
Cubical CAMP for Minimization of Boolean Functions

Nripendra N. Biswas C. Srikanth* James Jacob
nnb@ece.iisc.ernet .in csri@miel.mot .com james@ece.iisc.ernet .in

Department of Electrical Communication Engineering
Indian Institute of Science
Bangalore 560 012 India

Abstract
The paper presents QCAMP, a cube-based al-

gorithm for minimization of single Boolean func-
tions. The algorithm does not generate all the prime
cubes, nor does it require the Off-set of the func-
tion. Two significant contributions of QCAMP are
the UNATE-TEST which tests if a given function is
a unaie function, .and the BISECT procedure which
minimizes a cyclic function without taking recourse t o
branching. A well known property of a unate func-
tion is that the prime cubes subsuming a unate func-
tion are al l - essential prime cubes. Hence as soon as
a function passes the UNATE-TEST, all its prime
cubes are recognized as solution cubes without any fur-
ther processing. Many special functions, such as both
the On and Off-sets of Achilles’ heel functions which
ESPRESSO 11 finds hard to minimize are also unate
functions. Consequently, as will be evident from the
computational results QCAMP exhibits far better per-
formance compared to ESPRESSO II in all such and
many other functions.

1 Introduction
The importance of single function minimization al-

gorithms is well known, since it forms the most basic
and important ingredient of multiple output minimiza-
tion, a valuable tool in the design of VLSI circuits.
However, VLSI technology demands that an algorithm
should be capable of handling a very large number of
input variables. This shift of emphasis from small or
medium to very large number of variables has made
the minterm based algorithms virtually obsolete in a
VLSI environment. To respond to this new and chal-
lenging situation many cube based algorithms have
been developed[1,2,3,4]. Most of these evolve around
two schools of philosophy. The Quine McClusky[5]
school generates all prime cubes, which proves to be
very expensive in some situations. ESPRESS0[4]
school generates the Off-set of the function. This
also renders the algorithm very inefficient in many
cases. For example, although the On-set of a 30-
variable Achilles’ heel function has only 10 c,ubes, its

*During the course of this work C. Srihi th was a post grad-
uate student in the Department of Electrical Coiimiwiicatioii
Eiigg. of the hidiaii Institute of Science, Bangalore. He is iiow
with Motorola India Electroilics Limited (MIEL), “The Senate”,
33-A, Ulsoor Road, Bangalore-560 042 India.

1063-9667/95 $04.00 Q 1995 IEEE

Off-set has 59049 cubes. Hence even to minimize
only these 10 cubes of the On-set, ESPRESSO I1 has
to spend considerable time in simply generating the
59049 cubes of the Off-set. The third school of phi-
losophy, namely that of the CAMP algorithm[6,7,8,9]
avoids both these undesirable features. In this paper
we describe QCAMP, a cubical minimization proce-
dure based on the CAMP philosophy.

2 Ternary Notations and Cubical Op-
erations

Before we present the algorithm, the ternary nota-
tions and cubical operations extensively used in the
paper may be explained. We assume that some of the
basic terms of logic design and switching theory, such
as minterm, product term, sum of product(S0P) form,
minimum sum of product MSOP) form, conjunctive

others are already familiar to the reader. In this pa-
per a product term will be represented in the ternary
notation of 0, 1 and 2 where 0 represents a variable in
the complemented form, 1 in the true form, and 2 in-
dicates the absence of the variable. For example, the
4 variable function, f i = a‘b + bc’d + ab‘cd‘ + acd will
be written as

and disjunctive canonical I orm (CCF and DCF) and

fi = 0122 + 2101 + 1010 + 1211

Each product term is called a cube. The dimension
of a cube gives the number of variables absent in the
product term which the cube represents. A minterm
is a cube of dimension 0 and is therefore called a 0-
cube. The cube 0122 representing a’b has a dimension
2, and is therefore a 2-cube. Note that the dimension
of a cube is given by the number of 2’s. Also note
that a cube of dimension CY of an n-variable function is
obtained by combining 2a minterms of the n-variable
function. Again an a-cube of an n-variable function
(0 5 a 5 n) is a product term of (n - a) number of
variables.
Definition 2.1 : The distance between two cubes is
the number of bit positions where one cube has a 0(1)
and the other a l(0).

Thus the distance between 0122 and 2101 of the
function f l given above is 0, whereas that between
2101 and 1010 is 3.
Definition 2.2 : Two cubes are said to be zntersectzng
with each other if the distance between them is 0.

264
9th International Conference on VLSI Design -January 1996

Definition 2.3 : Two cubes are said to be adjacent
with each other if the distance between them is 1.

Thus the cube 1211 is adjacent to all the three other
cubes of the function fi. To visualize the intersection
and adjacency of cubes pictorially, plot the four vari-
able function on a Karnaugh map. A detailed discus-
sion of these and the cubical operation sharp can be
found in [9,10].

In this paper, we shall also define the prime cubes
in three categories as has been done in [9].
Definition 2.4 : If among the minterms subsuming
a prime cube, there is at least one that is covered by
this and only this prime cube, then the prime cube is
called an essentzal przme cube (EPC).

The subcube of an EPC that is covered by this
and only this prime cube is called a Dzstznguzshed
rube. The minterms subsuming a distinguished cube
are called distinguished minterms.
Definition 2.5 : If each of the minterms subsuming a
prime cube is covered by other essential prime cubes,
then the prime cube is called a redundant przirie cube
(RPC),
Definition 2.6 : A prime cube which is neither es-
sential nor redundant is called a selectzve przirie cube

Among the minterms subsuming such a prime cube
there is at least one that is covered neither by an EPC
nor by this and only this prime cube. Therefore the
existence of one SPC implies the existence of another.
We now proceed to present the QCAMP algorithm.
The algorithm has three phases. (1) The essential
prime cube or EPC phase; (2) The selective prime
cube or SPC phase and (3) The don’t care or DC
phase.

3 The EPC Phase

(SPC).

In this phase all the EPCs of the given function are
selected and stored in the solution cube matrix, SCM.
The given function is input in two matrices. In the
first, denoted as the the true cube matrix TCM, all the
true cubes are written in the ternary notation. In the
other, denoted as the don’t care matrix DCM, only the
don’t care cubes are written in the ternary notation.
The variables are written in decimal numbers 1,2, and
so on in the 0th row of the matrix, whereas the 0th
column has the serial number of the cubes. In the EPC
phase, only the TCM is considered. Before processing
the TCM, it is checked whether the switching function
is unate.
Definition 3.1 : If, in the minimum-sum-of-products
form of a switching function, each variable appears in
its true form or its complemented form, but not both
then the function is called a m a t e functzon[9].
3.1 The UNATE-TEST

First the TCM is subjected to the UNATE-TEST.
If the function passes the test then it is a unate func-
tion and all the input cubes are put in the solution
cube matrix SCM, without any further processing.
This is based on the following theorem[9].
Theorem 3.1.1 : A Switching function is unate if and
only if it can be expressed as a sum of prime cubes,
all intersecting at a common subcube. Furthermore,
all the prime cubes are essential prime cubes.

The proof of the theorem can be found in Sec 3.10
of [9].

The UNATE-TEST is very simple and inexpensive.
The TCM is scanned columnwise, starting from the
first column. If there are only 1s or Os (ignoring 2s),
but not both, in each of the columns then the func-
tion is unate. This test effectively checks whether each
variable of the function is appearing only in its true
or complemented form. Let us consider the 6-variable
function

f2 = 220220 + 202220 + 022220 + 220202 + 202202
+022202 + 220022 + 202022 + 022022

The TCM for this switching function is as shown in
Table 1 . The 0-th row of Table 1 gives the variables
in decimal numbers, and the 0-th column gives the
serial number of cubes also in decimal number. If the
UNATE-TEST is applied to this TCM, it will pass the
test and all the 9 cubes will be stored in the SCM as
EPCs.

If a function fails to pass the UNATE-TEST then
the input cubes are made to grow into adjacent
cubes as much as possible, and the derived matrix
is called the Prime Cube Matrix (PCM . Now the
UNATE-TEST is applied again to the P t ’M. This is
because the input function may not be initially ex-
pressed as a sum of prime cubes. After expansion all
the cubes are prime cubes. If the function is unate
it will pass the test at this stage, and all the prime
cubes are essential prime cubes and will be stored in
the SCM. Let us now consider a non-unate switching

Table 1: A 6 variable unate function

0 1 1 2 3 4 5 6
2 2 0 2 2 0
2 0 2 2 2 0
0 2 2 2 2 0
2 2 0 2 0 2
2 0 2 2 0 2
0 2 2 2 0 2
2 2 0 0 2 2
2 0 2 0 2 2
0 2 2 0 2 2

function having 5 cubes

f3 = 0002 + 1020 + 2201 + 1112 + 0211

This will obviously fail the IJNATE-TEST. Now the
cubes are made to grow into the adjacent cubes. The
new cube matrix having all the cubes in the fully ex-
panded form consists only of prime cubes, and there-
fore becomes the prime cube matrix PCM. The PCM
of f3 is shown in Fig. l(b). Note the important fact
that two prime cubes 2121 and 1210 which will be gen-
erated in the QM Quine McCluskey) algorithm have

Off-set of the function. Now the UNATE-TEST is ap-
plied to the PCM. It fails the test again indicating that

not been generate d here. Nor have we generated the

265

it is not a unate function. Now, each cube is subjected
to the EPCLTEST. If the result of the EPC-TEST is
positive, then the cube is an EPC, and is stored in the
solution cube matrix SCM.
3.2 The EPC-TEST

Each fully expanded cube of the PCM (Fig. l(b))
is now subjected to the essential prime cube test,
EPC-TEST. For this a matrix called adjacent and in-
tersecting cube matrix AIM, having all cubes which
are adjacent to or intersecting with the cube under
test is formed. From this another matrix called test
matrix T M is derived. T M is obtained from AIM by
deleting all the columns headed by Os and Is of the
cube under test. The TM therefore, has CY number of
columns and m rows, where a is the dimension of the
cube under test Ct, and m is the number of rows of
its AIM. The T M is therefore a cube matrix having
m cubes of N variables. It can be shown that these
cubes are those subcubes of Ct which can be covered
by other cubes of the function.

T M

00 2 22 1 1020 2 02 2201 10 0

f o o x l l Z l 0 G i 01 211 1 1

2201 1020
1112 1112

0221
00 20
20 10
11 11

$. $. 0211 1112
(4

00 01 11 10

00
01

11

10

00

01

11

10

(b)
00 01 11 10

Figure 1: (a) Input CM of f3 (b) PCM (c) EPCs and
Sharped SPCs (d) Selected and expanded SPCs

Table 2: THE EPC-TEST TABLES

Cube Under Test I 0221 1 2201
AIM 1 2002 I 2002

expands to
all-2 cube

EPC ?

to the all-2 cube, then there is at least one subcube
(which may be a 0-cube or a minterm) which is covered
by Ct and only Ct. Hence C, is an EPC. Table 2 gives
the EPC-TEST tables for the cubes 0221 and 2201.
We see that the cube 0221 passes the EPC-TEST
while 2201 fails the test. Among the other cubes of the
PCM, cube 2002 will pass the EPC-TEST, whereas
cubes 1020 and 1112 will fail the EPC-TEST. Thus
after the EPC-TEST, all EPCs will be identified, and
the rest of the cubes will be either RPCs or SPCs. The
EPCs are stored in the solution cube matrix SCM. The
EPC phase ends here and the SPC phase begins.

4 The SPC Phase
4.1 Iterative Mode : EPC-SPC Proce-

If a t the end of the EPC phase, all cubes turn
out to be EPCs then the algorithm terminates. If on
the other hand some or all cubes remain as RPCs or
SPCs, then SPC phase begins. Now the EPCs stored
in the SCM sharp the remaining cubes of the PCM.
The sharped cubes for our example are shown as the
three unshaded cubes of Fig. l(c). Note that after this
first sharp operation, all RPCs, if any, get eliminated.
These sharped cubes (unshaded in Fig. l (c)) are now
treated as a new CM and also processed as a new CM.
After the EPC phase of the new CM, in our example
two EPCs (shown dotted in Fig. l(c)) 1121 and 1210
are formed. These are then made to expand into the
entire function. As a result, the cube 1121 expands to
cube 2121. The cube 1210 does not expand. No cube
of the new CM is left out after the new EPCs are se-
lected. Hence, the algorithm terminates, giving two
EPCs and two SPCs as solution cubes in the SCM.
Thus, the function f3 after minimization becomes,

dure

f3 = 0221 + 2002 + 2121 + 1210

If at any time of the iterative mode of the SPC
phase the new CM does not generate an EPC, then the
cubes of the new CM are only SPCs, and the function
is a cyclic function. Then the cyclic mode of the SPC
phase begins.

Hence if the cubes of TM can combine and expand to
form the all-2 cube, then all the minterms of Ct can
be covered by other prime cubes and Ct cannot be an
EPC. On the other hand if the T M does not expand

266

Table 3: BISECT ALGORITHM

0122 cc 2021 c, 2210 c, 1202 c, 0122 c,
1202 1202 1202 ca2 0122 ca3 2021 ca4
1022 1022 cbX 0122 2021 2210
2210 2210 Cal 2021 2210 1202
0221 c?bl 0122

4.2 The Cyclic Mode : BISECT Proce-

Whenever any CM, either the input CM or any in-
termediate CM in the iterative mode does not gener-
ate even a single EPC, then this CM is that of a cyclic
function. QCAMP then goes into the cyclic mode,
and the BISECT procedure is invoked.

Let us explain the procedure by working out the
solution of the following cyclic function plotted in
Figure 2(a).

dure

f4 = 0122 + 1202 + 1022 + 2210 + 0221

The function f4 has 5 prime cubes with no redundant
cube. Let the processing start from cube 1. Part (a)
of Table 3 is the input CM. It goes through several
modifications until it comes to the minimum solution
form as given in part (e) of Table 3. The steps of
BISECT procedure are follows.

First set up two count variables, acount (adjacent
count) and ecount (bisect and expand count). Initial-
ize each of them to O.Take the first cube of the CM as
the cube under consideration. Call it C,. The algo-
rithm for the BISECT procedure is as follows:

1. Search in other cubes in serial order for a cube Cb
which gets bisected by C,.

2. If C, gets a Cb check if the half of Cb which is out-
side C, is included wholly in one or more cubes of
the function. If yes, then delete Cb, and continue
search for another Cb for C,.

3. If the half of cb which is outside C, is not in-
cluded wholly, then expand this half of Cb in the
function. Call the expanded cube Delete Cb
(denoted by x in Table 3).

4. Move the cubes below cb up. Place C;, as the last
cube of the CM, and C, as the first cube of the
CM.

This completes one cycle of operations. Now, in the
modified CM, C, which is the first cube becomes the
C,, and the procedure repeats. Sometimes the outside
half of a Cb may not be able to expand in the function.
In this case cube C, abandons this Cb and Cb is kept

If at any time c, does not get a Cb, it starts searching
for a cube Ca that is adjacent to C,. A C, that does
not get a Ca and then a Ce will surely get a Ca. When
it gets a Ca, the acount is incremented and ecount
is reset to 0. Similarly when a C, gets a C e ecount

undisturbed in the CM) and searches I or another Cb.

is incremented and acoent is reset to 0 (the current
value of the counts are shown after Ca and Cb in Table
3). Whenever any one of the two counts equals the
number of cubes in the CM, the procedure terminates,
and the cubes of the CM becomes the solution cubes.
When a C, gets a Ca the Ca becomes the first cube
of the CM, and therefore, C, of the next cycle. Cubes
below Ca are moved up, and cube C, is placed as the
last cube of the CM. The cycle repeats itself, until
the final SCM is obtained. To summarize, in each
cycle the C, first tries to get a Cb and then a ce. On
failure, it gets a Ca. In each cycle either the acount
is incremented and ecount is reset to 0, or vice-versa.
When one of the counts equals the number of cubes of
CM, the procedure terminates and the CM becomes
the SCM. Both at the beginning and end of BISECT,
redundant cubes if any, are removed. Table 3 (a) to (e)
show the 5 cycles of the BISECT algorithm to produce
the 4 cube solution of the function f4,

f4 = 0122 + 2021 + 2210 f 1202

00 01 11 10 00 01 11 10

a) Input CM of f4 having 5 cubes (b) Bisect
solution Figure 2: o I f4 having 4 cubes

5 The DC Phase
Before coming to the DC phase, the true cubes

of the function are fully minimized, and the solution
cubes are stored in the solution cube matrix SCM.
Now, the cubes of the SCM are made to expand and
combine further in the cubes of the don't care matrix
DCM. Some of the cubes of the SCM may not expand.
A new matrix is now formed having the expanded true

267

cubes, and is called XCM. Another matrix called in-
cluded cube matrix ICM, having those true cubes of
S(:M which have expanded, is also formed. Consider
the function,

The function as plotted on the Karnaugh map is also
shown in Fig. 3(a). If an included cube IC is covered
by an expanded cube XC only partly and not fully
then the IC! is split into subcubes, so that each subcube
is now covered fully, by an XC. Each subcube of a split
IC; is treated as a separate IC and is also stored as such
in the ICM.

In XCM the XCs are arranged in ascending order of
their dimensions. Another matrix called cover matrix
CWM is now derived from the XCM and the ICM.
Each row of the CVM represents an XC of the XCM
and each column of the CVM represents an IC. CVM
also has an extra row and an extra column. The extra
row has the weights of each column, whereas the extra
column has the weights of each row, where weight is
defined as follows:

Definition 5.1 The number of 1’s of a row (col-
umn) will be called its weight.

All the solution cubes of the function are found by
processing the CVM. While processing we will have
to delete some of the XCs and ICs. The weights of
each row and column of the CVM are now computed
and placed in the extra column and row of the CVM.
Now, first search for a column having weight 1. Such
a column will be called a one weight colunin OWC. If
an OWC exists, then select the XC of the row having
the singleton 1 of the OWC as a solution cube. Delete
this row and also the ICs covered by this XC.

00 01 11 10 00 01 11 10

00

01

11

10

Figure 3: (a) Input CM of f5 with the don’t cares. (b)
Final Solution of func,tion f5.

Now, delete the selected row and the ICs covered
by the XC. If no OWC is found, then find the row
having the least weight. Such a row will be called a
least wezght row LWR. Search for a LWR starting from
the first row of the table. Delete the first LWR found.
Then compute the weights of the rows and columns

once again. This gives a new table Search for OWC!,
and repeat this procedure qintil all the rows of the
table are deleted. For the function f5, the CVM goes
through 7 iterations, and yields two solution cubes.
Thus fs minimizes to

fs = 2121 + 0022

also shown in Figure 3(b).

6 Special Functions
There are some special functions which ESPRESSO

I1 finds “unreasonable” and therefore hard to mini-
mize. Achilles’ heel function is a good example of such
functions[4]. It is defined as

f = Xlx223 + 2425x6 + ’ ’ ’ + x3k-2~3k-lx3k
where k. is any positive integer

This function is unate, has 3k variables, and its
minimum cover has k cubes. However, its complement
f’ has a minimum cover of 3k cubes.

The 6-variable unate function shown in Table 1 is
in fact the Off-set of a 6-variable (k = 2) Achilles’
heel function. The last property of Achilles’ heel func-
tions (the Off-set having a minimum cover of 3k cubes)
poses problem to ESPRESSO I1 since it has to gen-
erate the complement of the function. QCAMP does
not have this problem. However, a very helpful char-
acteristics of the function, which apparently has not
been utilized by ESPRESSO I1 is its unateness. Since,
the function, and therefore also its complement are
unate, once it is expressed as a sum of prime cubes,
all the prime cubes will be EPCs due to Theorem 3.1.1
The computational results shown in Table 4 shows be-
yond doubt the effectiveness of UNATE-TEST. The
fact that QCAMP is faster than ESPRESSO I1 for
the Achilles’ heel functions shows that UNATE-TEST
has not been incorporated in the latter. It will be a
good thing if UNATE-TEST is incorporated in all the
minimization algorithms.

Another class of functions which we have called
“ODS”$one diagonal short) functions has all minterms
of the unction except a pair of opposite minterms.
(Such a pair of opposite minterms constitute a diag-
onal in an n-dimensional hypercube). An ODS func-
tion of n variables is a cyclic function having more
than one solution of n cubes. The BISECT algo-
rithm of QCAMP handles the function as efficiently as
ESPRESSO 11. Figure 2(a) and (b) show a 4-variable
ODS function.

7 Computational Results
The Table 4 compares the CPU time taken by

ESPRESSO I1 and QCAMP by running various func-
tions on both the algorithms.

8 Conclusion
Apart from presenting a very efficient and eco-

nomical algorithm for minimization of Boolean func-
tions, the algorithm presents for the first time the
IJNATE-TEST and a new way of handling cyclic func-
tions in the BISECT procedure which does not re-
quire branching , inasmuch as the processing may
start from any cube to obtain most of the time one

268

Table 4: Computat ion Results

8
10
11
12
81

243
729
2187
128
256
512
1024
2048

7

Function
Name

.8 < .I
8.7 < .1
31.7 < .I
103.5 < .1

.2 .I
2.2 .6
22.0 6.9
200.0 65.0

.I < .1

.6 .2
2.2 .5
8.4 2.0
32.7 8.1

.2 .1

Achilles’ heel
(On-set)

9
11
12

Achilles’ heel
(Off-set)

9 1.1 .7
11 11.6 10.6
12 47.4 45.5

XOR

ODS

Input
File

21,7
24,8

30,lO
33 , l l
36,12
12,81
15,243
18,729

21,2187
8,128
9,256

10,512
11,1024
12,2048

7,12
9,16
11,18

(i, n)’

12,22

No. of cubes CPU Sec
in Soh. on IBM RS 6000/580

8
10
11
12
81
243
729
2187
128
256
512
1024
2048

7

= number of input cubes

of the minimum valid solutions. T h e UNATE-TEST
is very inexpensive b u t is extremely powerful in han-
dling even the Off-set of Achilles’ heel functions which
ESPRESSO TI finds ha rd to minimize. We recommend
that UNATE-TEST be incorporated in ESPRESSO
11, and for t h a t ma t t e r , in all Boolean function mini-
mizat ion algorithms.

Acknowledgment- T h e authors wish to record their
appreciation for t he faculty and staff of t he Supercom-
puter Education and Research Centre, E R N E T and
PROTOCOL laboratories of the ECE Department , of
the Indian Inst i tute of Science, Bangalore, for extend-
ing all facilities a n d cooperation during the progress
of this work.

References
[l] S.J. Hong, R.G. Cain, D.L. Ostapko. MINI: A Hueris-

tic approach for Logic MinimizationJBBM J . Res. Dev.,
Vol. 18,September 1974, pages 443-458.

[2] B. Gurunath, and N.N. Biswas. An Algorithm for
Multiple Output Minimization. ZEEE Trans. Conaput.-
Aided Design, Vol. CAD-8, No. 9, September 1989,
pages 1007-1013.

[3] M.R. Dagenais, V.K. Agarwal, and N.C. Rumin. Mc-
BOOLE: A New Procedure for Exact Logic Minimiza-
tion. IEEE Trans. Contput.-Aaded Design, Vol. CAD-5,
No. 1, January 1986, pages 229-238.

[4] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and
A. L. Sangiovanni-Viucentelli, Logic Minimization Al-
gorithms for VLSI Synthesis, Kluwer Academic Pub-
lishers, Boston, 1984.

[5] E.J. McCluskey. , Minimization of Boolean func-
tions.Bell Syst. Tech. Journal, Vol. 35, No. 11, Novem-
ber 1956, pages 1417-1444.

[6] N.N. Biswas. Computer Aided Minimization Procedure
for Boolean functions. Proc. l l s t Design Autontation
Conference, Albuquerque, N.Mex., June 1984, pages

[7] N.N. Biswas. Computer Aided Minimization Procedure
for Boolean functions.IEEE Trans, Comp. Aided De-
sign of Integrated Circuits and Systems, Vol. CAD-5,
No. 2, April 1986, pages 303-304.

[8] N.N. Biswas. On Covering Distant Minterms by the
CAMP Algorithm. IEEE Trans, Comp. Aided Design
of Integrated Circuits and Systems, Vol. CAD-9, No. 7,
July 1990, pages 786-789.

[9] N.N. Biswas. Logic Design Theory. Prentice Hall, En-
glewood Cliffs, NJ, 1993.

[lo] D.L. Dietmeyer. Logic Design of Digital Systems. 2nd
edition, Allyn and Bacon, Boston, MA, 1978.

699-702.

269

