
Interface Synthesis for Embedded Applications

in a CoDesign Environment

Anupam Basu � R. S. Mitra P. Marwedel

Dept. of Computer Sc. & Engg. Informatik XII

I.I.T. Kharagpur University of Dortmund

India Germany

Abstract

In embedded systems, programmable peripherals

are often coupled with the main programmable

processor to achieve the desired functionality.

Interfacing such peripherals with the processor

quali�es as an important task of hardware soft-

ware codesign. In this paper, three important as-

pects of such interfacing, namely, the allocation

of addresses to the devices, allocation of device

drivers, and approaches to handle events and

transitions have been discussed. The proposed

approaches have been incorporated in a codesign

system MICKEY. The paper includes a number

of examples, taken from results synthesized by

MICKEY, to illustrate the ideas.

1 Introduction

The software in an embedded system may be

loosely said to consist of two parts: the applic-

ation software and the system software, where

the former achieves the functionalities delegated

to software (by hardware-software partitioning),

and the latter provides the interface between the

former and the hardware counterpart of the over-

all system. Thus, the objective of the system

software is to (a) implement the desired react-

ive behavior, by initiating state changes in re-

sponse to incoming events, and (b) drive the ac-

cessory hardware devices of the system, in order

that they perform the functionalities delegated to

them. In this paper, we propose techniques for

developing event-handlers and device-drivers for

embedded systems.

Frameworks for automated design of micro-

controller based systems have been proposed in

�Presently at the University of Dortmund on Hum-

boldt Fellowsh ip

[1, 2, 3, 4]. The thrust of recent research in

hardware software interfacing has been in the

�eld of synthesizing interfaces for devices. An

early work on the development of interfaces for

available devices [5] described techniques for im-

plementing the interface by hardware elements

alone. A later work [6] extended this technique

to include software implementations of the inter-

face as well, through a manual partitioning of the

interface functionalities into hardware and soft-

ware implementable partitions. This issue has

also been addressed in [7].

In embedded systems, events are either polled

by software or treated as interrupts to the nor-

mal processing of the microcontroller. In the lat-

ter case, the interrupt service code (ISC) gen-

erates the necessary response to the incoming

event. In many cases, the interrupt method is the

preferred way of handling events, since the mi-

crocontroller is then free to perform other tasks.

Hence, the development of the ISCs is a key is-

sue in the development of microcontroller based

systems. However, to our knowledge, no system-

atic methodology has yet been proposed for the

automated development of ISCs.

The work presented in this paper is a part of

the systemMICKEY- a system for hardware soft-

ware codesign of microprocessor based systems

[8]. In MICKEY, we accept the user speci�ca-

tion in the form of statecharts and re�ne them ,

using rules, to arrive at a control and data 
ow

graph (CDFG). The leaf level elements of the

CDFG, thus obtained designate primitive func-

tions (pfs), for which either hardware or soft-

ware implementations are known to exist in the

design library. The CDFG is then subjected to

hardware software partitioning, which allocates

implementations (either hardware or software),

to the primitive functions. A schedule of the op-



erations is also obtained in the course of parti-

tioning. The partitioning is achieved using con-

straint satisfaction techniques, so that the over-

all cost of the system is minimized and the time

constraints are met. This paper concentrates on

the interface design task, that follows hardware

software partitioning. This task synthesizes the

interface between the CDFG and the allocated

implementations, and thus addresses another im-

portant aspect of hardware software codesign.

Since, during the hardware software partition-

ing phase, some of the functionalities may have

been mapped to programmable devices, and some

tasks may have been assigned to be executed by

the processor in an asynchronous mode (interrupt

driven), the aspects considered in this paper for

interface synthesis are i) Allocation of noncon-


icting addresses to the devices placed on the sys-

tem bus; ii) Re�nement of the CDFG, to accom-

modate event-based and conditional transitions;

and iii) Re�nement of the CDFG, to accommod-

ate device drivers.

We assume uniprocessor environment and do

not allow any software concurrency for the pur-

pose of this paper.

2 Address Allocation

The selected microprocessor de�nes the available

address space and also imposes restrictions on

how the devices have to be mapped to it. For

example, for Intel 8085, ROM addresses should

start from 0, whereas for Motorola 6800, the start

address of ROM is not speci�ed { instead, the

ROM is constrained to end at address FFFF16.

The address allocation subtask assigns noncon-


icting addresses to the devices that are to be

placed on the system bus, such that these ad-

dress space constraints are satis�ed.

The algorithm for address allocation is shown

below. The algorithm �rst determines the

memory address space partitioning. For some

devices, like the Intel 8155, which require both

memory address space and I/O address space,

allocation of the memory address space will im-

pose a constraint on the I/O address allocation.

In such cases, I/O space is also allocated for that

device, immediately after memory address alloca-

tion. Then, the partitioning algorithm is applied

to the I/O space keeping in mind the already al-

located address ranges so that no address space

con
ict occurs.

allocate address

f
1. Partition memory space

2. Allocate memory blocks to constrained devices

3. Allocate memory blocks to remaining

memory-space devices

4. Partition I/O space

5. Allocate I/O blocks to remaining

I/O-space devices

g
partition address space

f
s = total address space

n = number of devices

for i=1 to n do

f bloxi = 1; sizei = address space of device i g
while (n� s � total address space) do

f
for all devices i having s=2 < sizei � s do

f
n = n+ bloxi;

bloxi = bloxi � 2;

sizei = sizei � 2;

g
if (s == 1) terminate with failure

s = s � 2

g
/* Each device (i) can now be allocated an address

space of size (bloxi � s). */

g

Example 1 As an example, consider the ad-

dress allocation for a 8085-based system hav-

ing the following hardware devices which need

a memory or I/O address space. The results are

given in Table 1. All I/O devices are connected

in I/O mapped I/O mode.

1. A ROM chip - 2716

2. An ADC chip - AD574

3. A timer chip - 8253

4. A general purpose I/O chip - 8155

2

For the peripheral devices that we have en-

countered so far, we have found that backtracking

can be avoided in the address allocation steps, by

considering the most constrained devices �rst. In

general, however, this may not be the case, and

backtracking may result in [6] when a wider range

of devices are considered.



Memory Space

Device Reqd. Space Alloc. Space

2716 80016 000016 - 7FFF16

8155 10016 800016 - FFFF16

I/O Space

Device Reqd. Space Alloc. Space

8253 416 016 - 3F16

AD574 116 4016 - 7F16

8155 816 8016 - FF16

Table 1: Addresses allocated for an example

problem

3 Handling Transitions

This subtask re�nes the CDFG, by transform-

ing the event based transitions and conditional

transitions into their detailed implementations.

Event based transitions are characteristic of re-

active systems, and thus this subtask forms a core

of the synthesis of software for microprocessor

based systems.

One way of implementing reactive systems is

to have a single forever-loop in the main process

and one subsidiary process for each event, and

implement the 
ow of control by call-and-return.

In this implementation, as eventsi (say e1 and e2

keep 
owing in, the system alternates between

the ISR for e1 and the ISR for e2, and the main

process becomes a dummy after the �rst occur-

rence of e1. Since the alteration is implemented

as a call-and-return, the system will ultimately

malfunction due to stack over
ow. MICKEY al-

leviates this problem by adopting the method de-

picted in Fig 1(a). Here the return addresses are

popped out of the stack, preventing the over
ow.

The duplicate codes of activity A can be removed

by making a jump from ISR-e2 to the main pro-

cess (see Fig 1(b))

However, for concurrent processes a di�erent

strategy is used in MICKEY. Consider two pro-

cesses (A,B) and (C,D) operating concurrently

(Fig 2(a)). Since we are considering unipro-

cessor target systems and no coroutines, A, B,

C, and D cannot all be simultaneously imple-

mented by software. Let us assume that C and

D are implemented by hardware which are star-

ted and stopped appropriately by the micropro-

cessor. Hence, the modi�ed process is as shown

POP POP

POP POP

A B A

Main ISR-e1 ISR-e2

(a)

ISR-e1

A B

Main ISR-e2

(b)

Figure 1: Implementing event-transitions by

jumps

in Fig 2(b). Here, the atomic actions for starting

and stopping the hardware devices have been at-

tached along with the respective transition arcs,

and the modules wait::1 and wait::2 are instances

of the pfs wait-for-event. For example, wait::1 is

waiting for an external event e3. On this event,

a transition to wait::2 will be made, after stop-

ping C and initiating D. The method adopted in

MICKEY for implementing such concurrent pro-

cesses is to implement each wait of the hardware

implementable process as a Return, thus return-

ing control to the other process. The ISRs for

the events of these hardware implementable pro-

cesses do not pop the stack, and since there is a

corresponding return at the end, stack size does

not grow inde�nitely. Hence, the implementation

is as shown in Fig 3.

If both the processes are allocated hardware

implementations, possibly in order to satisfy tim-

ing constraints, as shown in Fig 4(a), then this

method would derive the implementation shown

in Fig 4(b). Here, the wait of the Main CDFG is

not implemented as a Return, but as an explicit

wait-for-event.

The approach of using di�erent schemes for

software and hardware implementable processes

as well as for sequential and concurrent pro-

cesses results in relatively simpler CDFGs. These

strategies have been implemented in MICKEY as

transformation rules.



A B

Wait:1 Wait:2
Init C

Init D
e3/Stop C

e4/ Stop D
Init C

A B

C D

(a)

(b)

Figure 2: Concurrent processes with event-

transitions

In the above discussion, we have considered

transitions which are �red on the occurrence of an

event. Guard conditions can also be associated

with the transitions. Moreover, some events may

have to be disabled or enabled depending on the

current state. If an event causes several trans-

itions, they have to be taken care of. Conditions

may also be associated with transitions without

any associated event. In such cases the condition

has to be made explicit on the CDFG during re-

�nement. The re�nement rules in MICKEY ex-

plicitly handle all these di�erent situations.

4 Re�nement for Device

Drivers

A software may need to interact with hardware

devices for device initialization , reading/writing

values from/to a device, and stopping a device.

In general a hardware device may require a se-

quence of instructions for initialization, data in-

put, data output, and halting. For simple devices

like the ADC chip 7574, only an IN instruction

is required at the allocated address to read the

relevant data from the device. However for pro-

grammable devices, such as the Intel 8259 In-

terrupt Controller, a sequence of instructions is

required to initialize the device to the required

ISR-e1

POP

B

ISR-e3

Stop C
Init D

Ret

ISR-e4

Stop D

Init C

Ret

MAIN

Init C

A

ISR-e2

POP

Figure 3: Implementation of event-transitions in

concurrent processes by call-and-return

mode of operation. Further, for implementa-

tions that require additional data transforma-

tions, such as for implementing a Counter by a

timer of the Intel 8155 chip, these computations

have to be performed after the data is accessed

from the device.

Fig 5(a) shows the CDFG re�nement for driv-

ing hardware devices that execute till a request

for termination. Here, the hardware implement-

able state (Y) is replaced by actions for starting

and stopping the device, and a wait state. Such

re�nements are needed for functions such as a

square wave generator, or a counter. The re�ne-

ment for functions that terminate on their own,

such as a timer, require a di�erent re�nement is

shown in Fig 5(b), where the hardware device is-

sues an event indicating its termination, and this

event is used to make the necessary transition.

The further re�nement of the device's com-

mands (i.e. start and stop) is dependent on

the speci�c implementation that has been selec-

ted. These implementation speci�c re�nements

also modify the data 
ows of the CDFG. An ex-

ample is shown below for the implementation of

a Counter by the Intel 8253.

Example 2 Consider the implementation of an

up-counter by an Intel 8253, in Mode 0. The

counter (see Fig 6(a)) is initiated by a pf, say X,

on the event e1. On the event e2, the counter



(b)

ISR-e3 ISR-e4

Stop C

Init D

Ret

Stop D

Init C

Ret

Main ISR-e2 ISR-e1

Init A

Init C

Wait

Stop B

Init A

Stop A

Init B

RetRet

Init A
Wait:1 Wait:2

Wait:3 Wait:4

Init C

Init A
e2/Stop B

e1/Stop A
Init B

Init D
e3 /Stop C

e4/Stop D
Init C

(a)

Figure 4: Special case: All concurrent processes

implemented by hardware

is stopped and control passes to another pf, say

Y. The counter scans a pulse stream generated

by a pf, say A. After the counter is stopped, the

count data (i.e. the number of pulses in the pulse

stream, in the duration when the counter was

active) is passed to a pf, say B.

The result of applying the re�nement step of

Fig 5(a) on the CDFG of Fig 6(a), is shown in Fig

6(b). The next re�nement, shown in Fig Fig 6(c),

is for expanding the start and stop actions and for

modifying the data 
ows. The start action of the

Counter involves programming the 8253 in Mode

0, and sending initial data to it. (The latter is

required in order to implement the up-counter by

the 8253's down-counter.) The stop action sends

a Latch command to the 8253, reads the down-

X

Z

X

Z

ev(Y-end)

Y(hw) Start Y

(b)

X

Z

e

Y (hw)

X

Wait

Z

e

Stop Y

Start Y

(a)

Figure 5: Re�nements for hardware implementa-

tions

count data, and stores the data after interpreting

it appropriately (to form the corresponding up-

count data).

The input data 
ow is simply a connection of

the output of A to the 8253's CLK input. The

output data 
ow is broken, and B now takes in-

put from the memory location that stores the

count data. 2

5 Conclusion

In this paper, we have presented methodologies

for addressing three important aspects of inter-

face synthesis during hardware software cosyn-

thesis of embedded systems. They are allocation

of noncon
icting addresses to the devices, interfa

ced with the microprocessor system, accommod-

ating event based and conditional transitions by

re�nement of the Control and Data Flow Graph



X

P1

Wait

P2

Y

A

B

e2

e1

(b)

Counter

X

A B

Y

Counter

(a)

X

e1

S1

S2

Wait

e2

S3

S4

S5

S6

Y

(c)

M

B

A

D

Clk

S5: Convert Data

S6: Store Data
S3: Send Latch command
S4: Read Data

S1: Send Mode Data

S2: Send Init Data

M:Memory count data

D: Timer of 8253

P1: Start Counter

P2: Stop Counter
Data flow
Control Flow

Figure 6: Interfacing an Intel 8253, for imple-

menting an Up-Counter

and inclusion of device drivers through the re�ne-

ment of CDFGs. Achieving these tasks leads a

designer to the next phase - that of software syn-

thesis. The re�nement methodol ogies proposed

in this paper, are rule based and hence does not

guarantee optimality of the solution, but ensures

good and correct designs. We have illustrated the

methodologies by examples, which have been ex-

tracted from complete designs accomplished by

MICKEY - the hardware software codesign sys-

tem, which embodies the techniques presented.

References

[1] D. E. Thomas, J. K. Adams, and H. Schmit,

\A model and methodology for hardware

software codesign," IEEE Design and Test,

pp. 6{15, Sept, 1993.

[2] A. Kalavade and E. A. Lee, \A hardware soft-

ware codesign methodology for DSP applic-

ations," IEEE Design and Test, pp. 16{28,

Sept, 1993.

[3] K. Keutzer, \Hardware software codesign and

ESDA," in Proc 31st DAC, pp. 435{436, 1994.

[4] R. K. Gupta, Cosynthesis of Hardware and

Software for Digital Embedded Systems. PhD

thesis, Electrical Eng. Dept., Stanford Uni-

versity, 1993.

[5] G. Borriello, \A new interface speci�cation

methodology and its application to trans-

ducer synthesis," Tech. Rep. UCB/CSD-

88/430, Computer Sc. Divison, Univ. of Cali-

fornia, Berkeley, May, 1988.

[6] P. Chou, R. Ortega, and G. Borriello,

\Synthesis of hardware/software interface in

microcontroller-based systems," in Proc. Intl.

Conf. on CAD (ICCAD-92), pp. 488{495,

1992.

[7] J. S. Sun and R. W. Brodersen, \Design

of system interface modules," in Proc. Intl.

Conf. on CAD (ICCAD-92), pp. 478{481,

1992.

[8] R. Mitra, P. Roop, and A. Basu, \An over-

view of Mickey: An expert system for auto-

mating the design of microprocessor based

systems," SADHANA, Journal of the Indian

Academy of Science, vol. 21, no. 6, pp. 719{

739, Dec. 1996.


