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Abstract

This paper is an attempt to answer the following question:
how much improvement can be obtained in logic decomposition
by using Boolean divisors? Traditionally, the existence of too
many Boolean divisors has been the main reason why Boolean
decomposition has had limited success. This paper explores a
new strategy based on the decomposition of Boolean functions
by means of two-literal divisors. The strategy is shown to de-
rive superior results while still maintaining an affordable com-
plexity. The results show improvements of 15% on average, and
up to 50% in some examples, w.r.t. algebraic decomposition.

1. Introduction
Two main families of methods have been proposed for

logic decomposition: algebraic and Boolean. Algebraic meth-
ods have had a widespread use due to their lower complexity,
since logic expressions are manipulated as polynomials, with-
out taking advantage of Boolean equivalences. Moreover, don’t
care sets are not used. On the other hand, Boolean methods are
more powerful. For example, the function F = abe + bc + ac
can be decomposed into F = abe + cD, through the algebraic
division by the divisor D = a + b. Through Boolean division,
one can obtain the expression F = (ae + c)D.

Given a divisor, Boolean division can be performed in differ-
ent ways. One of the most used approaches is through two-level
minimizers that can accept don’t care information [2]. In the
previous example, the substitution of D = a + b into F can be
done by incorporating the expression D⊕ (a+ b) into the don’t
care set of F . After two-level minimization, one would obtain
F = abe + cD.

If Boolean division is an affordable operation by using
two-level minimizers, then why is Boolean decomposition not
widely used? The answer is simple: there are too many Boolean
divisors. Whenever F ·D �= 0, D is a Boolean divisor of F and
exploring all of them is prohibitively expensive.

We present an approach targetted at generating subject
graphs, i.e. netlists with only 2-input gates and inverters. For
that purpose, we claim that the set of “interesting” Boolean di-
visors is small and effective methods for Boolean decomposi-
tion can be devised.

The main goal of this paper is not to propose an efficient
method for Boolean decomposition, even though one is pro-
posed. The main goal is to explore the limits of Boolean decom-
position and the potential improvements that can be obtained.

2. Overview and related work
This section presents an overview of the approach proposed

in this work. The following function will be used as an example

F = abe + abg + aceg + acfg + bce + bde + deg + dfg

that can also be expressed with a 13-literal factored form:

F = b(e(a + c + d) + ag) + g(e + f)(ac + d)

The following trivial observation is the cornerstone of our
strategy, which is in the same vein as in [16] for the calcula-
tion of algebraic divisors.

If the subject graph only has 2-input nodes, then at
least one of them will have two primary inputs in its
support. This node is a Boolean divisor of the func-
tion. In general, any Boolean divisor can be repre-
sented as the composition of 2-literal Boolean divi-
sors.

Now the crucial questions are:

• How many 2-literal divisors should be explored?

• Is the decomposition by 2-literal divisors effective?

The answer to the first question is simple: for an n-variable

function, there are 4

�
n
2

�
= 2n(n − 1) different divi-

sors (see Section 4.2), bearing in mind that Boolean divi-
sion implicitly considers the complement of the divisor in
the support of the remainder. For a 3-variable function with
inputs a, b and c, following divisors should be explored:
ab, ab, ab, ab, a c, ac, ac, ac, bc, bc, bc, bc. As an example, note
that a divisor such as a + c corresponds to the complement of
the divisor ac.

The answer to the second question is what we would like to
affirm with this paper. We propose an algorithm, described in
Section 4 that gives very promising results (see Section 5). As
an example, let us take the function F previously described.
By using algebraic decomposition implemented in SIS [14],
the netlist in Fig. 1(a) is obtained. Each gate corresponds to
one of the nodes in the Boolean network after decomposition
(decomp -g command in SIS). The decomposition to 2-input
AND/OR gates leads to a netlist with 12 gates. The netlist in
Fig. 1(b) has been obtained by BDS [18] using BDD-based
methods for decomposition (10 gates). Finally, the netlist in
Fig. 1(c) has been generated by the approach presented in this
paper (9 gates).
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Figure 1. Different decomposition approaches.

Each line of the Table 1 corresponds to one of the steps of
our algorithm. The interpretation of each column is as follows:

# : number of explored 2-literal divisors
(2n(n − 1), n being the size of the support).

Remainder: part of the function still to be decomposed.
DC: don’t care used for Boolean division.
Divisor: extracted divisor at each step

To illustrate the power of the method, we will focus on two
steps. In step 1, the divisor x1 = ac is extracted. From the ex-
pression of the function, it is obvious that ac is an algebraic di-
visor. The algebraic division of F by ac gives the following fac-
tored form (12 literals):

F = b(e(a + c + d) + ag) + g(e + f)(x1 + d)

On the other hand, the Boolean division derives the 11-literal
expression shown in the table.

However, the main contribution of the approach in this pa-
per is not the use of Boolean division, but the search of good
Boolean divisors. And this is illustrated in step 3. The divisor
x3 = d + x2 is not algebraic and it is not obvious how to find it
by looking at the remainder. Here, the help of don’t cares (DC)
is crucial to find a good remainder after the Boolean division.

The DC for step 3 is calculated by accumulating the DC
from step 2 (ax1) and the satisfiability don’t care (SDC) from
divisor x2, which is x2 ⊕ ab. Finally, those variables not in the
support of the remainder (variable a in step 2) are abstracted
out [13]. The expression to calculate the DC at step 2 is thus,
∀a [ax1 + (x2 ⊕ ab)] = x2(b + x1) .

2.1. Previous Work
The basic problem in decomposition has been identifying

effective common subexpressions, or more formally divisors.
Finding common algebraic divisors is a well-explored area.A
bottom-up technique by Brayton and McMullen [3, 4] and an
improvement to this technique in the form of a specialised algo-
rithm [16] have been widely accepted in practice [14].

It is widely known, that Boolean divisors are more pow-
erful than algebraic ones and theoretically lead to more com-
pact, functionally equivalent circuits as shown by an example
above in Fig. 1. Not surprisingly, very few attempts have been
made in this direction because of the difficulty involved in find-
ing effective Boolean divisors. The lack of an efficient way to
generate Boolean divisors has also reduced the scope of some

Step(i) # Remainder DC Div.(xi)

1 84 b(e(a + c + d) + ag) + g 0 ac
(e + f)(ac + d)

2 84 ab(e + g) + (g(e + f) + be) ax1 ab
(x1 + d)

3 84 x2(e + g) + (g(e + f) + be) x2b+ d + x2
(x1 + d) x2x1

4 60 (x1 + x3)(g(e + f) + be) 0 be
5 60 (x1 + x3)(g(e + f) + x4) ex4 e + f
6 40 (x1 + x3)(gx5 + x4) 0 x1 + x3
7 24 x6(gx5 + x4) 0 gx5
8 12 x6(x7 + x4) 0 x4 + x7
9 4 x6x8 0 x6x8

Table 1. Steps in the Boolean decomposition.

approaches [15]. Historically, the first attempt at this was by
Karp [6]. Recently, there have been active attempts for finding
common logic based on BDDs [1, 9–12, 17, 18] because of the
fact that BDDs are an implicit decomposed representation of the
function.

Yang, Ciesielski and Singhal proposed a BDD-based decom-
position method based on dominators in [18], which is Boolean
in nature. This approach, though being efficient, is applicable
only to the decomposition of monolithic BDDs, relies on the
variable ordering and does not necessarily give the best results
in terms of area.

Kunz and Menon [8] have also proposed a recursive learn-
ing based technique for finding 2-input Boolean divisors. But
the limitation of their approach, as compared to ours, is that
they only consider divisors which are already present as nodes
in the network, in other words their approach is highly depen-
dent on the way circuit has been implemented.

The main difference between the technique in [7] and our
approach is that in [7], the divisors are generated by using al-
gebraic techniques (succesive factorization of sum-of-product
covers). The decomposition is done by means of algebraic divi-
sion augmented with the annihilation (a · a = 0) and idempo-
tency (a · a = a) laws.

3. Preliminaries
We begin by reviewing basic definitions and terminology.
The decomposition of a node in a Boolean network is its re-

placement by two or more nodes that form a subnetwork equiv-
alent to the original node. The support of a Boolean function
sup(f) is the set of variables f effectively depends on. We
would define |F | to be an estimation of the complexity of func-
tion F . Here, we will take number of literals in the factored
form as representation of the complexity of the given function,
e.g. for the original function F from Section 2, |F | = 13.

Algebraic Division is an operation, given two Boolean func-
tions F and D, returns Boolean functions Q and R such that,
F = Q · D + R, Q �= 0 and sup(Q)

�
sup(D) = ∅. In

Boolean division Q and D can have intersection of support-sets.
Here, D is called a Boolean divisor. The assignment x = fx

relates x with the variables in sup(fx). Conditions described
by x �= fx, or equivalently by x ⊕ fx, which are never satis-
fiable, are called satisfiability don’t care (SDC) conditions. If
fxi is the positive cofactor and fxi is the negative cofactor of
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f(x1, x2, . . . , xi, . . . , xn) w.r.t. xi, then the universal abstrac-
tion ∀ of f w.r.t. a variable xi is ∀xi f = fxi · fxi .

4. Boolean Decomposition
4.1. Decomposition Procedure

In this section we present a simple, but effective, method for
decomposition using 2-literal divisors.

Function BOOL DECOMP (F , DC )
Inputs:

Boolean Function F ;
Don’t Care DC ;

Returns:
A netlist (represented as a set of 2-literal nodes);

begin
x := new Variable; /* Output variable of a new node in the netlist */
if ( |F | ≤ 2 ) then

return {x = F};
DCproj := Projection (DC , sup(F ));
Best R := F ; Best D := 0;
for each pair of variables (a, b) in the fanin of F do

for each divisor D ∈ {ab, ab, ab, ab} do
DCnew := DCproj + (x ⊕ D); /* Satisfiability DC added */
R := TwoLevelMinimization (F , DCnew );
if ( |R| < |Best R| ) then

Best D := D; Best R := R;
/* The best divisor and the decomp. of the remainder are returned */
return{{x = Best D}�
BOOL DECOMP (Best R, DCproj + (x ⊕ Best D))};

end

Figure 2. Decomposition Algorithm.

The decomposition of a Boolean Function F is performed
recursively. It attempts to find a netlist with 2-literal nodes for
the given Boolean function F . The main algorithm is shown in
Figure 2. [Note: |F | stands for number of literals of F in fac-
tored form]. The output is a netlist with 2-literal nodes.

The recursive paradigm behind the algorithm is as follows:

1. Find the best 2-literal Boolean divisor by exhaustive
search.

2. Find the remainder corresponding to this divisor by apply-
ing Boolean Division.

3. Recursively apply the algorithm to the remainder.

The algorithm stops when a function F , with at most 2 liter-
als, is found.

4.2. Generating Boolean Divisors

Out of the 16 ( 222
) possible Boolean functions between any

two variables a and b, we just consider (ab, ab, ab, ab) as four
distinct binate functions between a and b , as complementation
of these functions is taken care by the two-level minimization
in the algorithm. While, Exclusive-OR (ab + ab) and Equiva-
lence (ab+ab) can be obtained by using two of these four basic
functions. Rest of the functions are either constant(0, 1) or unate
functions(a, b, a, b). The above mentioned four basic functions
serve as potential Boolean divisors with the fanin variables a
and b for the given Boolean function F in the algorithm.

4.3. DC Projection and Propagation
Each step of the algorithm extracts a Boolean divisor from

the function with its associated SDC. After step i, the accumu-
lated DC would be DC =

�
i(xi ⊕ Di) , where xi is the

new variable introduced by divisor Di. Representing this DC-
set would make the approach impractical after the extraction
of few divisors, since the support of the incompletely specified
function would become too large.

For this reason, at each step the support of the DC is reduced
to the support of the remaining function. Even though this re-
duction can theoretically lead to inferior solutions (since one of
the variables out of the support could help to minimize the func-
tion), we have observed that this does not occur in practice.

If F (X) is the function under decomposition with support
X and DC (X, Y ) is the don’t care in which Y are variables not
in the support of F , the projection of DC (X, Y ) onto X can be
calculated as follows [13]: DC proj (X) = ∀Y DC (X, Y ).

5. Experimental Results
The approach presented in this paper has been implemented

in SIS [14]. The results have been obtained by running dif-
ferent algorithms on combinational circuits from the IWLS’93
benchmark set [5]. They have been compared with SIS
(script.rugged, script.algebraic) and BDS [18].

The comparisons have been performed on the decomposi-
tion of single functions obtained by extracting the fanin cone
of each primary output. After that, the cone was collapsed and
simplified. The resulting sum-of-products cover was used as the
starting point for decomposition. The reported results have been
obtained after area-oriented technology mapping (map -m0
-AF) onto the library lib2.genlib.

Table 2 reports results on the largest 50 functions on which
we applied our algorithm. The column Bool decomp corre-
sponds to the results obtained by our approach. For some cases
(my adder.q0 and pair.a7), the area is drastically reduced due
to power of Boolean division. The last row of the table 2 shows
the average improvements w.r.t. other techniques (15% in area
w.r.t. algebraic and 10% in delay w.r.t. rugged).

However, Boolean decomposition does not always provide
better results (e.g. cm150a when compared to algebraic
script in terms of area). We conjecture these situations can oc-
cur due to the inaccuracy in the estimation of the function cost
after Boolean division (size of factored forms).

After experimenting with 1000 outputs from different cir-
cuits of IWLS’93 benchmarks, the summary of the results is
shown in Table 3 , which confirms the effectiveness of our ap-
proach over different types of circuits. The results are better
when dealing with larger circuits, since the effectiveness of al-
gebraic and Boolean methods tend to be similar when the cir-
cuits are small.

The results also confirm that BDD-based methods, such as
BDS, are not very effective when the functions do not have clear
decompositions with disjoint support. The dependence on vari-
able ordering and possible discrepancies between BDD size and
complexity of the function may also be the reasons for the infe-
rior results.

The computational complexity of our approach is still not
competitive with algebraic methods. The current approach takes
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rugged algebraic Bool Decomp.
Circuit Output area delay area delay area delay
apex6 RPTWIN P 36192 6.88 36656 6.61 36656 5.75

RXZ0 P 43616 9.08 67280 9.73 37120 7.8
TD P 45008 8.67 48256 10.37 47328 8.33

apex7 KBG F 38048 9.79 29232 9.32 32016 8.84
STAR1 P 44544 8.56 29232 10.36 31088 8.18
STAR2 P 38512 9.35 29696 10.87 30160 8.54

START3 P 38976 9.35 32480 9.97 31552 8.89
VERR F 45008 8.64 37584 9.57 37584 7.32

cm150a v 45008 7.89 43152 8.15 45472 7.76
des C new0 52432 9.95 51968 9.29 44544 6.97

C new1 52432 9.95 51968 9.29 46400 8.52
C new14 52432 9.95 53824 9.23 49184 6.72
C new26 52432 9.95 51968 9.29 43616 6.97
D new26 52432 9.95 53824 9.23 42224 6.97
D new27 52432 9.95 51968 9.29 42688 6.97

f51m 44 54752 7.66 56608 7.38 31088 7.25
45 48256 6.39 40368 6.56 27376 7.07
46 32944 6.49 36192 7.47 33872 6.07

frg2 a9 58928 8.45 33408 9.41 38048 10.31
m9 34336 7.96 34336 7.96 31552 7.18
n9 32944 7.76 35728 8.09 33408 6.81
p9 47328 10.15 70064 13.84 39440 7.34
s9 70528 9.29 43616 11.76 45472 9.77

k2 f2 120176 11.06 108112 9 111360 10.28
g2 89552 9.28 77488 9.83 83056 8.8
h2 33872 6.24 32480 7.1 36656 5.36
u1 52896 8.2 51040 7.64 48720 8.39
w1 89552 10.05 75632 9.85 73312 10.73
z0 83984 8.41 80272 10.26 84448 9.93

my adder p0 51504 9.4 68672 19.75 41760 10.82
q0 65888 9.63 45936 19.14 34336 9.5
r0 41296 8.11 65424 13.62 32480 8.65

pair a10 47792 10.23 52432 14.46 31552 7.29
a7 90944 13.44 69136 12.55 48256 9.16
b9 52432 10.37 52896 10.18 36656 10.37
d10 45936 10.77 45936 11.48 38976 8.29
d6 39440 10.69 52432 9.47 30160 6.84
e10 48256 10.77 51040 10.48 38512 7.78
r7 32944 8.36 35728 8.45 35264 6.9
s7 37120 9.41 38512 8.79 31088 8.18
z6 52432 10.37 52896 10.18 37584 10.89

rot n6 51968 8.42 64496 8.9 34800 7.27
q7 27840 8.77 29696 6.28 31088 6.09

t481 v16.0 39440 6.65 51504 8.37 35728 6.24
term1 r0 56608 8.42 38976 9.72 45008 10.02

s0 54288 10.19 39904 9.71 44544 9.42
vda s 37120 8.44 36656 7.02 38512 6.64

y 37584 8.92 46400 7.19 45472 7.32
x3 u5 54752 8.56 42688 10.38 46864 10.01

z5 43616 9.08 67280 9.73 37120 7.8

Total 2548752 454.3 2493072 492.57 2111200 405.3

% Improvement of Bdec 17.16 % 10.79 % 15.32 % 17.72 % - -

Table 2. Results for the largest 50 functions.

between two and three orders of magnitude the time spent by
algebraic decomposition. The next section discusses some of
the improvements foreseen for the future to make this approach
competitive in terms of CPU time.

% improvement of Bdec w.r.t.
Script rug alg BDS
Area 8.95 % 5.70 % 20.08 %
Delay 9.04 % 10.10 % 14.98 %

Table 3. Summary of results.

6. Conclusions
A conceptually very simple as well as intuitive algorithm for

Boolean decomposition using two-literal divisors has been pre-
sented. The main part of the algorithm is the search for effective
Boolean divisors.

This work is a preliminary step towards proposing more ef-
fective techniques. The main conclusion is that finding Boolean
divisors is not difficult, and promising results confirm that im-
provements that can be obtained by using them are relevant and
worth the effort.

As future work, we plan to propose prunning techniques to
reduce the search space for Boolean divisors by focusing on

binate variables and by using dynamic programming methods.
Reductions between one and two orders of magnitude are fore-
seen in run-time with these techniques.
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