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A number of DSP algorithms involve linear 
transforms employing weighted sum computations, where 
the weights are fixed at design time. Add-shvt 
implementation of such a computation results in a Data 
Flow Graph that has multiple precision variables and 
functional units. We explore the potential of precision 
sensitive approach for  the high level synthesis of such 
multi-precision DFGs. We focus on fixed latency 
implementation of these DFGs. We present register 
allocation, functional unit binding and scheduling 
algorithms to exploit the multi-precision nature of such 
DFGs for area efficient implementation. The proposed 
approach is fairly generic and could be applied to multi- 
precision DFGs involving any type of functional units. 
Signijkant improvements of upto 27% have been obtained 
over the conventional high-level synthesis approach. 

I. Introduction: 

DSP applications are based on DSP kernels such as 
filtering (FIR and IIR) and transforms (DCT and FFT 
etc.). Many of these transforms involve weighted sum 
computations wherein the weights are fixed at the design 
time. Add-Shift based hardware implementation of such 
fixed-coefficient multiplications is preferred over a 
multiplier based realization for both area and performance 
efficiency. The number of computations in such 
implementation can be minimized with techniques like 
common sub-expression elimination [ 1-3,101. The 
computational DFG (Data Flow Graph) structure depicting 
such add-shift implementation comprises variables and 
computations whose precision varies significantly. For 
example, consider a 32-tap FIR filter with 16-bit 
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coefficients and 12-bit data. The resultant DFG in add- 
shift implementation would have variables and 
computations with precision varying from 12 bits at input 
to as high as 33 bits at the output. 

In this paper, we address the area efficient resource 
shared implementation of such multi-precision DFGs. This 
problem can be solved as a conventional high-level 
synthesis problem. However, since the techniques 
involved in the conventional high-level synthesis ignore 
the varying precision nature of DFG, the resultant 
implementation is likely to be sub-optimal. We present a 
precision sensitive behavioral synthesis technique where 
we address all the three major components of high level 
synthesis, viz. register allocation, functional unit binding 
and scheduling. In each of these steps we exploit the 
multi-precision nature of the DFG to achieve most area 
efficient implementation. Since these three components of 
high-level synthesis are interdependent [7], we present an 
integrated methodology to take advantage of the coupling 
between them. 

To the best of our knowledge the problem of 
supporting multi-precision arithmetic hasn’t been looked 
at in the context of high-level synthesis of ASICs 
(Application Specific Integrated Circuits). Some processor 
architectures have been proposed to efficiently perform 
variable precision computations, mostly with the 
granularity of 8/16/32 bits [8,9]. Multi-precision arithmetic 
in context of Image and Video Processing applications is 
dealt with in [4]. The inherent parallelism of such 
applications is exploited for multi-precision functional unit 
allocation and binding. Here also, the multi-precision 
arithmetic is restricted to byte or word boundaries. 
Restricting to word or byte boundaries is often necessary 
in processors to optimize memorycpu transfers. This 
restriction does not apply to ASICs and the scope of area 
optimization is significantly enhanced. Moreover, 
scheduling has not been addressed in [4], considering 
massive parallelism available in the Image and video 
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applications. Such parallelism is not present in multiplier- 
less implementation of weighted sum transforms and 
hence those techniques can’t be directly applied 

Although most of our techniques are described in the 
context of add - shift implementation, they are generic 
enough and could be applied to multi-precision DFGs 
involving any type of functional units. The rest of the 
paper is organized as follows. In the next section we 
describe the register allocation and functional unit-binding 
problem in the context of multi-precision arithmetic. A 
precision sensitive register allocation and functional unit- 
binding algorithm is also presented. Section I11 describes 
scheduling and the integrated HLS (High Level Synthesis) 
methodology. Results are presented in section IV. These 
results justify our claims of area efficiency over 
conventional methods. Conclusions are drawn in section 
V and areas of future work are outlined. 

11. Register allocation and functional unit 
binding: 

In this section we address the problem of register 
allocation and functional unit binding in the context of 
multiple precision DFGs. The objective is to exploit the 
varying precision of the DFG to attain maximum area 
efficiency. The register allocation problem has been 
extensively studied in the literature [6,7,11,12]. The input 
to the register allocation problem is the variable lifetime 
graph, which is derived from the given schedule of the 
DFG. The following example illustrates the improvement 
that can be achieved using precision sensitive approach for 
register allocation. Consider the variable lifetime graph of 
a 4 variable Data Flow Graph as shown in the figure 1. 
The conventional left-edge allocation algorithm [ 121 will 
allocate variables A,C and B,D to two registers Reg1 and 
Reg2 respectively. This allocation is insensitive to the 
precision of the variable. If variables A,B,C and D have bit 
precision of 8,15,16,9 respectively the resultant 
implementation would require two registers of 16 and 15 
bits respectively. 

On the other hand a precision sensitive approach for 
allocation should allocate variable A,D and B,C to two 

precision respectively. We now present a precision 
sensitive, register allocation algorithm. The pseudo code 
for this algorithm is shown in figure 2. 

II(A). Precision sensitive register assignment 
algorithm : 

For a given schedule of the IIFG, the input to this 
algorithm is the lifetime graph of variables. The 2-tuple 
<start(v), end(v)> characterize the lifetime of each 
variable. Similar to the left-edge algorithm [ 121, the 
variables are sorted with +tart(v)> of their lifetime as the 
primary key. But instead of having; secondary key as the 
<end(v)>, it is taken as bit precision of the variables in 
decreasing order. The algorithm maintains two ordered 
working lists (“free-unit” and “cur-var”) and a regular list 
(“busy-unit”). The list “free-unit” holds the units ( 
registers in this case) freed at a control step. The list 
“busy-unit” holds the list of units currently holding some 
variable. These two lists get modified as the variables are 
assigned to units and as the units are freed due to the 
completion of lifetime of variables in each control step. 
List “cur-var” holds the variables having their gtart(v)> 
same as the control step being considered. 

Algorithm starts from 0th control step with 
“free-unit”, “busy-unit” being empty lists. Variables 
having their Btart(v)> equal to 0 are added to the list 
“cur-var”. At each control step, the members of the 
“cur-var” list are assigned to the members of the 
“free-unit” list in order, These unils holding variables 
are moved to the list “busy-unit”. 

412 



Any unallocated variables in “cur-var” list are allocated to 
new units and these units are also added to the list 
“busy-unit”. At each control step the any unit being freed 
from the list of ‘busy-unit” are moved to ordered list 
“free-unit” maintaining the order of decreasing precision. 
When all the variables in “cur-var” get allocated, the 
algorithm continues to next control step and performs the 
same operations. This continues till all control steps are 
exhausted. 

The foundation of the register allocation algorithm is 
laid on the following facts: 

a. The variation in bit precision of the register should 
be minimum. This ensures optimum utilization of a 
register. 

b. The number of the registers used should be 
minimum similar to the left edge algorithm. 

II(B). Functional unit binding 

The effect of precision sensitive approach for 
functional unit binding is shown in the figure 3. Consider 
the DFG shown in figure 3. A precision insensitive 
approach could result in implementation as shown in 
figure 3(A), having two adders of 18-bit and 19-bit width. 
Where as a precision sensitive approach to functional unit 
binding shall bind the operations as shown in figure 3(B) 
requiring two adders of 13-bit and 19-bit width 
respectively. The functional unit binding can be viewed as 
a special case of register assignment problem where the 
lifetime of computation is always one control step. Note 
that this kind of a formulation gives us a flexibility to 
handle multi-cycle operations as well. Here again we use 
similar algorithm as register allocation algorithm to bind 
operations to functional units .The minor changes being: 

a. Each computation is considered as a variable 

b. Each type of computation (adder ,shifter) is 
having lifetime of one control step. 

considered separately. 

Figure 3. Multi-Precision Functional Unit Binding 

111. Scheduling: 

Depending upon the application in consideration the 
scheduling can be resource constrained or time constrained 
[7]. Most of the DSP applications, being used in real time 
systems are tightly constrained with time rather than 
resources. Keeping this in mind, we address time 
constrained scheduling of multi-precision DFGs. The 
objective here is to obtain an area efficient implementation 
of the computational structure represented by the DFG, 
without increasing its latency. 

A resource shared multi-precision multiplier-less 
DFG implementation comprises adders, shifters, registers, 
multiplexers and interconnect. While the conventional 
approach minimizes the number of functional units we aim 
to minimize the number of bits of the functional units. 
Qualitatively, this can be understood with the help of 
following simple example. Consider the DFG shown in the 
figure 4(A). The function W(operator) refers to the bit 
width of operator. For example if addition operator “A” 
requires precision of 10 bits then W(0~)=10 .  Precision 
insensitive time constrained scheduling methodology 
designed to minimize the number of functional units may 
schedule the DFG requiring two adder units of Width 16 
bits and 17 bits respectively. A precision sensitive 
scheduling technique would require two adders of width 
12 and 17 bits respectively (figure 4(C)). The relative 
effect of bit-width on the area of the functional and storage 
units i s  discussed next, which further enhances our 
approach of area minimization. Since scheduling, 
allocation and binding are interdependent [7], we address 
the problem of scheduling allocation and binding in an 
integrated manner. We use an iterative improvement 
methodology, based on the implementation-cost 
minimization. Register allocation and functional unit 
binding are actually performed for each of the feasible 
intermediate schedules to obtain the implementation cost. 

I Figure 4. DFG and Possible Schedules I 

413 



The computational complexity of both register allocation 
and functional unit binding proposed by us in section 11, is 
polynomial time. Hence, we can afford to do these 
computations for each of the schedules, rather than relying 
on some estimation mechanism. This modification 
contributes to the quality of the implementation and 
significant gain is achieved without being computationally 
expensive. 

III(A). Cost function 

In this subsection we show the relation between 
number of bits of functional units and their area. Since we 
aim to reflect the implementation area in the cost function 
formulation, we propose to associate different weights per 
bit to the each of the resources (adder, shifter and storage). 
The relative weights are dependent upon the technology 
used and the type(architecture) of functional units 
employed. Now, we illustrate the computation of the 
relative weights associated with each of the resources in 
our approach. To keep our technique fairly generic we 
have used a generic block synthesis tool Synopsys 
MODULE COMPILER to synthesize the adders, shifters 
and registers for a number of bit widths. We have used the 
tool in area optimization mode with the Texas Instruments 
0.15 micron ASIC library. The area indicated is in terms of 
equivalent NAND gates The objective of performing 
synthesis of each of the resources is to establish the 
validity of our cost function quantitatively. It is however, 
not necessary to perform the whole synthesis and 
approximate weights can be assigned the bits of each 
resource and it’s architecture. Figure 5 shows the variation 
of an adder area with respect to its width. These curves are 
plotted for Carry Save Adder(CSA), Ripple Carry 
Adder(RCA), and Carry Look Ahead Adder(CLA) 
architectures. Similarly, figure 6 shows the NAND gate 
equivalent area obtained for Shifter and Storage Registers. 
It can be interpreted that the area increases in a fairly 
linear manner with the number of bits for the data-path 

Fig 5. Adder Area Vs. Width 
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components, hence a cost function having linear 
dependence on the bits of functional and storage unit can 
be justified. Cost function is decided by the per bit area 
requirement of different data-path units. Relative weights 
per bit of the shifter and adder with respect to a register are 
approximately calculated based on the technology and 
architecture used. The cost function in add shift 
implementation is driven by number of adder, shifter and 
register bits. 

Where : 
Cost = W, * N,+ W, * N, +- W, * N,; 

W, : Weight per bit of unit i. 
NI : Number of bits of unit i. 

Here we haven’t considered the interconnect in the 
optimization phase of the scheduling algorithm. We 
assume availability of Over the Cell (OTC) routing area, 
which is usually true in cell based ASIC designs. This is 
possible because of 5-6 or more laycm of metallization in 
contemporary technology. We also cxclude the mux area 
from the formulation of our cost function. Firstly, the 
contribution of the muxes in the area is quite small as 
compared to that of other components. Secondly, the mux 
area is directly proportional to its width and number of 
select signals. As our algorithm aims at minimizing the 
width of functional and storage unifs, it reduces the mux 
width implicitly and mux area is reduced consequently. 
We now present the scheduling algorithm. 

III(B). Precision sensitive scheduling algorithm: 

Problem : Schedule a given multi-precision DFG 
and allocate the functional and storage units with the aim 
of minimizing the total number of bits of functional and 
storage units with appropriate weight associated to them. 

Given :A DFG G=(V,E), where number of nodes ‘V’ 
signifies number of intermediate variables and directed 
edge Fi,j=(v,,v,) depicts the dependency of node j on i. 
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Objective : To schedule the DFG (i.e. to assign each 
computation to a control step) such that : 

1. For each edge E,j=(vi,vj) : the node j is scheduled 
in control step later than the node i. 

2. Number of scheduling steps are equal to the 
minimum possible for that DFG( the latency is not 
increased). 

Test 
Cases 

FIR-1 

3 .  The allocation results in optimized use of 
resources in terms of minimizing the total bits of 
functional and storage units. This further translates to 
minimizing the area requirement by the functional and 
storage units. The pseudo code for the algorithm is 
formally presented in figure 7. For scheduling we use KL 
[5] -based iterative improvement heuristic with either As 
Soon As Possible (ASAP) or As Late As Possible (ALAP) 
[7] scheduling being the initial solution. The objective of 
ASAP and ALAP is to obtain a slack within which a node 
can be moved, so that the latency bound is not exceeded. 
For each of the incremental scheduling step we perform 
complete allocation and binding of functional and storage 
units and the cost for the new schedule is computed with 
weights, as shown in the pseudo code. 

IV. Results: 

~1 Conventional Scheduling and Conventional scheduling and Precision. Integrated precision Sensitive Scheduling 
$ Allocation Sensitive Allocation and Allocation 

@ Add Sh. Reg Cost Add Sh. Reg Cost Impr Add Sh. Reg Cost Impr 

8 bits Bits bits CI bits Bits bits C2 (%) bits Bits bits C3 (%I 
AI SI RI A2 s2 R2 A3 S R3 

100 191 199 473 1107.4 176 191 412 1009.6 8.83 130 129 386 806.7 27.14 

In this section we report the results of 
implementation of our approach. The algorithms were 
implemented in C and were run on Solaris (SunOS-5) on 
Ultra-SPARC Ili CPU. The first column of table-I 
represents the test cases. Second column lists the number 
of computation nodes(adds and shifts) in the DFG. In the 
first three sub-columns of the third column the adder(Al), 
shifter@ ]),and register bits(S1) respectively are listed as 
obtained with the standard conventional scheduling, 
allocation and binding. The fourth sub-column of third 
column shows the resultant cost function computed with 
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the weights associated with different resource-bits which 
signifies the area of implementation. The last sub-column 
lists the percentage improvement over the conventional 
approach The relative weights obtained with CLA as the 
adder architecture, as per the approach illustrated in 
section I11 are: 
W,= 1.54, W, = 1.71 and W,= 1.00. 

column shows the respective results 
(A2,P&,R2) for precision sensitive allocation and binding 
with conventional scheduling. The last column shows the 
respective results (A3,P&,R3) for an integrated precision 
sensitive scheduling allocation and binding approach. The 
objective is to illustrate the overall gains obtained with 
precision sensitive approach in both scheduling and 
allocation phases of the high level synthesis. Note that in 
all the cases we have used the same KL based iterative 
improvement scheduling technique with the cost function 
being precision insensitive in the conventional approach 
and precision sensitive in the other case. 

We have run our synthesis technique over a number 
of real life examples of FIR filters and DCT/IDCT 
computations[ 141 and color space conversions[ 131. The 
inputs FIR1 to FIR4 in the first column represent FIR 
filters of 24 to 36 taps respectively. The inputs with the 
name IDCT(DCT) i-j represents 1 -Dimensional 
IDCT(DCT) computation of i data points with the 
coefficient width j. NTSC and UVW are color space 
conversion matrix computations and the suffix indicates 
the coefficient width. We have achieved gains in area as 
high as 27.21% and average gains of 23.14% over the 
standard precision insensitive HLS procedures. 

The fourth 

V. Conclusion and Future Work 

We have for the first time, to the best of our 
knowledge, addressed the problem of High Level 
Synthesis (HLS) of multi-precision DFGs. We have 
presented a precision sensitive scheduling algorithm. We 
have used an iterative improvement approach with cost 
function being formulated in terms of number of bits of 
arithmetic operators and storage units. An algorithm for 
register allocation and functional unit binding for variable 
precision arithmetic has also been proposed. We have also 
proposed an integrated HLS methodology to exploit the 
interdependence of scheduling, allocation and binding. 
Optimization ratios of as high as 27.21%(23.14% average) 
over the conventional fixed precision techniques establish 
the potential of our approach. 

The size of a functional unit affects its area as well as 
performance. The system clock period is decided by the 
delay of the largest or most complex functional unit. We 
are planning to enhance this work by incorporating 
techniques such as scheduling high delay functional units 

over multiple cycles. This will h a d  to smaller clock 
periods and the system performance (throughput as well as 
latency) will improve. 
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