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Abstract
We present a novel formulation, called the WaMPDE, for solving systems with
forced autonomous components. An important feature of the WaMPDE is its
ability to capture frequency modulation (FM) in a natural and compact man-
ner. This is made possible by a key new concept: that ofwarped time, related
to normal time through separate time scales. Using warped time, we obtain a
completely general formulation that captures complex dynamics in autonomous
nonlinear systems of arbitrary size or complexity. We present computation-
ally efficient numerical methods for solving large practical problems using the
WaMPDE. Our approach explicitly calculates a time-varying local frequency
that matches intuitive expectations. Applications to voltage-controlled oscilla-
tors demonstrate speedups of two orders of magnitude.

1 Introduction
Oscillatory behaviour is crucial to the operation of many electronic
systems, such as voltage-controlled oscillators (VCOs), phase-locked
loops (PLLs), frequency dividers,Σ∆ modulators, etc.. It is, how-
ever, difficult to predict the response of such systems in a satisfactory
and reliable manner. In this paper, we present the WaMPDE (Warped
MultiratePartialDifferentialEquation), a new approach for analysing
forced and unforced oscillatory systems. The WaMPDE provides a
unified framework for treating phenomena like quasiperiodicity (par-
ticularly frequency modulation (FM)), mode-locking and period multi-
plication. (Conventional methods, discussed in Section 2, are typically
error-prone and computationally intensive for oscillators in general,
and especially for forced ones exhibiting FM-quasiperiodicity.) The
key to the WaMPDE is a compact representation of FM signals us-
ing functions of several time variables, some of which are “warped”,
i.e., stretched or squeezed by different amounts at different times in
order to make the density of the signal undulations uniform. The vari-
ation of this stretching is much slower than the undulations themselves,
hence a multiple time approach is used to separate the time scales. A
particularly important feature of the WaMPDE is that, unlike previous
methods, it automatically and explicitly determines the local frequency
as it changes with time. Our approach also eliminates the problem of
growing phase error that limits previous numerical techniques for os-
cillators.

Numerical computations for the WaMPDE can be performed us-
ing time-domain or frequency-domain methods, or combinations. In
particular, existing codes for previous methods like the MPDE and
harmonic balance (see Section 2) can be modified easily to perform
WaMPDE-based calculations. The use of iterative linear techniques
(e.g., [Saa96, RLF98]) enables large systems to be handled efficiently.

The remainder of this paper is organized as follows. Section 2 con-
tains a brief review of previous work. Section 3 is a tutorial-style ex-
position of the main concepts of the WaMPDE formulation, the math-
ematical details of which are presented in Section 4. In Section 5,
the new methods are applied to practical VCO circuits and compared
against existing techniques.

2 Previous Work
Most previous analyses of oscillators have typically apply purely lin-
ear concepts (e.g., [Ven82, Got97]) to obtain simple design formu-
lae. Nonlinear analytical studies have largely been of polynomially-
perturbed linear oscillators (e.g., [Far94]). For real oscillators, nu-
merical simulation has been the predominant means of predicting de-
tailed responses. A fundamental problem, however, is the intrin-
sic phase-instability of oscillators, leading to unbounded increase in
phase error during simulation. Boundary-value methods like shooting
(e.g., [NB95, TKW95]) and harmonic balance (e.g., [NB95, MFR95])
can be applied to unforced oscillators in steady-state, but not to forced
oscillators with FM-quasiperiodic responses, which require an imprac-
tically large number of time-steps or variables (see Section 3). In prac-
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Figure 1: Example 2-tone quasi-periodic signaly(t)
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Figure 2: Corresponding 2-periodic bivariate form ˆy(t1;t2)
tice, the separation of the time scales is often reduced artificially to
make the problem tractable. As illustrated in Section 5, such ad-hoc
approaches can lead to qualitatively misleading results.

The warped-time approach presented in this paper is a general-
ization of a recent multi-time approach (the Multirate Partial Dif-
ferential Equation (MPDE) [BWLBG96, Roy97, Roy98]) for non-
autonomous systems with widely separated time scales. Earlier ef-
forts to generalize the MPDE to autonomous systems [BL98] used
non-rectangular boundaries to capture frequency variation. It has been
shown [Roy98], however, that this approach is limited to oscillations
that eventually become periodic, and cannot, for instance, accommo-
date FM-quasiperiodicity.

3 Essential concepts
In this section, we introduce several concepts at the core of this work.
We first review why it is advantageous to use two or more time
scales for analysing quasiperiodic signals, using amplitude-modulated
(AM) signals for illustration. Then we show that although frequency-
modulated (FM) signals can be quasiperiodic, the multi-time ap-
proaches that work for AM do not confer the same advantages. Next,
we introduce the concept of warped time and show how it can be used
to remedy the situation for FM. Finally, we outline the basic features
of the WaMPDE.

Consider the waveformy(t) shown in Figure 1, a simple two-tone
quasiperiodic signal given by:

y(t) = sin

�
2π
T1

t

�
sin

�
2π
T2

t

�
; T1 = 0:02s; T2 = 1s (1)

The two tones are at frequenciesf1 = 1
T1

= 50Hz andf2 = 1
T2

=

1Hz, i.e., there are 50 fast-varying sinusoids of periodT1 = 0:02s mod-
ulated by a slowly-varying sinusoid of periodT2 = 1s. When such sig-
nals result from differential-algebraic equation (DAE) systems being
solved by numerical integration (i.e., transient simulation), the time-
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Figure 3:x̂1: simplistic bivariate representation of FM signal
steps taken need to be spaced closely enough that each rapid undula-
tion of b(t) is sampled accurately. If each fast sinusoid is sampled atn
points, the total number of time-steps needed for one period of the slow
modulation isnT2

T1
. To generate Figure 1, 15 points were used per sinu-

soid, hence the total number of samples was 750. This number can be
much larger in applications where the rates are more widely separated,
e.g., separation factors of 1000 or more are common in electronic cir-
cuits.

Now consider a multivariate representation ofy(t), obtained as fol-
lows: for the ‘fast-varying’ parts ofy(t), t is replaced by a new variable
t1; for the ‘slowly-varying’ parts, byt2. The resulting function, now of
two variables, is denoted by ˆy(t1;t2):

ŷ(t1;t2) = sin

�
2π
T1

t1

�
sin

�
2π
T2

t2

�
(2)

Note that ˆy(t1;t2) is periodic with respect to botht1 and t2, i.e.,
ŷ(t1+T1;t2+T2) = ŷ(t1;t2). The plot ofŷ(t1;t2) on the rectangle 0�
t1� T1, 0� t2� T2 is shown in Figure 2. Because ˆy is bi-periodic, this
plot repeats over the rest of thet1-t2 plane. Note also that ˆy(t1;t2) does
not have many undulations, unlikey(t) in Figure 1. Hence it can be
represented by relatively few points, which, moreover, do not depend on
the relative values of T1 and T2, unlike Figure 1. Figure 2 was plotted
with 225 samples on a uniform 15�15 grid – three times fewer than
for Figure 1. This saving increases with increasing separation of the
periodsT1 andT2.

Note further that it is easy to recovery(t) from ŷ(t1;t2), simply by
settingt1 = t2 = t, and using the fact that ˆy is bi-periodic. Given any
value oft, the arguments to ˆy are given byti = t modTi .

The above discussion has illustrated two important features: 1.the
bivariate form can require far fewer points to represent numerically
than the original quasiperiodic signal, yet 2. it contains all the infor-
mation needed to recover the original signal completely. These con-
cepts are the key to the MPDE approach [BWLBG96, Roy97, Roy98]
for analysing non-autonomous systems. We refer the reader to,
e.g., [Roy98, Roy97] for further details of the non-autonomous case.

When the DAEs are autonomous, frequency-modulation (FM) can
be generated. FM cannot, in general, be represented compactly as
in Figure 2. We illustrate the difficulty with an example. Consider the
following prototypical FM signalx(t) with instantaneous frequency
f (t):

x(t) = cos(2π f0t +kcos(2π f2t)) ; f (t) = f0�k f2 sin(2π f2t) (3)

Following the same approach as for (1), a bivariate form can be defined
to be

x̂1(t1;t2) = cos(2π f0t1+kcos(2π f2t2)) ; with x(t) = x̂1(t;t): (4)

Note that ˆx1 is periodic int1 andt2, hencex(t) is quasiperiodic with
frequenciesf0 and f2. Unfortunately, ˆx1(t1;t2), illustrated in Figure 3,
is not a simple surface with only a few undulations like Figure 2. When
k� 2π, i.e.,k� 2πm for some large integerm, thenx̂1(t1;t2) will un-
dergo aboutm oscillations as a function oft2 over one periodT2. In
practice,k is often of the order off0f2 � 2π, hence this number of un-
dulations can be very large. Therefore it becomes difficult to represent
x̂1 efficiently by sampling on a two-dimensional grid. It is also clear,

from Figure 3, that representing (3) in the frequency domain will re-
quire a large number of Fourier coefficients to capture the undulations.

The WaMPDE approach of this work resolves this problem by
bending the path along whichy(t) is evaluated away from the diag-
onal line t1 = t2 = t. Since along the bent patht2 = t; but t1 is no
longer equal tot; we refer tot1 as a warped time-scale. As mentioned
in Section 1, this effectively results in stretching and squeezing the
time axis differently at different times to even out the period of the fast
undulations.

We illustrate warping by returning to (3). Consider the following
new multivariate representation ˆx2(τ1;τ2), together with thewarping
functionφ(τ2):

x̂2(τ1;τ2) = cos(2πτ1); φ(τ2) = f0τ2+
k

2π
cos(2π f2τ2): (5)

We now retrieve our one-dimensional FM signal (i.e., (3)) as

x(t) = x̂2(φ(t);t): (6)

Note that both ˆx2 andφ, given in (5), can be easily represented with
relatively few samples, unlike ˆx1 in (4). Note further thatφ(t) is
the sum of a linearly increasing term and a periodic term, hence its
derivative is periodic. This periodic derivative is equal to the instanta-
neous frequency, given in (3), ofx(t). For general FM signals (possibly
with non-sinusoidal waveforms and varying amplitudes), this deriva-
tive, still well-defined, is thelocal frequencyof the signal.

To find an efficient bivariate representation, a crucial step in our
approach is to avoid specifying the functionφ(t) a priori, but to impose
a smooth “phase” condition instead on the bivariate function, and use
this to calculateφ. The phase condition can, for instance, require that
the phase of theτ1-variation of the function should vary only slowly
(or not at all) asτ2 is changed. Alternatively, a time-domain condition
on the bivariate function (or a derivative) can be specified.

The above discussion has summarized our basic strategy for rep-
resenting FM efficiently; it now remains to concretize these notions
in the framework of an arbitrary dynamical system defined by DAEs.
This is accomplished in the following section by the WaMPDE, which
is a partial differential equation similar to the MPDE, but with a multi-
plicative factor of∂φ

∂t modifying one of the differential terms. By solv-
ing the WaMPDE together with the phase condition mentioned above,
compact representations of the solutions of autonomous systems can
be found by efficient numerical methods.

4 The Warped Multirate Partial Differential Equa-
tion (WaMPDE)

We consider a nonlinear system modelled using vector differential-
algebraic equations (DAEs), a description adequate for circuits [CL75]
and many other applications:

d
dt

q(x(t)) + f (x(t)) = b(t) (7)

In the circuit context,x(t) is a vector of node voltages and branch cur-
rents;q() and f () are nonlinear functions describing the charge/flux
and resistive terms, respectively.b(t) is a vector forcing term consist-
ing of inputs, usually independent voltage or current sources.

We now define the two-dimensional WaMPDE to be1:

ω(τ2)
∂q(x̂)
∂τ1

+
∂q(x̂)
∂τ2

+ f (x̂(τ1;τ2)) = b(τ2): (8)

τ1 is a warped time scale whileτ2 is unwarped. The warped time
variable has an associated frequency functionω(τ2), which depends
on the unwarped time variable. ˆx is bi-variate,i.e., a function of the
two time variables.

The utility of (8) lies in its special relationship with (7). Consider
any solution ˆx of (8), together with the relations

x(t) = x̂(φ(t);t); φ(t) =
Z t

0
ω(τ2)dτ2: (9)

1Far more general forms for the WaMPDE have been developed [NR98], of which (8)
is a special case that suffices for the present exposition.



With these definitions, it can be shown by substitution thatx(t) above
satisfies (7).

Next, we describe how (8) can be solved to determine ˆx(τ1;τ2) and
ω(τ2). We first assume that ˆx(τ1;τ2) is periodic inτ1 with period 1:

x̂(τ1;τ2) =
∞

∑
i=�∞

X̂i(τ2)e
jiτ1 (10)

We note that if ˆx(τ1;τ2) satisfies (8), then so does for ˆx(τ1+∆;τ2), for
any ∆ 2 R – this is simply because (8) is autonomous in theτ1 time
scale. We remove this ambiguity in the same way as for unforced au-
tonomous systems,i.e., by fixing the phase of (say) thekth variable to
some value,2 e.g., 0. This is the phase constraint mentioned in Sec-
tion 3.

We expand (8) in one-dimensional Fourier series inτ1, and also
include the phase constraint, to obtain:

∞

∑
i=�∞

�
∂Q̂i(τ2)

∂τ2
+ jiω(τ2)Q̂i(τ2)+ F̂i(τ2)

�
ejiτ1 = b(τ2) (11)

ℑ
n

X̂k
l (τ2)

o
= 0 (12)

Q̂i(τ2) and F̂i(τ2) are the Fourier coefficients ofq(x̂(τ1;τ2)) and
f (x̂(τ1;τ2)), respectively.k and l are fixed integers;̂Xk

l (τ2) denotes
the l th Fourier coefficient of thekth element of ˆx.

(11) and (12) together form a DAE system which can be solved for
isolated solutions. In practice, the Fourier series (11) can be truncated
to N0 = 2M+1 terms withi restricted to�M; � � � ;M. In this case, (11)
and (12) lead toN0 + 1 equations in the same number of unknown
functions ofτ2.

Applying periodic or initial boundary conditions to the DAE sys-
tem (11) and (12) leads to quasiperiodic or envelope-modulated FM
solutions, and also captures other interesting phenomena like mode
locking and period multiplication. First, we consider periodic bound-
ary conditions.

4.1 Quasiperiodic and envelope solutions
Assumeb(t) periodic with periodT2 or angular frequencyω2 = 2π

T2
.

Also assume that the solution of (8) is periodic in both arguments,i.e.,
x̂(τ1;τ2) is (1;T2)-periodic andω(τ2) is T2-periodic. ω(τ2) andφ(t)
can then be written as:

ω(τ2) = ω0+ p0(τ2); φ(t) = ω0t + p(t) (13)

whereω0 is a constant,p0(�) is a zero-meanT2-periodic waveform, and
its integralp(t) is aT2-periodic function.

We motivate these assumptions by showing that such periodic
forms forx̂(�; �) andω(�) capture FM- and AM-quasiperiodicity, mode-
locking and period multiplication.

By expressing ˆx(τ1;τ2) in Fourier series and substituting into (9),
we obtain:

x(t) =
∞

∑
i;k=�∞

X̂i;keji(ω0t+p(t))ejkω2t
(14)

where the constantŝXi;k are Fourier coefficients of ˆx.
Consider, for example, the term of (14) withi = 1 andk= 0:

X̂1;0ej(ω0t+p(t)) = X̂1;0 cos(ω0t + p(t))+ j X̂1;0 sin(ω0t + p(t)) (15)

When ω(t) is nontrivially T2-periodic, p(t) is also nontriviallyT2-
periodic. (15) can then readily be recognized to be a frequency-
modulated signal with instantaneous frequencyω(t). Hence the
WaMPDE with periodic solutions can capture not only FM signals,
but also the more general form of (14).

Next, we indicate how (11) and (12), with periodic boundary con-
ditions, can be turned into a set of nonlinear equations for numerical

2or some slow function ofτ2; the selection of a slowly-varying phase condition is, in
fact, the key to compact numerical representation of ˆx(�; �).

solution3. (11) and (12) is discretized atN1 points along theτ2 axis,
covering the interval[0;T1). The differentiation operator is replaced
by a numerical differentiation formula (e.g., Backward Euler or Trape-
zoidal), and when the periodic boundary conditionX̂i(0) = X̂i(T1)
is applied, a system ofN1(N0 + 1) nonlinear algebraic equations in
N1(N0 + 1) unknowns is obtained. This set of equations is solved
with any numerical method for nonlinear equations, such as Newton-
Raphson or continuation, to obtain the solution of the WaMPDE.
Further, when iterative linear algebra and factored-matrix methods
(e.g., [Saa96, RLF98]) are employed, computation and memory re-
quirements grow almost linearly with size, making calculations practi-
cal for even large systems.

By applying initial conditions rather than periodic boundary con-
ditions, (11) and (12) can be solved for aperiodic

�
fX̂i(τ2)g;ω(τ2)

�
.

These envelope-modulated solutions can be useful for investigating
transient behaviour in systems with FM. To obtain envelope solu-
tions, (11) and (12) are solved by time-stepping inτ2 using any DAE
solution method, starting from (say)τ2 = 0. An initial condition�
fX̂i(0)g;ω(0)

�
is specified. For typical applications, a natural initial

condition is the solution of (7) with no forcing,i.e., with b(t) constant.
The procedure for discretizing of the WaMPDE for quasiperiodic or
time-stepping solutions is similar to that for the MPDE; further details
may be found in [Roy98].

5 Applications
A voltage-controlled oscillator (VCO) was simulated using the new
WaMPDE-based numerical techniques. The oscillator consisted of an
LC tank in parallel with a nonlinear resistor, whose resistance was neg-
ative in a region about zero and positive elsewhere. This led to a stable
limit cycle. The capacitance was varied by adjusting the physical plate
separation of a novel MEMS (M icro ElectroMechanicalStructure)
varactor with a separate control voltage.

The damping parameter of the mechanical structure was initially
assumed small, corresponding to a near vacuum.
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Figure 4: VCO: frequency modulation

An envelope simulation was conducted using purely time-domain
numerical techniques for bothτ1 andτ2 axes. The initial control volt-
age of 1.5V resulted in an initial frequency of about 0.75MHz; the
controlling voltage was a sinusoid with time-period 30 times that of
the unforced oscillator. Figure 4 shows the resulting change in local
frequency, which varies by a factor of almost 3.

Figure 5 depicts the bivariate waveform of the capacitor voltage
(i.e., one entry of the vector ˆx(τ1;τ2), with the warpedτ1 axis scaled
to the oscillator’s nominal time-period of 1µs). It is seen that the con-
trolling voltage changes not only the local frequency, but also the am-
plitude and shape of the oscillator waveform.

The circuit was also simulated by traditional numerical ODE meth-
ods (“transient simulation”). The waveform from this simulation,
together with the 1-dimensional waveform obtained by applying (9)
to Figure 5, are shown in Figure 6. The match is so close that it is
difficult to tell the two waveforms apart; however, the thickening of

3We outline a time-domain method for theτ2 axis, leading to a mixed frequency-time
method; purely time-domain or frequency-domain methods are equally straightforward.
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Figure 5: VCO: bivariate representation of capacitor voltage
the lines at about 60µs indicates a deviation of the transient result from
the WaMPDE solution. Frequency modulation can be observed in the
varying density of the undulations.
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Figure 6: VCO: WaMPDE vs transient simulation

The VCO was simulated again after two modifications: the damp-
ing of the MEMS varactor was increased to correspond to an air-filled
cavity, and the controlling voltage was varied much more slowly,i.e.,
about 1000 times slower than the nominal period of the oscillator.
The controlling voltage was sinusoidal with a period of 1ms. Figure 7
shows the new variation in frequency; note the settling behaviour and
the smaller change in frequency, both due to the slow dynamics of the
air-filled varactor.
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Figure 7: Modified VCO: frequency modulation

The new bivariate capacitor voltage waveform (not shown) was a
sinusoid along the warped time scaleτ1, but unlike Figure 5, varied
very little along the forcing time-scale. This was corroborated by
transient simulation, the full results of which are not depicted due
to the density of the fast oscillations. A small section of the one-
dimensional waveform, consisting of a few cycles around 0.3ms, is

shown in Figure 8. The one-dimensional WaMPDE output of (9) is
compared against two runs of direct transient simulation, using 50 and
100 points per nominal oscillation period, respectively. It can be seen
that even at an early stage of the simulation, direct transient simula-
tion with 50 points per cycle builds up significant phase error. This
is reduced considerably when 100 points are taken per cycle, but fur-
ther along (not shown), the error accumulates again, reaching many
multiples of 2π by the end of the simulation at 3ms. In contrast, the
WaMPDE achieves much tighter control on phase because the phase
condition (a time-domain equivalent of (12)) explicitly prevents build-
up of error. To achieve accuracy comparable to the WaMPDE, transient
simulation required 1000 points per nominal cycle, with a resulting
speed disadvantage of two orders of magnitude.
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Figure 8: Modified VCO: WaMPDE vs transient (a few cycles at 10%
of the full run; phase errors from transient increase later)

6 Conclusion
We have presented a new, efficient, approach for analysing the dynam-
ics of oscillatory systems. The approach uses multiple time scales and
time warping functions to obtain a partial differential formulation (the
WaMPDE) for autonomous dynamical systems. Solving the WaMPDE
by efficient numerical methods enables us to predict complex phe-
nomena, such as frequency modulation, in large autonomous systems
quickly and accurately. We have extended the notion of instantaneous
frequency to general settings and provided methods for calculating it
explicitly. We have applied our methods to VCO circuits and shown
that they have significant speed and accuracy advantages over previ-
ously existing techniques.
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