
High Level Synthesis of Multi-precision Data Flow Graphs

Vikas Agrawal
Supercomputer Education and

Research Center,
Indian Institute of Science,

Bangalore- 12.
vikas@serc.iisc.ernet.in

Abstract

Anand Pande*
Broadcom India Pvt. Ltd.

Sara farazi ,
87/27, Richmond Road,

Bangalore-25
anand.pande@broadcom.com

Mahesh M. Mehendale
Texas Instruments (I) Ltd.

Golf View Homes,
Murugeshpalaya,

Bangalore- 17
m-mehendale@ti.com

A number of DSP algorithms involve linear
transforms employing weighted sum computations, where
the weights are fixed at design time. Add-shvt
implementation of such a computation results in a Data
Flow Graph that has multiple precision variables and
functional units. We explore the potential of precision
sensitive approach for the high level synthesis of such
multi-precision DFGs. We focus on fixed latency
implementation of these DFGs. We present register
allocation, functional unit binding and scheduling
algorithms to exploit the multi-precision nature of such
DFGs for area efficient implementation. The proposed
approach is fairly generic and could be applied to multi-
precision DFGs involving any type of functional units.
Signijkant improvements of upto 27% have been obtained
over the conventional high-level synthesis approach.

I. Introduction:

DSP applications are based on DSP kernels such as
filtering (FIR and IIR) and transforms (DCT and FFT
etc.). Many of these transforms involve weighted sum
computations wherein the weights are fixed at the design
time. Add-Shift based hardware implementation of such
fixed-coefficient multiplications is preferred over a
multiplier based realization for both area and performance
efficiency. The number of computations in such
implementation can be minimized with techniques like
common sub-expression elimination [1-3,101. The
computational DFG (Data Flow Graph) structure depicting
such add-shift implementation comprises variables and
computations whose precision varies significantly. For
example, consider a 32-tap FIR filter with 16-bit

*This work was done when the author was with Texas Instruments India
Ltd.

0-7695-083 1-6/00 $10.00 0 2000 IEEE
411

coefficients and 12-bit data. The resultant DFG in add-
shift implementation would have variables and
computations with precision varying from 12 bits at input
to as high as 33 bits at the output.

In this paper, we address the area efficient resource
shared implementation of such multi-precision DFGs. This
problem can be solved as a conventional high-level
synthesis problem. However, since the techniques
involved in the conventional high-level synthesis ignore
the varying precision nature of DFG, the resultant
implementation is likely to be sub-optimal. We present a
precision sensitive behavioral synthesis technique where
we address all the three major components of high level
synthesis, viz. register allocation, functional unit binding
and scheduling. In each of these steps we exploit the
multi-precision nature of the DFG to achieve most area
efficient implementation. Since these three components of
high-level synthesis are interdependent [7], we present an
integrated methodology to take advantage of the coupling
between them.

To the best of our knowledge the problem of
supporting multi-precision arithmetic hasn’t been looked
at in the context of high-level synthesis of ASICs
(Application Specific Integrated Circuits). Some processor
architectures have been proposed to efficiently perform
variable precision computations, mostly with the
granularity of 8/16/32 bits [8,9]. Multi-precision arithmetic
in context of Image and Video Processing applications is
dealt with in [4]. The inherent parallelism of such
applications is exploited for multi-precision functional unit
allocation and binding. Here also, the multi-precision
arithmetic is restricted to byte or word boundaries.
Restricting to word or byte boundaries is often necessary
in processors to optimize memorycpu transfers. This
restriction does not apply to ASICs and the scope of area
optimization is significantly enhanced. Moreover,
scheduling has not been addressed in [4], considering
massive parallelism available in the Image and video

mailto:anand.pande@broadcom.com
mailto:m-mehendale@ti.com

applications. Such parallelism is not present in multiplier-
less implementation of weighted sum transforms and
hence those techniques can’t be directly applied

Although most of our techniques are described in the
context of add - shift implementation, they are generic
enough and could be applied to multi-precision DFGs
involving any type of functional units. The rest of the
paper is organized as follows. In the next section we
describe the register allocation and functional unit-binding
problem in the context of multi-precision arithmetic. A
precision sensitive register allocation and functional unit-
binding algorithm is also presented. Section I11 describes
scheduling and the integrated HLS (High Level Synthesis)
methodology. Results are presented in section IV. These
results justify our claims of area efficiency over
conventional methods. Conclusions are drawn in section
V and areas of future work are outlined.

11. Register allocation and functional unit
binding:

In this section we address the problem of register
allocation and functional unit binding in the context of
multiple precision DFGs. The objective is to exploit the
varying precision of the DFG to attain maximum area
efficiency. The register allocation problem has been
extensively studied in the literature [6,7,11,12]. The input
to the register allocation problem is the variable lifetime
graph, which is derived from the given schedule of the
DFG. The following example illustrates the improvement
that can be achieved using precision sensitive approach for
register allocation. Consider the variable lifetime graph of
a 4 variable Data Flow Graph as shown in the figure 1.
The conventional left-edge allocation algorithm [121 will
allocate variables A,C and B,D to two registers Reg1 and
Reg2 respectively. This allocation is insensitive to the
precision of the variable. If variables A,B,C and D have bit
precision of 8,15,16,9 respectively the resultant
implementation would require two registers of 16 and 15
bits respectively.

On the other hand a precision sensitive approach for
allocation should allocate variable A,D and B,C to two

precision respectively. We now present a precision
sensitive, register allocation algorithm. The pseudo code
for this algorithm is shown in figure 2.

II(A). Precision sensitive register assignment
algorithm :

For a given schedule of the IIFG, the input to this
algorithm is the lifetime graph of variables. The 2-tuple
<start(v), end(v)> characterize the lifetime of each
variable. Similar to the left-edge algorithm [121, the
variables are sorted with +tart(v)> of their lifetime as the
primary key. But instead of having; secondary key as the
<end(v)>, it is taken as bit precision of the variables in
decreasing order. The algorithm maintains two ordered
working lists (“free-unit” and “cur-var”) and a regular list
(“busy-unit”). The list “free-unit” holds the units (
registers in this case) freed at a control step. The list
“busy-unit” holds the list of units currently holding some
variable. These two lists get modified as the variables are
assigned to units and as the units are freed due to the
completion of lifetime of variables in each control step.
List “cur-var” holds the variables having their gtart(v)>
same as the control step being considered.

Algorithm starts from 0th control step with
“free-unit”, “busy-unit” being empty lists. Variables
having their Btart(v)> equal to 0 are added to the list
“cur-var”. At each control step, the members of the
“cur-var” list are assigned to the members of the
“free-unit” list in order, These unils holding variables
are moved to the list “busy-unit”.

412

Any unallocated variables in “cur-var” list are allocated to
new units and these units are also added to the list
“busy-unit”. At each control step the any unit being freed
from the list of ‘busy-unit” are moved to ordered list
“free-unit” maintaining the order of decreasing precision.
When all the variables in “cur-var” get allocated, the
algorithm continues to next control step and performs the
same operations. This continues till all control steps are
exhausted.

The foundation of the register allocation algorithm is
laid on the following facts:

a. The variation in bit precision of the register should
be minimum. This ensures optimum utilization of a
register.

b. The number of the registers used should be
minimum similar to the left edge algorithm.

II(B). Functional unit binding

The effect of precision sensitive approach for
functional unit binding is shown in the figure 3. Consider
the DFG shown in figure 3. A precision insensitive
approach could result in implementation as shown in
figure 3(A), having two adders of 18-bit and 19-bit width.
Where as a precision sensitive approach to functional unit
binding shall bind the operations as shown in figure 3(B)
requiring two adders of 13-bit and 19-bit width
respectively. The functional unit binding can be viewed as
a special case of register assignment problem where the
lifetime of computation is always one control step. Note
that this kind of a formulation gives us a flexibility to
handle multi-cycle operations as well. Here again we use
similar algorithm as register allocation algorithm to bind
operations to functional units .The minor changes being:

a. Each computation is considered as a variable

b. Each type of computation (adder ,shifter) is
having lifetime of one control step.

considered separately.

Figure 3. Multi-Precision Functional Unit Binding

111. Scheduling:

Depending upon the application in consideration the
scheduling can be resource constrained or time constrained
[7]. Most of the DSP applications, being used in real time
systems are tightly constrained with time rather than
resources. Keeping this in mind, we address time
constrained scheduling of multi-precision DFGs. The
objective here is to obtain an area efficient implementation
of the computational structure represented by the DFG,
without increasing its latency.

A resource shared multi-precision multiplier-less
DFG implementation comprises adders, shifters, registers,
multiplexers and interconnect. While the conventional
approach minimizes the number of functional units we aim
to minimize the number of bits of the functional units.
Qualitatively, this can be understood with the help of
following simple example. Consider the DFG shown in the
figure 4(A). The function W(operator) refers to the bit
width of operator. For example if addition operator “A”
requires precision of 10 bits then W(0~)=10 . Precision
insensitive time constrained scheduling methodology
designed to minimize the number of functional units may
schedule the DFG requiring two adder units of Width 16
bits and 17 bits respectively. A precision sensitive
scheduling technique would require two adders of width
12 and 17 bits respectively (figure 4(C)). The relative
effect of bit-width on the area of the functional and storage
units i s discussed next, which further enhances our
approach of area minimization. Since scheduling,
allocation and binding are interdependent [7], we address
the problem of scheduling allocation and binding in an
integrated manner. We use an iterative improvement
methodology, based on the implementation-cost
minimization. Register allocation and functional unit
binding are actually performed for each of the feasible
intermediate schedules to obtain the implementation cost.

I Figure 4. DFG and Possible Schedules I

413

The computational complexity of both register allocation
and functional unit binding proposed by us in section 11, is
polynomial time. Hence, we can afford to do these
computations for each of the schedules, rather than relying
on some estimation mechanism. This modification
contributes to the quality of the implementation and
significant gain is achieved without being computationally
expensive.

III(A). Cost function

In this subsection we show the relation between
number of bits of functional units and their area. Since we
aim to reflect the implementation area in the cost function
formulation, we propose to associate different weights per
bit to the each of the resources (adder, shifter and storage).
The relative weights are dependent upon the technology
used and the type(architecture) of functional units
employed. Now, we illustrate the computation of the
relative weights associated with each of the resources in
our approach. To keep our technique fairly generic we
have used a generic block synthesis tool Synopsys
MODULE COMPILER to synthesize the adders, shifters
and registers for a number of bit widths. We have used the
tool in area optimization mode with the Texas Instruments
0.15 micron ASIC library. The area indicated is in terms of
equivalent NAND gates The objective of performing
synthesis of each of the resources is to establish the
validity of our cost function quantitatively. It is however,
not necessary to perform the whole synthesis and
approximate weights can be assigned the bits of each
resource and it’s architecture. Figure 5 shows the variation
of an adder area with respect to its width. These curves are
plotted for Carry Save Adder(CSA), Ripple Carry
Adder(RCA), and Carry Look Ahead Adder(CLA)
architectures. Similarly, figure 6 shows the NAND gate
equivalent area obtained for Shifter and Storage Registers.
It can be interpreted that the area increases in a fairly
linear manner with the number of bits for the data-path

Fig 5. Adder Area Vs. Width

300

250

5 200 -
5 150
W 0

8 100

50

0
0 5 10 15 20 25

30 I Bit Width

components, hence a cost function having linear
dependence on the bits of functional and storage unit can
be justified. Cost function is decided by the per bit area
requirement of different data-path units. Relative weights
per bit of the shifter and adder with respect to a register are
approximately calculated based on the technology and
architecture used. The cost function in add shift
implementation is driven by number of adder, shifter and
register bits.

Where :
Cost = W, * N,+ W, * N, +- W, * N,;

W, : Weight per bit of unit i.
NI : Number of bits of unit i.

Here we haven’t considered the interconnect in the
optimization phase of the scheduling algorithm. We
assume availability of Over the Cell (OTC) routing area,
which is usually true in cell based ASIC designs. This is
possible because of 5-6 or more laycm of metallization in
contemporary technology. We also cxclude the mux area
from the formulation of our cost function. Firstly, the
contribution of the muxes in the area is quite small as
compared to that of other components. Secondly, the mux
area is directly proportional to its width and number of
select signals. As our algorithm aims at minimizing the
width of functional and storage unifs, it reduces the mux
width implicitly and mux area is reduced consequently.
We now present the scheduling algorithm.

III(B). Precision sensitive scheduling algorithm:

Problem : Schedule a given multi-precision DFG
and allocate the functional and storage units with the aim
of minimizing the total number of bits of functional and
storage units with appropriate weight associated to them.

Given :A DFG G=(V,E), where number of nodes ‘V’
signifies number of intermediate variables and directed
edge Fi,j=(v,,v,) depicts the dependency of node j on i.

300

250

m t 200
5
p 150

y 100

a
i

-
D

50

n

Fig 6 ShifterlRegister ArcaVs. Width

0 5 10 15 20 25 30
Ell Width

414

Objective : To schedule the DFG (i.e. to assign each
computation to a control step) such that :

1. For each edge E,j=(vi,vj) : the node j is scheduled
in control step later than the node i.

2. Number of scheduling steps are equal to the
minimum possible for that DFG(the latency is not
increased).

Test
Cases

FIR-1

3 . The allocation results in optimized use of
resources in terms of minimizing the total bits of
functional and storage units. This further translates to
minimizing the area requirement by the functional and
storage units. The pseudo code for the algorithm is
formally presented in figure 7. For scheduling we use KL
[5] -based iterative improvement heuristic with either As
Soon As Possible (ASAP) or As Late As Possible (ALAP)
[7] scheduling being the initial solution. The objective of
ASAP and ALAP is to obtain a slack within which a node
can be moved, so that the latency bound is not exceeded.
For each of the incremental scheduling step we perform
complete allocation and binding of functional and storage
units and the cost for the new schedule is computed with
weights, as shown in the pseudo code.

IV. Results:

~1 Conventional Scheduling and Conventional scheduling and Precision. Integrated precision Sensitive Scheduling
$ Allocation Sensitive Allocation and Allocation

@ Add Sh. Reg Cost Add Sh. Reg Cost Impr Add Sh. Reg Cost Impr

8 bits Bits bits CI bits Bits bits C2 (%) bits Bits bits C3 (%I
AI SI RI A2 s2 R2 A3 S R3

100 191 199 473 1107.4 176 191 412 1009.6 8.83 130 129 386 806.7 27.14

In this section we report the results of
implementation of our approach. The algorithms were
implemented in C and were run on Solaris (SunOS-5) on
Ultra-SPARC Ili CPU. The first column of table-I
represents the test cases. Second column lists the number
of computation nodes(adds and shifts) in the DFG. In the
first three sub-columns of the third column the adder(Al),
shifter@]),and register bits(S1) respectively are listed as
obtained with the standard conventional scheduling,
allocation and binding. The fourth sub-column of third
column shows the resultant cost function computed with

415

the weights associated with different resource-bits which
signifies the area of implementation. The last sub-column
lists the percentage improvement over the conventional
approach The relative weights obtained with CLA as the
adder architecture, as per the approach illustrated in
section I11 are:
W,= 1.54, W, = 1.71 and W,= 1.00.

column shows the respective results
(A2,P&,R2) for precision sensitive allocation and binding
with conventional scheduling. The last column shows the
respective results (A3,P&,R3) for an integrated precision
sensitive scheduling allocation and binding approach. The
objective is to illustrate the overall gains obtained with
precision sensitive approach in both scheduling and
allocation phases of the high level synthesis. Note that in
all the cases we have used the same KL based iterative
improvement scheduling technique with the cost function
being precision insensitive in the conventional approach
and precision sensitive in the other case.

We have run our synthesis technique over a number
of real life examples of FIR filters and DCT/IDCT
computations[141 and color space conversions[131. The
inputs FIR1 to FIR4 in the first column represent FIR
filters of 24 to 36 taps respectively. The inputs with the
name IDCT(DCT) i-j represents 1 -Dimensional
IDCT(DCT) computation of i data points with the
coefficient width j. NTSC and UVW are color space
conversion matrix computations and the suffix indicates
the coefficient width. We have achieved gains in area as
high as 27.21% and average gains of 23.14% over the
standard precision insensitive HLS procedures.

The fourth

V. Conclusion and Future Work

We have for the first time, to the best of our
knowledge, addressed the problem of High Level
Synthesis (HLS) of multi-precision DFGs. We have
presented a precision sensitive scheduling algorithm. We
have used an iterative improvement approach with cost
function being formulated in terms of number of bits of
arithmetic operators and storage units. An algorithm for
register allocation and functional unit binding for variable
precision arithmetic has also been proposed. We have also
proposed an integrated HLS methodology to exploit the
interdependence of scheduling, allocation and binding.
Optimization ratios of as high as 27.21%(23.14% average)
over the conventional fixed precision techniques establish
the potential of our approach.

The size of a functional unit affects its area as well as
performance. The system clock period is decided by the
delay of the largest or most complex functional unit. We
are planning to enhance this work by incorporating
techniques such as scheduling high delay functional units

over multiple cycles. This will h a d to smaller clock
periods and the system performance (throughput as well as
latency) will improve.

VI. References:

[I] M. Potkonjak, M.B. Shrivacitav, P.A. Chandrakasan,
”Multiple constant multiplication: E.fficient and versatile
framework and algorithms for exploring common sub-expression
elimination”, IEEE Trans. Computer .-Aided Design, vol. 15, Feb.
1996, pp.151-161.

[2] M.Mehendale, S.D.Sherlekar, G.Ve.nkatesh, ”Synthesis Of
multiplier-less FIR filters with minimum number of addition,”
Proceedings of the 1995 IEEEIACM International Conference on
Computer -Aided Design, 1995, pp. 668-1571.

[3] R. Pasko, P. Schaumont, V. Dentdder, S . Vemalde, D.
Durackova, “A New Algorithm For Elimination of Common
Sub-expression”, IEEE Trans. on Computer -Aided Design of
Integrated Circuit and Systems, vol.18, No.], Jan.1999.

[4] M. Ergcegovac, D. Kirovski, G . hlustafa, M. Potkonjak,
“Behavioral Synthesis Optimization U:sing Multiple Precision
Arithmetic”, ICASSP-I 998.

[5] K. H. Kemighan, S . lin, “An Efficient Heuristic Procedure for
Partitioning Graph”, Bell Systems Technical Journal, vol. 49, no.
2, Feb. 1970.

[6] Giovanni De Micheli, ”Synthesis and Optimization of digital
circuits”, McGraw Hill Inc. 1994.

[7] Daniel D. Gajski, Nikil Dutt, Allen C. H. Wu, Steve Y. L. Lin
, “High-Level Synthesis : Introduction to Chip and System
Design” , Kluwer Academic 1992.

[8] A. Peleg, U. Weiser, “MMX technology extension to Intel
architecture”, IEEE Micro,vol. 16 No. 4, 1996.

[9] Tony M. Carter, “Cascade: Harviare for HighNanable
Precision Arithmetic”, Yh Symp. on Computer Arithmetic, 1989.

[lo] Anand Pande, Sunil Kashide “Hardware Software Co-
design of DSP Algorithms” M. E. thesis, Microelectronic
Systems, Indian Institute of Science, Bangalore.

[111 P.G. Paulin, J.P. Knight, “Force Directed Scheduling for
Behavioral Synthesis of ASIC’s” IEEE Transaction on Computer
Aided Design of Integrated Circuits and Systems, vol. 8, no. 9.
June 1989.

[I21 F.J. Kurudahi, A.C. Parker, “REALA Program for Register
Allocationl“, Proceedings of the 24th Design Automation
Conference, pp. 511-516, 1990

[131 C. Gonzalez, R.E.Woods, ”LVgifal Image Processing”,
Addison Wesley 1998.

[14] Alan V. Oppenheim, R.W. Schafer, ”Digital Signizl
Processing”, Prentice Hall of India, 1996.

416

