 2k + 5 (k - 1) - 1

The inputs for the calculation of the second set of
k basis functions are timed such that it follows the
output of the first set of k basis functions values. The
input and output timings, if the orders of the consecu-
tive set of basis functions to be calculated are different,
are discussed in [SI. The design of the controller shown
in the Figure 2 is also explained in detail in [5].

4 Architecture for the Computation of
NURBS Curve

Using the above architecture to compute the ba-
sis functions, the procedure explained below computes
the NURBS Curve. The BFEA generates and pumps
the useful basis functions to an Accumulating Cell
(AC). The homogeneous coordinates of the active con-
trol points (i.e. ziwi, yiwa, ziwi, wi) are pumped to the
AC by the controller. The numerator and the denom-
inator of the Equation 4 are calculated simultaneously
by multiplying the basis function values with Piwi and
wi separately and adding these results independently
in the AC. Finally the division is performed and the
point on the curve is calculated. The product Pjwj is
performed beforehand and is called a weighted control
point.

To calculate the next point on the curve, the para-
metric value U is incremented, and the input to the
BFEA is changed appropriately. Whenever U crosses

328

t i+l , the index i is incremented and the new set of
active weighted control points and their weights are
pumped to the AC for the calculation of the point on
the curve. This process continues till all the points on
the curve have been computed.
4.1 Time required to calculate NURBS

curve
Time required to calculate all basis functions is T2.

Delay involved in the AC for calculating the x coordi-
nate is five time units [5]. Hence the time required to
generate the x coordinate is

T3 = (7k - 6) + 5 = 7k - 1 (8)
The x coordinate of the second point on the curve

is output k clocks after the x coordinate of the first
point. If there are C points to be calculated on the
curve, the time at which the x coordinate of the last
point is output is

T4 = T3 + k(C - 1) = k(C + 6) - 1 (9)
In subsequent clock pulses, the y and z coordinates

Hence the total time required to calculate the whole
of the last coordinate are also output.

curve is

T5 = T4 + 2 = k(C + 6) + 1 (10)
Note that the above equation is independent of the

number of control points n.

5 NURBS Surface Computation
Figure 5 pictorially represents the algorithm for the

generation of a NURBS surface. In this figure the
value of U lies between t 5 and t 6 and the value of v
also lies between $5 and S6. (The knot vector in the U
direction is represented by t and that in the v direction
is represented by s). The value of k is 4 and that of 1
is 5 .

Since for all the control points, except for those in
the active control point grid, either or both the basis
function values are zero, they need not be considered
for the calculation of a point on the surface. Hence all
the operations are done on the control points that are
within the active control point grid.

LIn developing a VLSI architecture to calculate the
NURBS surface, the above a1 orithm is slightly mod-
ified such that the number o ! multiplications are re-
duced.

The Equation 5 can be rewritten as follows.

According to the algorithm presented above, every
column of the control grid is multiplied with the use-
ful basis functions shown below the grid. Then every
row of this product is added to get a column of virtual
control points. These virtual control points and their
weights are represented by the terms inside the paren-
thesis in the numerator and the denominator of the

Control Points Virtual Control
Pumpe.dtoVCC$ Points Pumped
to PAC No. to AC by VCCA

9.1 *
NCiU

%*I

Basis ry,
Functions
Pumped %I
to AC

NZI

hr
t

Point on
the Surface
Calculated
by AC

% 4b) F&) &0)$,9 P(;L') + k control pkd

Basis Functions pumped to VCCA

Figure 5 : Algorithm used for Surface generation

Equation 11 respectively. This column of virtual con-
trol points is multiplied with the corresponding basis
function values Nj,,(v) shown in Figure 5. Then this
column of elements is added to get a point on the sur-
face.

5.1 Architecture for NURBS Surface
Computation

We derive the architecture for the NURBS sur-
face computation as a straightforward extension to
the curve architecture. The architecture to calculate
a NURBS surface is shown in Figure 6. The Virtual
Control point Calculating Array (VCCA), shown in
the figure, calculates the virtual homogeneous control
points. This VCCA is an array of Partial Accumulat-
ing Cells (PACs). Each PAC is an inner product cell
with a register to store the basis function value.

Initially the useful basis function values in the direc-
tion of U are calculated by BFEA and are pumped to
the Virtual Control Point Calculatin Array (VCCA).
These k basis function values, whicf corresponds to
one column each of the active control point grid, are
stored one in each of the k PACs. The controller
pumps to each PAC, one column of active control
points from the active control point grid. Each con-
trol point is multiplied with the basis function value
stored in the corresponding PAC register, added with
the partial sum sent by the preceding PAC and the re-
sult is sent to the next PAC. The kth PAC outputs the
homogeneous coordinates of the virtual control points
to the AC. With these control points and the lth order
basis functions from the BFEA, the AC calculates a
point on the surface.

To Calculate the next point on the surface, the value
of the parameter v is incremented and the lth order
basis functions are calculated by BFEA. As the value
of U has not been changed, the same basis function
values that are already in the internal registers of the
VCCA are used. Depending on the present value of v
the new active control point grid is found and pumped

329

i I

I Valws
i Knot I

I

I 8

I
I

i
I

I
I
I

I

I
I

I
I

I

i
I.,..-
I

+
Points on

the Surface/Curve
TolFrom Host

Figure 6: Architecture for the Computation of
NURBS Surface

to the VCCA as before.
This continues till all the discrete values of v are

considered. Then the value of v is reset to its initial
value and U is incremented. The above explained pro-
cess continues till all the values of U are considered.
Note that only for every new value of U, k basis func-
tions are calculated and these new values are stored
in the PACs.
5.2 Time required to calculate NURBS

patch
In the following calculation of time required to com-

pute a NURBS patch, k is assumed to be equal to
1. ('The architecture can handle patches with un-
equa orders and the corresponding timing calculations
are given in 51.) The time required to generate the

input to the BFEA. In the input of the BFEA, a de-
lay of one time unit is introduced to synchronize the
arrival of the virtual control points and the Ith order
basis functions to the AC. Let us assume that Cl num-
ber of discrete values of U and C2 number of discrete
values of v are to be considered.

Time required to pump the input to the BFEA for
the last point on the surface would be

NURBS patc E, can be calculated with respect to the

T6 = cl(k f 1 + C2I) - I (12)
Computation of one row of surface points requires,

k inputs for the kth order basis function generation,
followed by a delay of one time unit, then followed
by Cz times of 1 inputs for the generation of basis
functions of order 1. There are C1 rows of surface
points to be calculated. Hence the above quantity is
multiplied by C1. This term would give the total time
taken for all the input including the last point on the

Figure 7: Curve Computation - Comparison

Numbaofcontrolpoints ~
Number of antrd paints

Figure 8: Surface Computation - Comparison

surface. So to et the time at which the input for the

from the above quantity.
From the time T6 the time taken to calculate the

last point is iven by T3 + 2. Hence the total time
required to c3culate the whole surface is

computation o f the last point starts, I is subtracted

T7 = Cl(k + 1 + C2I) + 61 + 1 (13)
It can be seen that above equation is independent of
the number of control points n and m.

6 Performance Evaluation
The architecture presented above decouples the size

of the problem to the extent possible by making it in-
dependent of n and m. From the Equation 13 it is
clear that the coefficient of C1 is large, making the
timing more dependent on C1 than on Cz. Hence the
proposed architecture performs well when the num-
ber of discrete values of U is less than the number of
discrete values of v. Further, this architecture per-
forms better when a whole curve or a surface is calcu-

330

lated than when a few discrete points on the surface
are needed, because the algorithm makes complete use
of inter-dependency and the information sharing be-
tween consecutive points on the curve/surface.

Let us now compare the performance of this ar-
chitecture with that of the architecture proposed by
Megson 111. Assuming that the CI and C2 are pro-

architecture proposed in this paper and by the archi-
tecture proposed in [ll] to compute curve and surface
are shown in Figures 7 and 8 respectively.

Analyzing the hardware complexity of the archi-
tecture proposed by Megson, it requires at most
5maz(k, 1 +3(maz m, n)+l) inner product cell equiv-
alents an a \ 3(m + 1 (n + 6 + 2) memory registers for
surfaces with (m+l)(n+l) control points and blending
functions of degrees k and 1 and where S = 51% - 11.
The architecture presented in this paper requires at
most 7maz(k, 1) + 4 inner product cell equivalents,
maz(k, I) x (5 + 4(maz(%, I)) buffer registers and
4k l+ 6 + 1 memory registers. ? t can be seen that both
the processing element requirements and the memory
requirements are much lesser than that of the Meg-
son’s architecture. Note that the hardware require-
ments specified here for this architecture is for the
computation of NURBS whereas for Megson’s archi-
tecture it is for the computation of just non-rational
B-Splines.

7 Conclusion
To our knowledge the architecture presented here

is the first unified architecture that can com-
pute rational and non-rational uniform/non-uniform
B-Spline curves and surfaces (When non-rational
curves/surfaces are computed the weights of the con-
trol points are set to unity.). The above architecture
is also shown to be better than the architectures, for
some of the subproblems, proposed in the literature.

This architecture possesses characteristics that
make it suitable for integration into the standard
graphics pipeline of a graphics workstation: First, the
architecture has a general linear structure with a small
number of input lines and a single output line. Sec-
ond, NURBS curves/surfaces are projection invariant.
Hence, in the standard graphics pipeline, this architec-
ture can be integrated after the transformation stage
and before the clipping stage. The weights of the con-
trol point are suitably transformed when perspective
projection of the curve/surface is performed. How-
ever, further work is needed to specify this integration
more precisely.

References

portiona I to the n and m, the time required by the

[l] Cox, M.G. The Numerical Evaluation of B-Splines, J.
Inst. Maths Applics., 10, 1972, pp 134-149.

[2] de Boor, C. Package for calculating with splines, J. of
Numerical Analysis,14(3),1977, pp 441-472.

[3] De Rose, T. and Holman, T. The Triangle: A multipro-
cessor architecture for Fast Curve and surface genera-
tion, Tech Rep No 87-08-07, Dept of CS, FR-35, Univ.
of Washington, Aug 1987.

Foley, J.D., van Dam, A., Feiner, S.K. and Hughes, J.F.
Computer Graphics: Principles and Practice Second
Edition, Addition-Wesley Publishing Company Inc.,

Gopi, M. Special Purpose architectures for B-Splines,
M.Se. (Engg.) Thesis (under preparation), Indian In-
stitute of Science, Bangalore.
Gopi, M. and Manohar, S. VLSI architectures for
the computation of Uniform B-Spline curues, accepted
for publication in Microprocessing and Microprogram-
ming.
Gopi, M. and Manohar, S. Parallel architecture for
the computation of Uniform Rational B-Spline patches,
submitted for publication.
Li, T,, Smith, K.R. and Hanscon, D. VLSl Systolic Ar-
chitectures for Computer Graphics, Proceedings of In-
ternational Conference on Computers, Systems & Sig-
nal Processing, Bangalore, India, Dec 1984, pp 1527-
1530.

Mathias, P.C.Systo2:c Architectures for Realistic 3D
graphics, Ph.D. Thesis, 1989,Indian Institute of Sci-
ence, Bangalore.

pp. 491-500,522.

[lo] Mathias, P.C. and Patnaik, L.M. Systolic Architec-
tures in curve generation, Computers and Graphics,
13, No 4, 1989.

[ll] Megson, G.M. Systolic Algorithms for B-Spline Patch
generation Journal of Parallel and distributed comput-
ing,ll, 1991, pp 231-238.

[12] Mortenson, M.E. Geometric Modeling, John Wiley &
Sons, 1985 pp 125-149, pp 220-226.

[13] Riesenfeld, R.F. Applications of B-Spline approxima-
tion to Geometric problems of Computer Aided Design,
Ph.D. dissertation, 1972, Syracuse Univ., Syracuse,
NY. Also published a ~ , Univ. of Utah report UTEC-
CSC-73-126.

331

