
Cubical CAMP for Minimization of Boolean Functions 

Nripendra N. Biswas C. Srikanth* James Jacob 
nnb@ece.iisc.ernet .in csri@miel.mot .com james@ece.iisc.ernet .in 

Department of Electrical Communication Engineering 
Indian Institute of Science 
Bangalore 560 012 India 

Abstract 
The paper presents QCAMP, a cube-based al- 

gorithm for minimization of single Boolean func- 
tions. The algorithm does not generate all the prime 
cubes, nor does it require the Off-set of the func- 
tion. Two significant contributions of QCAMP are 
the UNATE-TEST which tests if a given function is 
a unaie function, .and the BISECT procedure which 
minimizes a cyclic function without taking recourse t o  
branching. A well known property of a unate func- 
tion is that the prime cubes subsuming a unate func- 
tion are al l -  essential prime cubes. Hence as soon as 
a function passes the UNATE-TEST, all its prime 
cubes are recognized as solution cubes without any fur- 
ther processing. Many special functions, such as both 
the On and Off-sets of Achilles’ heel functions which 
ESPRESSO 11 finds hard to minimize are also unate 
functions. Consequently, as will be evident from the 
computational results QCAMP exhibits far better per- 
formance compared to ESPRESSO II  in all such and 
many other functions. 

1 Introduction 
The importance of single function minimization al- 

gorithms is well known, since it forms the most basic 
and important ingredient of multiple output minimiza- 
tion, a valuable tool in the design of VLSI circuits. 
However, VLSI technology demands that an algorithm 
should be capable of handling a very large number of 
input variables. This shift of emphasis from small or 
medium to very large number of variables has made 
the minterm based algorithms virtually obsolete in a 
VLSI environment. To respond to this new and chal- 
lenging situation many cube based algorithms have 
been developed[1,2,3,4]. Most of these evolve around 
two schools of philosophy. The Quine McClusky[5] 
school generates all prime cubes, which proves to be 
very expensive in some situations. ESPRESS0[4] 
school generates the Off-set of the function. This 
also renders the algorithm very inefficient in many 
cases. For example, although the On-set of a 30- 
variable Achilles’ heel function has only 10 c,ubes, its 

*During the course of this work C. Srihi th  was a post grad- 
uate student in the Department of Electrical Coiimiwiicatioii 
Eiigg. of the hidiaii Institute of Science, Bangalore. He is iiow 
with Motorola India Electroilics Limited (MIEL), “The Senate”, 
33-A, Ulsoor Road, Bangalore-560 042 India. 

1063-9667/95 $04.00 Q 1995 IEEE 

Off-set has 59049 cubes. Hence even to minimize 
only these 10 cubes of the On-set, ESPRESSO I1 has 
to spend considerable time in simply generating the 
59049 cubes of the Off-set. The third school of phi- 
losophy, namely that of the CAMP algorithm[6,7,8,9] 
avoids both these undesirable features. In this paper 
we describe QCAMP, a cubical minimization proce- 
dure based on the CAMP philosophy. 

2 Ternary Notations and Cubical Op- 
erations 

Before we present the algorithm, the ternary nota- 
tions and cubical operations extensively used in the 
paper may be explained. We assume that some of the 
basic terms of logic design and switching theory, such 
as minterm, product term, sum of product(S0P) form, 
minimum sum of product MSOP) form, conjunctive 

others are already familiar to the reader. In this pa- 
per a product term will be represented in the ternary 
notation of 0, 1 and 2 where 0 represents a variable in 
the complemented form, 1 in the true form, and 2 in- 
dicates the absence of the variable. For example, the 
4 variable function, f i  = a‘b + bc’d + ab‘cd‘ + acd will 
be written as 

and disjunctive canonical I orm (CCF and DCF) and 

fi = 0122 + 2101 + 1010 + 1211 

Each product term is called a cube. The dimension 
of a cube gives the number of variables absent in the 
product term which the cube represents. A minterm 
is a cube of dimension 0 and is therefore called a 0- 
cube. The cube 0122 representing a’b has a dimension 
2, and is therefore a 2-cube. Note that the dimension 
of a cube is given by the number of 2’s. Also note 
that a cube of dimension CY of an n-variable function is 
obtained by combining 2a minterms of the n-variable 
function. Again an a-cube of an n-variable function 
(0 5 a 5 n) is a product term of (n - a )  number of 
variables. 
Definition 2.1 : The distance between two cubes is 
the number of bit positions where one cube has a 0(1) 
and the other a l(0). 

Thus the distance between 0122 and 2101 of the 
function f l  given above is 0, whereas that between 
2101 and 1010 is 3.  
Definition 2.2 : Two cubes are said to be zntersectzng 
with each other if the distance between them is 0. 
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Definition 2.3 : Two cubes are said to be adjacent 
with each other if the distance between them is 1. 

Thus the cube 1211 is adjacent to all the three other 
cubes of the function fi. To visualize the intersection 
and adjacency of cubes pictorially, plot the four vari- 
able function on a Karnaugh map. A detailed discus- 
sion of these and the cubical operation sharp can be 
found in [9,10]. 

In this paper, we shall also define the prime cubes 
in three categories as has been done in [9]. 
Definition 2.4 : If among the minterms subsuming 
a prime cube, there is at least one that is covered by 
this and only this prime cube, then the prime cube is 
called an essentzal przme cube (EPC). 

The subcube of an EPC that is covered by this 
and only this prime cube is called a Dzstznguzshed 
rube. The minterms subsuming a distinguished cube 
are called distinguished minterms. 
Definition 2.5 : If each of the minterms subsuming a 
prime cube is covered by other essential prime cubes, 
then the prime cube is called a redundant przirie cube 
(RPC), 
Definition 2.6 : A prime cube which is neither es- 
sential nor redundant is called a selectzve przirie cube 

Among the minterms subsuming such a prime cube 
there is at least one that is covered neither by an EPC 
nor by this and only this prime cube. Therefore the 
existence of one SPC implies the existence of another. 
We now proceed to present the QCAMP algorithm. 
The algorithm has three phases. (1) The essential 
prime cube or EPC phase; (2) The selective prime 
cube or SPC phase and (3) The don’t care or DC 
phase. 

3 The EPC Phase 

(SPC). 

In this phase all the EPCs of the given function are 
selected and stored in the solution cube matrix, SCM. 
The given function is input in two matrices. In the 
first, denoted as the the true cube matrix TCM, all the 
true cubes are written in the ternary notation. In the 
other, denoted as the don’t care matrix DCM, only the 
don’t care cubes are written in the ternary notation. 
The variables are written in decimal numbers 1,2, and 
so on in the 0th row of the matrix, whereas the 0th 
column has the serial number of the cubes. In the EPC 
phase, only the TCM is considered. Before processing 
the TCM, it is checked whether the switching function 
is unate. 
Definition 3.1 : If, in the minimum-sum-of-products 
form of a switching function, each variable appears in 
its true form or its complemented form, but not both 
then the function is called a m a t e  functzon[9]. 
3.1 The UNATE-TEST 

First the TCM is subjected to the UNATE-TEST. 
If the function passes the test then it is a unate func- 
tion and all the input cubes are put in the solution 
cube matrix SCM, without any further processing. 
This is based on the following theorem[9]. 
Theorem 3.1.1 : A Switching function is unate if and 
only if it can be expressed as a sum of prime cubes, 
all intersecting at a common subcube. Furthermore, 
all the prime cubes are essential prime cubes. 

The proof of the theorem can be found in Sec 3.10 
of [9]. 

The UNATE-TEST is very simple and inexpensive. 
The TCM is scanned columnwise, starting from the 
first column. If there are only 1s or Os (ignoring 2s), 
but not both, in each of the columns then the func- 
tion is unate. This test effectively checks whether each 
variable of the function is appearing only in its true 
or complemented form. Let us consider the 6-variable 
function 

f2 = 220220 + 202220 + 022220 + 220202 + 202202 
+022202 + 220022 + 202022 + 022022 

The TCM for this switching function is as shown in 
Table 1 .  The 0-th row of Table 1 gives the variables 
in decimal numbers, and the 0-th column gives the 
serial number of cubes also in decimal number. If the 
UNATE-TEST is applied to this TCM, it will pass the 
test and all the 9 cubes will be stored in the SCM as 
EPCs. 

If a function fails to pass the UNATE-TEST then 
the input cubes are made to grow into adjacent 
cubes as much as possible, and the derived matrix 
is called the Prime Cube Matrix (PCM . Now the 
UNATE-TEST is applied again to the P t ’M. This is 
because the input function may not be initially ex- 
pressed as a sum of prime cubes. After expansion all 
the cubes are prime cubes. If the function is unate 
it will pass the test at this stage, and all the prime 
cubes are essential prime cubes and will be stored in 
the SCM. Let us now consider a non-unate switching 

Table 1: A 6 variable unate function 

0 1 1  2 3 4 5 6 
2 2 0 2 2 0  
2 0 2 2 2 0  
0 2 2 2 2 0  
2 2 0 2 0 2  
2 0 2 2 0 2  
0 2 2 2 0 2  
2 2 0 0 2 2  
2 0 2 0 2 2  
0 2 2 0 2 2  

function having 5 cubes 

f3 = 0002 + 1020 + 2201 + 1112 + 0211 

This will obviously fail the IJNATE-TEST. Now the 
cubes are made to grow into the adjacent cubes. The 
new cube matrix having all the cubes in the fully ex- 
panded form consists only of prime cubes, and there- 
fore becomes the prime cube matrix PCM. The PCM 
of f3 is shown in Fig. l(b). Note the important fact 
that two prime cubes 2121 and 1210 which will be gen- 
erated in the QM Quine McCluskey) algorithm have 

Off-set of the function. Now the UNATE-TEST is ap- 
plied to the PCM. It fails the test again indicating that 

not been generate d here. Nor have we generated the 
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it is not a unate function. Now, each cube is subjected 
to the EPCLTEST. If the result of the EPC-TEST is 
positive, then the cube is an EPC, and is stored in the 
solution cube matrix SCM. 
3.2 The EPC-TEST 

Each fully expanded cube of the PCM (Fig. l(b)) 
is now subjected to the essential prime cube test, 
EPC-TEST. For this a matrix called adjacent and in- 
tersecting cube matrix AIM, having all cubes which 
are adjacent to or intersecting with the cube under 
test is formed. From this another matrix called test 
matrix T M  is derived. T M  is obtained from AIM by 
deleting all the columns headed by Os and Is of the 
cube under test. The TM therefore, has CY number of 
columns and m rows, where a is the dimension of the 
cube under test Ct, and m is the number of rows of 
its AIM. The T M  is therefore a cube matrix having 
m cubes of N variables. It can be shown that these 
cubes are those subcubes of Ct which can be covered 
by other cubes of the function. 

T M  

00 2 22 1 1020 2 02 2201 10 0 

f o  o x  l l Z l 0  G i  01 211 1 1  

2201 1020 
1112 1112 

0221 
00 20 
20 10 
11 11 

$. $. 0211 1112 
(4 

00 01 11 10 

00 
01 

11 

10 

00 

01 

11 

10 

(b) 
00 01 11 10 

Figure 1: (a) Input CM of f3 (b) PCM (c) EPCs and 
Sharped SPCs (d) Selected and expanded SPCs 

Table 2: THE EPC-TEST TABLES 

Cube Under Test I 0221 1 2201 
AIM 1 2002 I 2002 

expands to 
all-2 cube 

EPC ? 

to the all-2 cube, then there is at least one subcube 
(which may be a 0-cube or a minterm) which is covered 
by Ct and only Ct. Hence C, is an EPC. Table 2 gives 
the EPC-TEST tables for the cubes 0221 and 2201. 
We see that the cube 0221 passes the EPC-TEST 
while 2201 fails the test. Among the other cubes of the 
PCM, cube 2002 will pass the EPC-TEST, whereas 
cubes 1020 and 1112 will fail the EPC-TEST. Thus 
after the EPC-TEST, all EPCs will be identified, and 
the rest of the cubes will be either RPCs or SPCs. The 
EPCs are stored in the solution cube matrix SCM. The 
EPC phase ends here and the SPC phase begins. 

4 The SPC Phase 
4.1 Iterative Mode : EPC-SPC Proce- 

If a t  the end of the EPC phase, all cubes turn 
out to be EPCs then the algorithm terminates. If on 
the other hand some or all cubes remain as RPCs or 
SPCs, then SPC phase begins. Now the EPCs stored 
in the SCM sharp the remaining cubes of the PCM. 
The sharped cubes for our example are shown as the 
three unshaded cubes of Fig. l(c). Note that after this 
first sharp operation, all RPCs, if any, get eliminated. 
These sharped cubes (unshaded in Fig. l (c ) )  are now 
treated as a new CM and also processed as a new CM. 
After the EPC phase of the new CM, in our example 
two EPCs (shown dotted in Fig. l(c)) 1121 and 1210 
are formed. These are then made to expand into the 
entire function. As a result, the cube 1121 expands to 
cube 2121. The cube 1210 does not expand. No cube 
of the new CM is left out after the new EPCs are se- 
lected. Hence, the algorithm terminates, giving two 
EPCs and two SPCs as solution cubes in the SCM. 
Thus, the function f3 after minimization becomes, 

dure 

f3 = 0221 + 2002 + 2121 + 1210 

If at any time of the iterative mode of the SPC 
phase the new CM does not generate an EPC, then the 
cubes of the new CM are only SPCs, and the function 
is a cyclic function. Then the cyclic mode of the SPC 
phase begins. 

Hence if the cubes of TM can combine and expand to 
form the all-2 cube, then all the minterms of Ct can 
be covered by other prime cubes and Ct cannot be an 
EPC. On the other hand if the T M  does not expand 
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Table 3: BISECT ALGORITHM 

0122 cc 2021 c, 2210 c, 1202 c, 0122 c, 
1202 1202 1202 ca2 0122 ca3 2021 ca4 
1022 1022 cbX 0122 2021 2210 
2210 2210 Cal 2021 2210 1202 
0221 c?bl 0122 

4.2 The Cyclic Mode : BISECT Proce- 

Whenever any CM, either the input CM or any in- 
termediate CM in the iterative mode does not gener- 
ate even a single EPC, then this CM is that of a cyclic 
function. QCAMP then goes into the cyclic mode, 
and the BISECT procedure is invoked. 

Let us explain the procedure by working out the 
solution of the following cyclic function plotted in 
Figure 2(a). 

dure 

f4 = 0122 + 1202 + 1022 + 2210 + 0221 

The function f4 has 5 prime cubes with no redundant 
cube. Let the processing start from cube 1. Part (a) 
of Table 3 is the input CM. It goes through several 
modifications until it comes to the minimum solution 
form as given in part (e) of Table 3. The steps of 
BISECT procedure are follows. 

First set up two count variables, acount (adjacent 
count) and ecount (bisect and expand count). Initial- 
ize each of them to O.Take the first cube of the CM as 
the cube under consideration. Call it C,. The algo- 
rithm for the BISECT procedure is as follows: 

1. Search in other cubes in serial order for a cube Cb 
which gets bisected by C,. 

2. If C, gets a Cb check if the half of Cb which is out- 
side C, is included wholly in one or more cubes of 
the function. If yes, then delete Cb, and continue 
search for another Cb for C,. 

3. If the half of cb which is outside C, is not in- 
cluded wholly, then expand this half of Cb in the 
function. Call the expanded cube Delete Cb 
(denoted by x in Table 3). 

4. Move the cubes below cb up. Place C;, as the last 
cube of the CM, and C, as the first cube of the 
CM. 

This completes one cycle of operations. Now, in the 
modified CM, C, which is the first cube becomes the 
C,, and the procedure repeats. Sometimes the outside 
half of a Cb may not be able to expand in the function. 
In this case cube C, abandons this Cb and Cb is kept 

If at any time c, does not get a Cb, it starts searching 
for a cube Ca that is adjacent to C,. A C, that does 
not get a Ca and then a Ce will surely get a Ca. When 
it gets a Ca, the acount is incremented and ecount 
is reset to 0. Similarly when a C, gets a C e  ecount 

undisturbed in the CM) and searches I or another Cb. 

is incremented and acoent is reset to 0 (the current 
value of the counts are shown after Ca and Cb in Table 
3). Whenever any one of the two counts equals the 
number of cubes in the CM, the procedure terminates, 
and the cubes of the CM becomes the solution cubes. 
When a C, gets a Ca the Ca becomes the first cube 
of the CM, and therefore, C, of the next cycle. Cubes 
below Ca are moved up, and cube C, is placed as the 
last cube of the CM. The cycle repeats itself, until 
the final SCM is obtained. To summarize, in each 
cycle the C, first tries to get a Cb and then a ce. On 
failure, it gets a Ca. In each cycle either the acount 
is incremented and ecount is reset to 0, or vice-versa. 
When one of the counts equals the number of cubes of 
CM, the procedure terminates and the CM becomes 
the SCM. Both at the beginning and end of BISECT, 
redundant cubes if any, are removed. Table 3 (a) to (e) 
show the 5 cycles of the BISECT algorithm to produce 
the 4 cube solution of the function f4, 

f4 = 0122 + 2021 + 2210 f 1202 

00 01 11 10 00 01 11 10 

a) Input CM of f4 having 5 cubes (b) Bisect 
solution Figure 2: o I f4 having 4 cubes 

5 The DC Phase 
Before coming to the DC phase, the true cubes 

of the function are fully minimized, and the solution 
cubes are stored in the solution cube matrix SCM. 
Now, the cubes of the SCM are made to expand and 
combine further in the cubes of the don't care matrix 
DCM. Some of the cubes of the SCM may not expand. 
A new matrix is now formed having the expanded true 
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cubes, and is called XCM. Another matrix called in- 
cluded cube matrix ICM, having those true cubes of 
S(:M which have expanded, is also formed. Consider 
the function, 

The function as plotted on the Karnaugh map is also 
shown in Fig. 3(a). If an included cube IC is covered 
by an expanded cube XC only partly and not fully 
then the IC! is split into subcubes, so that each subcube 
is now covered fully, by an XC. Each subcube of a split 
IC; is treated as a separate IC and is also stored as such 
in the ICM. 

In XCM the XCs are arranged in ascending order of 
their dimensions. Another matrix called cover matrix 
CWM is now derived from the XCM and the ICM. 
Each row of the CVM represents an XC of the XCM 
and each column of the CVM represents an IC. CVM 
also has an extra row and an extra column. The extra 
row has the weights of each column, whereas the extra 
column has the weights of each row, where weight is 
defined as follows: 

Definition 5.1 The number of 1’s of a row (col- 
umn) will be called its weight. 

All the solution cubes of the function are found by 
processing the CVM. While processing we will have 
to delete some of the XCs and ICs. The weights of 
each row and column of the CVM are now computed 
and placed in the extra column and row of the CVM. 
Now, first search for a column having weight 1. Such 
a column will be called a one weight colunin OWC. If 
an OWC exists, then select the XC of the row having 
the singleton 1 of the OWC as a solution cube. Delete 
this row and also the ICs covered by this XC. 

00 01 11 10 00 01 11 10 

00 

01 

11 

10 

Figure 3: (a) Input CM of f5 with the don’t cares. (b) 
Final Solution of func,tion f5. 

Now, delete the selected row and the ICs covered 
by the XC. If no OWC is found, then find the row 
having the least weight. Such a row will be called a 
least wezght row LWR. Search for a LWR starting from 
the first row of the table. Delete the first LWR found. 
Then compute the weights of the rows and columns 

once again. This gives a new table Search for OWC!, 
and repeat this procedure qintil all the rows of the 
table are deleted. For the function f5, the CVM goes 
through 7 iterations, and yields two solution cubes. 
Thus fs minimizes to 

fs = 2121 + 0022 

also shown in Figure 3(b). 

6 Special Functions 
There are some special functions which ESPRESSO 

I1 finds “unreasonable” and therefore hard to mini- 
mize. Achilles’ heel function is a good example of such 
functions[4]. It is defined as 

f = Xlx223 + 2425x6 + ’ ’  ’ + x3k-2~3k-lx3k 
where k. is any positive integer 

This function is unate, has 3k variables, and its 
minimum cover has k cubes. However, its complement 
f’ has a minimum cover of 3k cubes. 

The 6-variable unate function shown in Table 1 is 
in fact the Off-set of a 6-variable (k = 2) Achilles’ 
heel function. The last property of Achilles’ heel func- 
tions (the Off-set having a minimum cover of 3k cubes) 
poses problem to ESPRESSO I1 since it has to gen- 
erate the complement of the function. QCAMP does 
not have this problem. However, a very helpful char- 
acteristics of the function, which apparently has not 
been utilized by ESPRESSO I1 is its unateness. Since, 
the function, and therefore also its complement are 
unate, once it is expressed as a sum of prime cubes, 
all the prime cubes will be EPCs due to Theorem 3.1.1 
The computational results shown in Table 4 shows be- 
yond doubt the effectiveness of UNATE-TEST. The 
fact that QCAMP is faster than ESPRESSO I1 for 
the Achilles’ heel functions shows that UNATE-TEST 
has not been incorporated in the latter. It will be a 
good thing if UNATE-TEST is incorporated in all the 
minimization algorithms. 

Another class of functions which we have called 
“ODS”$one diagonal short) functions has all minterms 
of the unction except a pair of opposite minterms. 
(Such a pair of opposite minterms constitute a diag- 
onal in an n-dimensional hypercube). An ODS func- 
tion of n variables is a cyclic function having more 
than one solution of n cubes. The BISECT algo- 
rithm of QCAMP handles the function as efficiently as 
ESPRESSO 11. Figure 2(a) and (b) show a 4-variable 
ODS function. 

7 Computational Results 
The Table 4 compares the CPU time taken by 

ESPRESSO I1 and QCAMP by running various func- 
tions on both the algorithms. 

8 Conclusion 
Apart from presenting a very efficient and eco- 

nomical algorithm for minimization of Boolean func- 
tions, the algorithm presents for the first time the 
IJNATE-TEST and a new way of handling cyclic func- 
tions in the BISECT procedure which does not re- 
quire branching , inasmuch as the processing may 
start from any cube to obtain most of the time one 
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Table 4: Computat ion Results 

8 
10 
11 
12 
81 

243 
729 
2187 
128 
256 
512 
1024 
2048 

7 

Function 
Name 

.8 < .I 
8.7 < .1 
31.7 < .I 
103.5 < .1  

.2 .I 
2.2 .6 
22.0 6.9 
200.0 65.0 

.I < .1  

.6 .2 
2.2 .5 
8.4 2.0 
32.7 8.1 

.2 .1 

Achilles’ heel 
(On-set) 

9 
11 
12 

Achilles’ heel 
(Off-set) 

9 1.1 .7 
11 11.6 10.6 
12 47.4 45.5 

XOR 

ODS 

Input 
File 

21,7 
24,8 

30,lO 
33 , l l  
36,12 
12,81 
15,243 
18,729 

21,2187 
8,128 
9,256 

10,512 
11,1024 
12,2048 

7,12 
9,16 
11,18 

(i, n)’ 

12,22 

No. of cubes CPU Sec 
in Soh. on IBM RS 6000/580 

8 
10 
11 
12 
81 
243 
729 
2187 
128 
256 
512 
1024 
2048 

7 

= number of input cubes 

of the  minimum valid solutions. T h e  UNATE-TEST 
is very inexpensive b u t  is extremely powerful in  han- 
dling even the  Off-set of Achilles’ heel functions which 
ESPRESSO TI finds ha rd  to minimize. We recommend 
that UNATE-TEST be incorporated in  ESPRESSO 
11, and  for t h a t  ma t t e r ,  in all Boolean function mini- 
mizat ion algorithms. 
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