
ReDeEm-RTL: A Software Tool for Customizing Soft Cells for Embedded 
Applications 

Surendra G and S K Nandy 
Supercomputer Education and Research Center 

Indian Institute of Science 
Bangalore 560 012 INDIA 

[surendra 0 rishi. , nandy @]sere. iiscernet. in 

Paul Sathya 
Central R & D 

STMicroelectronics 
Noida 201 301 INDIA 
padsathya C3st.com 

Abstract 

Signifcant reduction in design time for System on 
Chip (SoC): applications can be achieved through IP 
reuse. Such a design methodology encourages design- 
ers to develop IP blocks that add to a library of so3 
cells in anticipation of the market trends and meet 
stringent time to market constraints. However for ap- 
plication specipc ICs all the hardware in each IP block 
may not be used. This gives rise to an opportunity to 
reduce the number of hardware components in such 
blocks depending on the application and customizing 
the IP or soft cell for the application context. In this 
paper we present a method to automatically detect and 
remove logic in RTL blocks (soft cells) that are not 
used by the embedded application thereby reducing 
area and powel: A prototype tool ReDeEm-RTL (Re- 
Design in Embedded RTL, read as Redeem RTL) has 
been implemented to remove all redundant logic and 
its performance although dependent on the type of ap- 
plication; shows that sizable reduction in logic can be 
obtained. 

1. Introduction 

Miniaturization of pervasive consumer electronic 
items has led to the emergence of System on Chip 
(SoC) solutions. Furthermore the convergence of 
computers, telephony, internet appliances and wireless 
products justify the development of SoC based devices. 
Products based on SoC usually face unique design con- 
straints that may include low power, portability or tem- 
perature requirements. Intellectual Property (IP) reuse 
allows all designers to create new system blocks that 
can be quickly integrated with others. Using existing 
IP is a practical solution to managing the complexity 
of current day electronic designs constrained by time 
to market considerations. The idea is to create a stable 
framework into which prequalified IP suited to a partic- 
ular application can be placed. Often IP which is best 

suited for an application set will not be available. In 
such cases an IP which is possibly closest can be used. 
Statistics have shown that over 25% of the IP used in a 
complete design or SoC belongs to the same company 
undertaking that design. The Virtual Socket Interface 
Alliance (VSI)[ I ]  was institutionalized to support the 
needs of the industry for design reuse. Virtual Compo- 
nent (VC) is a block that meets the VSI specifications 
and is used as a component in virtual socket design en- 
vironment. 

VCs can be of three types: Soft, Firm and Hard. 
Soft VCs are delivered in the form of synthesizable 
HDL, and have the advantage of being flexible but 
the disadvantage of not being as predictable in terms 
of performance (ie. timing, area, power)[ I]. This is 
because Soft VCs are not optimized in structure and 
topology for performance and area through floorplan- 
ning or routing. 

Area and power are two of the key factors to be 
considered during the design of an embedded system. 
It has been found that multiplexer networks account 
for more than 40% of power consumption in control- 
flow intensive circuits[2] with clocks and registers also 
accounting for significant power[3]. Consequently a 
lot of research has gone into reducing the power in 
control-flow intensive circuits. Concepts such as re- 
source sharing[4], clock gating[5], glitch reduction[2] 
and more recently control generated clocking[6] have 
been proposed. The concepts of area and power reduc- 
tion in the IP domain is relatively new and we confine 
our attention to this domain in the paper. The article in 
[7] gives a good insight to IP based design. 

The reuse of previously created blocks to de- 
sign Application Specific Integrated Circuits (ASIC) 
or Application Specific Instruction Processors (ASIP) 
presents the opportunity for a designer to reduce some 
logic (within the block) that would not be used by the 
application. While reprogrammability is desirable, its 
cost in terms of power consumption and area can be 
excessive. If the application set is known reasonably 
well apriori it can be used to create new power and area 

85 
0-7695-083 1-6/00 $10.00 0 2000 IEEE 

http://C3st.com


efficient designs. In this paper we present a method 
to automatically remove logic that is not utilized by 
the application in embedded systems made up of RTL 
components. We assume that a new component block 
is created by making use of previously designed ones 
(IP reuse) with the RTL description of each block be- 
ing available. We have developed a software tool - Re- 
DeEm-RTL that is used to tailor conditional constructs 
in the RTL blocks to suit the embedded application. 

Our method is based on language constructs and 
can be applied to any logic description. We will re- 
fer to the terms “RTL reuse” and “RTLVC” which 
are anologous to IP reuse and VC blocks respectively 
for the rest of the paper. The only difference between 
an IP block and a RTL-VC is that some Soft VCs may 
be encrypted while a “RTL-VC” is not. The tool Re- 
DeEm-RTL can be used for logic optimization, for ex- 
ample by a design team which is involved in creating 
a new component C, making use of already existing 
components say A and B (in the form of RTL) which 
were designed by another team. The customization 
of RTL-VCs is done for a set of applications (here- 
after called application set) which belong to a particu- 
lar class (such as for example DSP). We consider logic 
optimization carried out for ”logic cells” and not “non 
logic” cells. We assume that the application context 
is fully characterized in terms of execution traces (test 
sequences) for the application in a manner that cap- 
tures both the dynamic control flow and dynamic data 
ranges. The rest of the paper is organized as follows. In 
Section 2 we describe our methodology for hardware 
reduction. Section 3 describes ReDeEm-RTL. Section 
4 presents results of applying our methodology to ST7 
(a processor developed by ST Microelectronics) and in 
section 5 we summarize the contributions of this work 
and set goals for further work. 

2. Methodology 

In this section we propose a methodology that ex- 
ploits RTL reuse for logic reduction in application spe- 
cific embedded architectures. A high level flow dia- 
gram of the methodology when applied to the proces- 
sor core is shown in Figure 1. Processor RTL refers to 
the RTL description of various components in the pro- 
cessor core while peripheral RTL refers to other com- 
ponents. 

The procedure begins with compiling a fully char- 
acterized application to obtain a program ROM file. 
The RTL description of the RTL-VCs is subjected to 
simulation along with the stimulus to get an initial set 
of results denoted in the figure by Results1 . The same 
RTL serves as input to ReDeEm-RTL along with ap- 
propriate stimuli. The RTL-VCs are modified by Re- 
DeEm-RTL into an equivalent representation depend- 
ing on the logical constructs and semantics in a man- 

ner described in section 2.1. An execution trace of the 
application is obtained when the modified RTL is sub- 
jected to simulation. ReDeEm-RTI, reduces the RTL 
logic based on the trace information obtained. Sim- 
ulation is again carried out on the reduced RTL and 
a comparison is made between the results obtained 
through reduced RTL (Results2) and those obtained 
by the original RTL (Results 1) to verify correctness. 
Therefore ReDeEm-RTL works in two phases. In the 
first phase the RTL-VCs are modified to enable col- 
lection of statistics during simulation runs and in the 
second the modified RTL is reduced. 

Given a set of RTL components and an algorithm 
for the embedded application, an oplimal match be- 
tween algorithm and architecture is obtained by fol- 
lowing the procedure below: 

1. Introduction of stubs to determine code coverage 
in RTL-VCs. 

2. Determining unused RTL statements post simula- 
tion. 

3. Automatic removal of unused logic in each 
RTL-VC. 

Our algorithm parses the RTL description of the 
RTL-VCs and determines all those conditional state- 
ments which are not executed for a particular applica- 
tion. ReDeEm-RTL incorporates the iibove mentioned 
algorithm and automatically reduces the logic in each 
RTL-VC and also determines the number of times a 
conditional block statement is utilimd. This data can 
be used to tailor the hardware to suit the application 
and also incorporate clock gating in sparsely used logic 
functional units if this has not been implemented in the 
original RTL-VC. Clock gating is a method in which 
the clock to a functional unit is turned off when the 
unit is idle. This reduces the switching activity thereby 
saving power[5]. 

2.1. Introduction of stubs for code coverage 

The detection of conditional statements involves the 
parsing of the RTL description of each RTL-VC while 
looking for conditional constructs. The following rep- 
resent conditional behaviour in common Hardware De- 
scription Languages (HDLs). 

if-then else statements 

conditional signal assignments (concurrent) 

0 case statements 

2.1.1. If-then else statements 

For each if-then else statement a stub function 
is added so that it is possible to determine which of the 

86 



START 

Program ROM 
tile for 

Simulation 
I 
1 

Compile wr 

- 

I I I 1  ReDeEm-RTL 1 1 Processor 1 1 Peripheral 

Modified 
Equivalent 
Processor 

RTL 

Stimuli 

HDL Simulation 

Stimuli 

ReDeEm-RTL 

Reduced Peripheral 
Processor 
RTL 

HDL Simulation G 
I - 

Debug 0 &-4 Compare 

Reduced RTL 
for synthesis 

HDL Simulatio 
Power. Area 

Figure 1. Flow Diagram 

statements were utilized (executed) by the application. 
Consider for example the following if -else condi- 
tional block. 

if(condition)do-X else do-Y ; 

This is modified into 

if{condition} 
stub-function( ) ; 
do-X ; 
else 
stub-function() ; 
do-Y; 

The stub function when executed writes an unique to- 
ken into a trace file called Redeem-trace. 

2.1.2. Concurrent statements 

Concurrent signal assignment statements are converted 
into if-then else statements. The stub functions 
are then introduced following the procedure described 
above. For example consider a general concurrent 
statement which assigns to X the value of signal Y 
when condition Z is true, else assigns P if the con- 
dition is false. This concurrent statement is executed 
whenever the value of Z changes. 

The above statement is written in terms of 
if -then else statements as given below. 

if ( Z  is true) 
x <= Y 
else X <= P 

2.1.3. Case statements 

Stub functions can be inserted directly into the case 
statements. For example 

case (condition) 
condition-valuel: 
condition-value2: 
end case; 

is converted to 

case (condition) 
stub-function() 
condition-valuel: 
stub-function() 
condition-value2: 
end case; 

All other types of conditional and concurrent state- 
ments can be realized in terms of if -else or case 
statements. 

87 



2.2. Determining unused logic 

The modified RTL description of the RTL-VCs 
obtained using the method described in the previ- 
ous section is subjected to a simulation with the 
target application set as input. Each conditional 
statement when executed also executes its associated 
stub-function(). The stub-function() is a 
function written in the same High level language as 
the RTL-VCs. Each s tub-function ( ) writes an 
unique token into Redeem-trace when it is executed. 
At the end of simulation Redeem-trace contains in- 
formation regarding the usage of RTL logic statements 
in the form of tokens. Tokens not present in Re- 
deem-trace indicate the unused RTL statements. The 
default case condition is not considered as redundant 
and never removed during the logic reduction process. 

2.3. Automatic removal of unused logic 

The first step described in section 2.1 modifies the 
RTL description of the RTL-VCs and fills certain data 
structures. In the second step simulation is done with 
the modified RTL and the application set as inputs to 
ReDeEm-RTL. Redeem-trace contains information 
which is the union of all conditional statements uti- 
lized by the application set. Making use of the data 
collected from the above two steps unused statements 
are determined. These unused statements are removed 
from the RTL description of the RTL-VCs thereby re- 
ducing logic. The automatic logic reduction process 
determines the type of conditional statements that were 
executed and accordingly modifies the RTL. 

Some of the pros and cons of the methodology are 
mentioned below. The optimization of the design for 
low power and area is done based on a target applica- 
tion set. This naturally takes into account characteris- 
tics of programs belonging to that application set. The 
stimuli plays an important role in determining unused 
logic. Components in embedded systems are often 
prone to harsh external conditions. Some statements 
are exclusively meant to handle such situations. An 
example would be the return from an invalid state in 
a FSM to a valid one. Code meant to enable such a 
return will not be executed in normal conditions. An- 
other example would be statements concerning inter- 
rupts which may or may not be executed. Logic other 
than those which handle abnormal behaviour are op- 
timized to suit the application set. Depending on the 
application it is possible to limit excepting conditions 
to the bare minimum relevant to the application. 

3. The tool : ReDeEm-RTL 

In this section we briefly describe the details of 
ReDeEm-RTL and how the method described in the 

previous section is implemented. The: first step for 
the user of the tool is to specify all the RTL-VCs 
for which logic optimization is required. For exam- 
ple the user may want to apply the customization pro- 
cess only to the core components of the embedded pro- 
cessor and not the peripherals. ReDeEm-RTL parses 
the RTL files looking for conditional ccinstructs. Con- 
current signal assignment statements are converted to 
if -else statements. Whenever an if statement is 
encountered during parsing it is pushed onto a stack 
along with information regarding its llocation in the 
RTL file. The contents from the top of the stack are 
popped and stored in a list when an end if state- 
ment is encountered or when the if conditional block 
terminates. This gives information ablout how many 
times nesting occurs in a conditional block as well as 
locations of nested statements which is used by Re- 
DeEm-RTL during the reduction phase (phase 2). The 
conditional statements are then modified by adding 
stubs. The location and type of each conditional state- 
ment along with other relevant information are stored 
in a list. 

This modified RTL is subjected to simulation runs 
with the embedded application set as its input. At the 
end of the simulation Redeem-trace contains the to- 
kens of all executed conditional statements. The list 
is searched with the token as the key tlo determine the 
node and type of statement executed. The number of 
conditional statements in each conditional block is de- 
termined. A conditional block is a set ithat contains all 
conditional statements beginning with im i f  statement 
and terminated by an end i f  statement. 

A similar logic is applied to case :statements. The 
concurrent signal assignment statements which were 
converted to if -else statements are restored back to 
their original form from the data stored in the list. 

4. Experimental setup and results - A 
VHDL case study 

We now describe how the tool works for RTL-VCs 
written in VHDL. The first step described in section 
2.1.1 was the introduction of a stub--function ( ) . 
This is done using the write and writeline func- 
tions of the TEXT10 package as described below. 
Consider the following if -elsi f conditional block: 

if condition1 then 

elsif condition2 then 

end if; 

The above RTL description is modified by adding stubs 
which would indicate whether the conditional state- 
ments get executed during simulation runs. The modi- 

88 



fied RTL description of the above conditional block is 
shown below. 

Application Reduction in 
if -else 
statements 

if condition1 then 

write(outline,numberl); 
-- outline is of type line 
writeline(outfile,outline); 
--outfile is the trace file. 

--stub 

Reduction in 
case 

statements 

elsif condition2 then 
write (outline, number2 ) ; 
writeline(outfile,outline); 

end if; 

Concurrent signal assignment statements are 
converted into if - else statements within a 
process statement with appropriate sensitivity list 
and the above method is applied. For example: 

Z <= A when ( X > 4 ) else B; 

process (X) 
-- declare variables 
if X > 4  then 
write(outline,number3); 
writeline(outfile,outline); 
Z<=A; 
else 
write(outline,number4); 
writeline(outfile,outline); 
Z<=B;  
end if; 
end process; 

is converted to: 

The modified RTL is subjected to simulation with the 
application as input and the trace information is stored 
in Redeem-trace. For above code the if statement 
writes the token number1 to Redeem-trace when 
it is executed. The elsif statement when executed 
writes token number2. The simulation is carried out 
for a number of application instances belonging to the 
application set. Therefore at the end of simulation, if 
Redeem-trace contains only the token number2 it 
means that only the elsif statement was utilized by 
the application and the if statement may be removed. 

The third step involves automatic removal of unused 
RTL statements. The automatic logic reduction pro- 
cess also determines the type of conditional statements 
executed and accordingly modifies the RTL. 

In order to obtain a setup similar to that found in a 
typical IP reuse environment, we used the core com- 
ponents of the ST7 processor developed by STMicro- 
electronics and the following associated components: 
clock generator, bus interface unit, DMA interface, 
PWM generator, serial communication interface and 
other standard peripherals. Five different applications 

were used to test the ST7 processor along with the 
VHDL files describing the core of the processor. We 
would like to emphasize here that the applications were 
typical of the environment where the ST7 processor 
is used. The ST7 processor is used in motor control, 
mouse control etc. The test applications used belong 
to some of the categories mentioned above. The mod- 
ified RTL obtained during the first phase of process- 
ing by ReDeEm-RTL was subjected to simulation with 
each of the applications mentioned in Table 1 along 
with appropriate stimuli as input using the Synopsys 
VHDL simulator. Significant amounts of reduction in 
RTL statements were obtained by ReDeEm-RTL as in- 
dicated by the results in Table 1. 

The percentage reduction in if -else statements 
for example is calculated as the ratio of the difference 
between the number of conditional statements in the 
original RTL (if, elsif, else) and the reduced 
RTL and the number of conditional RTL statements 
in the original. The overall reduction is obtained by 
computing the aggregate of all the above test appli- 
cations which was 8% and 12% for if-else and 
case statements respectively. The functional verifi- 
cation strategy was adopted in order to verify the cor- 
rectness of the reduced RTL. It must be noted that the 
results obtained for the test applications should not be 
taken individually as a measure of reduction. Each of 
the five test applications used, represent different func- 
tionalities which are found typically in the environ- 
ment in which we used the processor. The above re- 
sults were obtained when the reduction algorithm was 
applied only to the core of the processor. Since the al- 
gorithm works based on the constructs of VHDL, the 
logic of other components may be similarly reduced 
by simply subjecting their RTL descriptions to the first 
phase of ReDeEm-RTL. The results shown in the table 
clearly indicate that the amount of logic reduction that 
can be obtained depends on the application. Prelimi- 
nary results have shown that a single unused if state- 
ment in an if -else block contributes to atleast 14% 
area savings in that block. The area reduced depends 
upon the complexity of the logic which has been deter- 
mined to be redundant by ReDeEm-RTL. The method 
adopted although similar in some respects to code cov- 
erage analysis differs in the intent. The main intention 

89 



of code coverage is to find areas of a program not exer- 
cised by a set of test cases. Consequently a variety of 
coverage measures such as statement coverage, deci- 
sion coverage, condition coverage etc are used. A Soft 
VC is a predesigned , preverified block which guar- 
entees correct functionality (this is ensured by the de- 
signer) as it would have gone through several phases of 
testing including coverage analysis before being dis- 
tributed. As a result ReDeEm-RTL is not required 
to implement other forms of coverage except decision 
coverage to determine redundant logic. 

5. Conclusions and future work 

We have described ReDeEm-RTL - a tool for au- 
tomatic RTL reduction in systems made up of sev- 
eral predesigned components created by different de- 
sign teams. We would like to emphasize that this tool 
can be used to optimize any system made up of sev- 
eral RTL-VCs, as it works based on the language con- 
structs with which components are described. We have 
assumed an optimistic approach to determine unused 
logic for a target application set as it is based on ex- 
ecution traces. The results indicate that RTL reduc- 
tion depends upon the embedded application for which 
the optimization is being carried out while power and 
area savings depend on the complexity of the redun- 
dant logic. 

The future work planned, is to validate the func- 
tionality at gate level by synthesizing the reduced RTL 
obtained by ReDeEm-RTL. Cost (Area, Power) and 
performance analysis of the reduced RTL against the 
original RTL is also planned. 

References 

[ 11 VSI Alliance architecture document, www.vsi.org 

[2] Anand Raghunathan,S.Dey, and N.K.Jha, “Regis- 
ter transfer level power optimization with empha- 
sis on glitch analysis and reduction”, IEEE Trans 
on Computer-Aided Design , Vol 18 No.8, August 
1999, pp. 1 114- 1 13 1. 

[3] M Srikanth Rao, and S K Nandy, “Controller re- 
design based register and clock power minimiza- 
tion’’, Proceedings of IEEE Intlernational Sym- 
posium on Circuits And Systems, Geneva, May 
2000. 

[4] T. Kim, N. Yonezawa, J. W.S.Liu, and C.L.Lin, 
“A Scheduling algorithm for conditional resource 
sharing - A Hierarchial reduction approach”, IEEE 
Trans on Computer Aided Design, April 1994, Vol 
13 No.4, pp. 425-437. 

[SI L.Benini, P.Siegel, and G.De bdicheli, “Saving 
power by synthesizing gated clocks for sequen- 
tial circuits”, IEEE Design and Twt of Computers, 
Dec 1994, pp. 32-40. 

[6] M Srikanth Rao, and S K Nan’dy, “Power min- 
imization using control generated clocks”, Pro- 
ceedings of 37th ACM, Design ,4utomation Con- 
ference, Los Angeles, June 2000. 

[7] Yervant Zorian, and Rajesh K Gupta, “Design and 
test of core-based systems on chips”, IEEE Design 
and Test of Computers, Oct-Dec 1997, pp. 14-25. 

90 

http://www.vsi.org

