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Abstract— Semi-autonomous driving assistance systems have
a high potential to improve the safety and efficiency of the
battery electric vehicles that are enduring limited cruising
range. This paper presents an ecologically advanced driver
assistance system to extend the functionality of the adaptive
cruise control system. A real-time stochastic non-linear model
predictive controller with probabilistic constraints is presented
to compute on-line the safe and energy-efficient cruising velocity
profile. The individual chance-constraint is reformulated into
a convex second-order cone constraint which is robust for a
general class of probability distributions. Finally, the perfor-
mance of proposed approach in terms of states regulation,
constraints fulfilment, and energy efficiency is evaluated on a
battery electric vehicle.

I. INTRODUCTION

The technological evolution of Battery Electric Vehicles
(BEVs) throughout recent years turned them into more
sophisticated machines [1]. However, the BEVs have limited
on-board energy capacity, which limits their cruising range
on a single charge. One of the well-known methods to
extend the cruising range is to identify an energy-efficient
velocity profile. A smarter and more energy-efficient driving
is generally referred to as Ecological (Eco) driving concept.
Advanced Driver Assistance Systems (ADAS) can assist hu-
man drivers to improve the trip safety and energy efficiency.

Model Predictive Control (MPC) is an attractive approach
in comparison with alternative methods of multi-variable
control of complex ADAS systems with hard control con-
straints. In MPC, an Optimal Control Problem (OCP) based
on a dynamic model of the system is solved repeatedly in
a receding horizon style and the first element of a finite
sequence of control actions is applied to the system at
each sampling time. In addition, parametric uncertainties and
exogenous disturbances are pervasive features of complex
dynamical systems. Stochastic MPC (SMPC) has been in-
troduced for systems with uncertainties (see e.g. [2]). The
SMPC is based on a stochastic process model and generally
formulated as an expectation of the objective function with
probabilistic constraints, so-called chance-constraints (see
e.g. [3]). Non-linear MPC (NMPC) is distinguished by the
use of non-linear system models in the OCP to improve
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performance specifications. Stochastic Nonlinear MPC (SN-
MPC) has been introduced to improve the shortcoming of
SMPC. However, it has received relatively little attention in
works of literature, which is the main concern of this paper.

The Adaptive Cruise Control (ACC), and Cooperative
Adaptive Cruise Control (CACC) automate the throttle and
brake control of the vehicle to maintain the pre-set longitudi-
nal velocity while regulating a safe distance from preceding
vehicles. An SMPC with driver behaviour learning capability
for improving the performance of powertrain was designed in
[4]. A stochastic dynamic programming based control policy
with a given road grade, traffic speed was established in
[5]. Energy efficient NMPC to drive a vehicle efficiently on
roads containing varying traffic and signals at intersections
for improved fuel economy was introduced in [6]. An energy-
efficient MPC that utilise the energy consumption character-
istics of a BEV was established in [7], [8]. A Stochastic
NMPC (SNMPC) with the target of emission, fuel efficient
driving, and infrastructure-to-vehicle (I2V) communication
capability was introduced in [9].

Although the mentioned studies have considerable contri-
butions in this field, the conventional ACC systems are not
capable of dealing with curvy roads and traffic signs informa-
tion where the driver intervention is required. A sophisticated
Eco-ACC with extended functionalities for the BEVs still
need to be explored and therefore, is the main objective
of this work. This system helps to fulfil the requirements
of a semi-autonomous safe and energy-efficient Eco-ADAS
system in a stochastic driving environment.

This paper formulates a fast SNMPC for the BEVs
specific Eco-ACC system. The proposed formulation and
implementation of the SNMPC Eco-ACC system are sub-
stantially different from those of previous works of literature.
First, longitudinal dynamics, energy consumption models of
a BEV, road geometry and traffic speed limit zones are
modelled in a high fidelity deterministic framework. Second,
the main contribution is to introduce a stochastic motion of
a preceding vehicle with a novel physical-statistical model
based on road geometry information and 85" percentile
speed concept. Then, the chance-constraint is used to regulate
the relative distance between the preceding and host vehicles.
The chance-constraint is converted to a second-order cone
constraint, that is robust for a general class of probability dis-
tributions. After that, the SNMPC with a chance-constraint is
reformulated as a certainty equivalent control policy. A real-
time algorithm for receding horizon implementation of the
resulting non-linear OCP based on Pontryagin’s Minimum
Principle is adapted. Finally, the performance of the proposed
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Fig. 1: Semi-autonomous Eco-ADAS system

concept in terms of system states regulation, constraints
fulfilment, and energy efficiency is analysed.

The rest of this paper is organised as follows: The def-
initions and system models are introduced in Section II.
The SNMPC based controller and problem formulation are
presented in Section III. Evaluation of the proposed concept
with practical experiments and numerical simulation results
are presented in Section IV, followed by the conclusion and
future research in Section V.

II. DEFINITIONS AND SYSTEM MODELS

The semi-autonomous Eco-ADAS concept, that extends
the functionalities of an Eco-ACC system is presented in Fig.
1. Similar to the conventional ACC systems, the driver pre-
set the desired velocity with preferred safe distance from the
preceding vehicle. The Semi-autonomous Eco-ADAS system
regulates the traction input with respect to the longitudinal
motion, energy consumption dynamics of the BEV (host
vehicle), the road geometric, traffic sign, and motion of the
preceding vehicle information. While the driver handles the
steering control of the vehicle, this system plans a proper safe
and energy-efficient cruising velocity profile autonomously
for the entire trip without requiring driver interventions.

A. Vehicle, and Energy Dynamics

The acceleration along the longitudinal direction of the
BEV can be expressed by Newton’s second law of motion,
which it is assumed to be a point mass at the centre of gravity
as follows:

dvh(t)/dt: (Ftrac(t)—Fres(t))/Mv (D

where M, Fqc(t), and Fp(f) are equivalent mass of the
vehicle, traction force, and total motion resistive forces,
respectively. The traction force depends on the equivalent
mass and control input as Fiqc () := Mu(t). The control
input is bounded (t4in (v,) < u(t) < thax(v)) by the physical
limits of the traction force that the wheel-road contact can
support without slip [10]. The total resistive force including
aerodynamic drag, gradient, and rolling resistance forces can
be represented by:

1 .
Fros = EpAfCD(d)v%—|—Mgsm(9(sh)) +Cpr(viy)Mgcos(0(sp)),
2
where p, Ar, g, O(s), and C,.(v,), are the air density,
the vehicle frontal area, the gravitational acceleration, the

road slope angle as a function of the host vehicle position,
and the velocity dependent rolling resistance coefficient,
subsequently. The rolling resistance coefficient for passenger
vehicles on a concrete road can be written as Cy-(vy) =
0.01(1+v/576) (for more details, see [1]). Note that Cp(d)
is the aerodynamic drag coefficient that depends on nominal
aerodynamic drag coefficient and relative distance between
the preceding and host vehicles, d := s, —s;. Vehicle drag
reductions arising from close spacing with the preceding
vehicle (for more details, see e.g. [11]).

For a given velocity at a given traction force, the operating
point of the electric machine and the related power con-
sumption/regeneration could be determined [10]. The energy
consumption during cruising at constant speed is equal to
the resistive power. This can be estimated by a polynomial
of velocity as fuuise = b3vi + bovi + biv, + by [6]. The
acceleration and deceleration, a, of the vehicle considering
only the regenerative energy zone in the hybrid (regenerative
and friction) brake system, can be approximated using a
polynomial of the control input as f, = au? + aju+ ag.
Therefore, at any given velocity and control input, a linear
relation of the traction power-to-mass ratio can describe the
energy consumption of the vehicle as:

én=fa (ptrac/M) + feruises 3)

where p;,qc, denotes the traction power (for more details, see

[10D).
B. Road Geometry and Traffic Model

Road geometries and traffic information have favourable
advantages for the Eco-ADAS safety and energy manage-
ment applications [12]. The road slopes, road curves, and
traffic speed limit zone data are modelled as continuous
and differentiable functions in [10]. The road slope profile
is proposed to be the sum of quadratic functions of the
vehicle position representing each road segments slope data

as follows:
ngm

fslp(e(s)) = Z [_Ir(lsfsnfl)(anSZ_i_bns_i_cn)[_lrgsfsn)7 4)

n=1

where N, is the number of road segments, H,(,sis"’l) and

HY™") are hyper-functions of the nth road segment at the

boundary position values, s,— and s,. The road curves and

traffic speed limits profiles are modelled in a similar way.

The simple curve is used to express the total absolute curve

profile, which is be defined as:
Ner

forn(8(s)) := Y HY ™) 1
n=1

Rcrv,, (S)

where N, is the number of road curves, and R, is the
radius of a circle valid for the curve’s arc length with two
position points, s.,; and sy, at the respective entrance and
exit position of the nth curve. Furthermore, The traffic speed
limit places can be modelled as:
Nime
Sime (S) = Z Hr(lS7SSrr) (Vlmt - Vmax)Hr557semi> + Vinax, (6)

n=1

HY ()




where Ny, is the number of speed limit zones, and vy, is
the specified speed limit value at positions starts from sy, up
to the end of the zone s,,q. The v,y is the maximum speed
value of the host vehicle. This method can also improve the
trade-off challenge between the high and low-fidelity models
for ADAS road models (for more details, see [10]).

C. Physical-Statistical Motion Model

Knowledge representation of traffic including a prediction
model of the plausible future motion of vehicles improves
the performance of decision-making processes in Eco-ADAS
applications. However, high entropy in traffic system leads to
a challenging task to derive a computationally efficient and
tractable model to predict the motion flow. Research related
to anticipating the possible trajectory of the preceding vehicle
into the near/far-term future has a long track in the ADAS
applications. For instance, a Markov chain model with the
driver behaviour learning algorithm was proposed in [4]. A
sigmoid-based function to estimate states of the preceding
vehicle within the prediction horizon was introduced in [6].
A stochastic prediction method using Bayesian networks
utilised for near-term future prediction was presented in [9].

Although the proposed methods mentioned in literature
are effective for near-term prediction, rapid divergence can
be experienced in far-term prediction. A physical-statistical
motion model of the preceding vehicle robust to far-term
future prediction is introduced in this paper. This model is
based on 85" percentile speed concept and road geometry
information. The 85" percentile speed is referred to as spot
speed study, defined as the speed at or below which 85"
percent of vehicles travel a given location based on free-
flowing conditions over a time period (for more details, see
e.g. [13]). In addition to the 85" percentile speed at road
curves, other factors such as road slope profile and traffic
speed limit zones information can be considered to estimate
more appropriate trajectory. Therefore, the proposed dynamic
model to propagate the velocity of preceding vehicle, v,, at
time ¢ can be estimated as follows:

L Vp \4 Sin(fslp(e(sl’)))
dv,,(t)/dt._ngm(l—(fw) T in(®) ), (D)
Sgsm == min{wgsfh Vgsth (fcrv(a(sp))))flmt (SP)}7 (®)

Vesin (8(8,)) := myexpl=m2960)) 4z exp(—m40(5p)) )

where Xgsin is the 85" percentile acceleration of the pre-
ceding vehicle assumed to lie in a normal distribution i.i.d.
X ~ A (Up,0p) with the mean, u,, and variance 0']%. The
g5 is a tunable constant and vgsu (+) is the position based
function represents the 85" percentile curve speed of the
vehicles along the trip curves. The curve speed data is
adapted from [13], where approximated by (9). The proposed
model is continuous and differentiable, which is capable of
propagating a plausible trajectory for the preceding vehicle
motion profile.

III. STOCHASTIC NONLINEAR MODEL PREDICTIVE
CONTROL

The non-linear system to be controlled with disturbance
is usually described by:

x= f(x,u,o), (10)
z=h(x), (11)
o =A(z(")), (12)

where x € R™ denotes the state vector, u € R™ represent the
input vector, z € R™ refers to the output vector, and w € R"
is random variable vector mapped by the causal output
vector upto time, ¢ [2]. The random variable vector @ is
composed of i.i.d. random variables @;, Vi € {1,..,n4}, with
probability triple sample space €, a set of events (c-algebra)
7, and allocations of probabilities to the events (exogenous
information), &2 on (Q,.%). The A(+) is an operator standing
for unmodelled dynamics that maps the output sequence
over the interval (—eo,7] into ®. Assuming system states are
measurable, a discrete multi-stage Stochastic OCP (S-OCP)

with chance-constraints is stated as follows:
N—1

minimize By, [ Y 2 (1), 47 (1)AT(0) + Z (1)) (130)
i=0

subject to (13b)
X1 () = x; () + £ (o7 (1), 157 (2), @i(r) ) At (1), (13c)
Pr{h;j(xj(r)) <0} >B, j=1,....q, (13d)
xp(t)=x(t), xi(t)e€, xy() €N (13e)
=) ell, w)=(Q%, %), (13f)

where x}(r) denotes the state vector trajectory along the T
axis, and p;(r) ;== R™ — R" represent the control policy
that is determined on the 7 axis [2]. The .Z..(x (), u*(¢)), and
2 (x3(t)) are cost-per-stage function and terminal function,
respectively. The E[-] is expected value function, so-called
Sfirst-order moment, of the random variable on a PDF f,.
The ¥ is the states constraints set, and %y is the terminal
constraint set. The /; is joint probabilistic constraint func-
tions (for more details, see e.g. [3]). The § € (0,1) CR is
the preferred confidence level lower bound that constraints
should be fulfilled under uncertainty. The prediction horizon,
T, is divided into N steps where At(¢) :=T(¢)/N. Given the
initial state, x{;(¢) = x(¢), the finite sequence of control policy,
{0 61, is optimized at each sampling interval and the
first element of control action, Uo(t), is applied to the system.

A. Problem Formulation

Solution of the S-OCP (13) became more challenging for
real-time safety-critical nonlinear Eco-ADAS system. The
main idea for solving approximately the S-OCP is based
on suboptimal control policy so-called certainty equivalence
principle with rolling disturbance estimation. In this method
we interpret @; as the prediction of expected disturbance
values, @&; = E[w;], for the uncertainty propagation. Hence,
the proposed SNMPC emphasize on early reduction of
large recourse, rather than the compensation of non-optimal
decisions. Considering the preceding vehicle velocity (7) and
its position prediction as disturbance of the system. Thus,
the states of the SNMPC control for the proposed semi-
autonomous Eco-ADAS system can be written as host vehi-
cle position, its velocity, and energy consumption of the host
vehicle, as well as the expected preceding vehicle’s position



and related velocity as follows x = [sy, vy, ep,5p,vp)7 € R
(for more details see [14], [10]).

The spacing policy for regulation of the safe reference
relative distance to the preceding vehicle is based on the most
commonly used method so-called time headway defined as:

dref := do +thwv, (14)

where dj is a constant minimum safe distance, and 1, is
the desired time headway (see e.g. [12], [15]). The statistics
of the stochastic position of the preceding vehicle can be
estimated by:

E[d] := uy, —sp = s, — sp,

Var(d) := E[(d —E[d))’] ~ d’0,,

15)
(16)

where the Var|[-] is variance, so-called second-order moment,
of the random variable, which can be approximated by
closely related moment concept in physics. The deviation
from the desired relative distance is formulated in a chance-
constraint of the form:

Pr{d,; <d}>1—¢, (17)

where d is a random quantity and € = 1 — f is the risk.
A distributionally robust chance-constraint for a wide class
of probability distributions can be formulated to a certainty
equivalent second-order cone constraint as follows (for more
details, see [16], [3]):

1—-¢

kgVar(d,; —d] +E[d,r —d] <0, Kg:=4/——. (I8)
The performance index in order to achieve the ecological
driving can be formulated by linearly penalising the energy
consumption of the host vehicle at the end of prediction

horizon as follows:

Zi(xy (1) = gren; (19)

where gy is the corresponding weight. This definition pro-
vides a flexible velocity profile planning in the integral
performance index that can be formulated as follows:

Ze(x; (1), 47 (1)) :=

1 1
ch(Vh - Vref)2 + E(ru(” - uref)z)

+ qervime (Vha fcrv(6 (Sh)) s Jime (Sh))vﬁ
+qac(vii,vp,d)((E[d] — dyes)* + In(1 + kg Var(d))), (20)

where Ve, s are desired cruising velocity, and reference
input respectively with relative weightings g., and r,. A safe
and comfortable ride during the road curve and traffic speed
limit zone variations can be achieved by penalising the host
vehicle velocity with relative adaptive weight (similar to the
barrier methods) based on the lateral acceleration (a;,; =
V2 ferv(8(sp))) and maximum allowed lateral acceleration
(gt max) as follows:

qervime (Vhafcrv(é(sh))aflmr (sh)) = exp(qcrv(alm701[”""“))
+ exp@im = fimsn)) (21
where gery, and g, are relative weights. The gac(vy,vp,d)

is an equivalent to a soft barrier function that supplies
enough weight to dominate the other objectives during close

approaching to the boundary value of reference relative
distance defined as follows:
L —(vp—wn)
‘Iac(Vhavpad) = CIacc(‘]rvexP(i)

rv

+ guexp() h (s~ El),
qrd

(22)

where gace, grv, and g,q are constants, while the H(dy.r —d)
is a Heaviside’s sigmoid function. Note that the uncertain
variation position of the preceding vehicle is taken into
account during decision making that allows allocation of
the trade-off between risk and return of reference relative
distance tracking.

The SNMPC with the probabilistic constraint is reformu-
lated in a computationally efficient certainty equivalent OCP
problem. In this paper, the resulting problem is solved based
on the Continuation and Generalized Minimal RESidual
(C/GMRES) method (for more details see [14]).

IV. SYSTEM EVALUATION

The proposed Eco-ADAS system has been evaluated with
practical experiments on the test track, and numerical sim-
ulations using realistic values of the parameters. A suitable
prediction horizon T' = 15 s is chosen to cover upcoming road
geometry, traffic speed limit zone and the preceding vehicle
motion prediction. This prediction horizon is discretized into
N =30 steps of size At = 0.5 s. The constants in performance
index function is set as gy = 2, vyy = 20 m/s, q. =2,
Uref = Fes 7Mg5in(fslp(sh))’ ry = 60, ggr =1, Gervime = L
Qlarmax = 3.7 m/s?, do =3 m, tp, = 1.5 5, B = 0.95. The
parameters for the physical-statistical model are set as 1, =
0 m/s?, Op = 1.5, g5 = 0.67, my = 20.41, my = 13.68,
mz = 13.23, my = 151.2.

A. Experimental Results

A Smart Electric Drive third generation commercial BEV,
which is available for practical experiments, is chosen here to
model the dynamics of a BEV and its energy consumption.
The parameters of the Smart ED dynamic model are derived
from data sheets and empirical measurements as m = 975 kg,
01 = 0.04, 8 =0.0025, ig =9.922: 1, p = 1.2041 kg/m?,
Ay =2.057 m?, Cpo = 0.35, and g =9.81 m/s*> (for more
details, see [7], [8], [10]). In order to have a proper identifi-
cation of the Smart ED energy consumption model, dynamo-
meter tests have been conducted.

The parameters of the proposed model for the energy
consumption, (3), is identified as a, = 0.01622, a; = 0.244,
ap = 1.129, b3 =0, by = 0.02925, by = 0.257, and by =
1.821 with 98.46% coefficient of determination (R-squared).
The limit of control input uu.,(v) can also be identified
as Umar(v) = ¢1 — catanh(csz(v — c4)), where the constants
are ¢1 = 1.523, ¢ = 1.491, ¢3 = 0.08751, and c4 = 15.6
with 99.74% coefficient of determination. The maximum
hybrid brake system control input is chosen to be constant,
Umin(v) = =5+dv (N/Kg) (d; = 0) [10].

A closed test track located at Colmar-Berg, Luxembourg,
is chosen to model the road geometry with traffic information
(Fig. 2) [17]. The test track has a total length of 1.255 km and
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include curves, speed limit zone, and relative slope profile.
This track has four main curves with 20 m, 25 m, 15 m,
and 27 m radius. A speed limit zone (vj,, = 22.22 m/s) is
assumed between positions 500,,) < s < 850,,).

The preceding vehicle motion prediction based on 85"
percentile speed concept with test track geometry and speed
limit zone information is shown in Fig. 3. The measured
data include seven different rounds of human drivers velocity
profiles on the test track. It can be shown that the physical-
statistical motion model is capable of foreseen an expected
velocity profile. The average velocity of all human drivers is
11.68 m/s, and the average predicted velocity of physical-
statistical motion model is 12.26 m/s. It is noteworthy that
the prediction of the preceding vehicle in the Fig. 3 is capable
of performing far-term future prediction (105 seconds) of the
plausible velocity without feedback measurement updates.
Significant statistical accuracy can be shown in term of
the median and the related variations from the practical
experiments obtained by the human drivers (H-#), and the
proposed physical-statistical motion model (PS-M) on the
test track.

B. Simulation Results

For the sake of comparison, the proposed SNMPC with
chance-constraint for the Eco-ADAS system is compared
with a conventional Deterministic NMPC (DNMPC), where

the velocity of the preceding vehicle is assumed to be con-
stant during prediction. Furthermore, these two approach is
compared with the case that the motion of the preceding ve-
hicle is known in advance namely Perfect NMPC (PNMPC).
A sinusoid speed profile is considered as the simulation
scenario to demonstrate the capabilities of the controllers for
the unexpected behaviour of the preceding vehicle and their
treatments to the state regulations, constraint fulfilment, and
energy efficiency.

Fig.4a shows the velocity profile of the host and preceding
vehicle with DNMPC, SNMPC, and PNMPC setting. It can
be observed that the velocity profile generated by the SN-
MPC is closer to the PNMPC rather than the DNMPC. Fig.
4b shows the relative distance regulations between the host
and the preceding vehicles. Particularly, the SNMPC fulfils
the relative distance constraint with less violation rather than
conventional DNMPC with relatively large deviation from
reference relative distance. Moreover, an accident can be
observed at time 116 s, while the SNMPC managing the
situation properly. Fig. 4c shows the control input profile.
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The DNMPC can be sensitive to unpredicted events that
lead to non-smooth control behaviour with input constraint
violation. On the other hand, the SNMPC not only demon-
strates a robust behaviour against the uncertainties but also
is capable of capturing similar behaviour to the PNMPC. It
is shown that the SNMPC generate better velocity profile
and reference relative distance tracking than the DNMPC,
which lead a proper energy consumption profile. This can
also be observed in Fig. 4d. The DNMPC can lead to a
violation of maximum power constraint, and higher energy
consumption than the SNMPC with relatively close to the
PNMPC performance. Fig. 5a demonstrates the velocity
distribution of various controllers. While PNMPC has tight
variation around the average velocity of the preceding vehicle
(10m/s), the SNMPC could regulate the velocity distribution
with lower variation compared to DNMPC. Due to (13),
the SNMPC enables forming the distribution of performance
in terms of first- and second- moments. Fig. 5b shows the
probability of relative distance chance constraint around the
boundary region. The DNMPC failed to regulated relative
safe distance while the SNMPC could fulfils the chance
constraint lower bound requirement.

The OCP calculation time for the proposed DNMPC is
2.9ms, and SNMPC is 3.2ms in average on an Intel® Core' ™
i7 with memory of 7.7 GiB. The computation time of OCP
might be compared with similar N/MPC controllers proposed
in [4] with 1s, [6] with 6.43ms, and the [9] with 23.47ms.
Hence, the proposed SNMPC could be a real-time capable
controller for the proposed Eco-ACC system.

V. CONCLUSION anD FUTURE RESEARCH

A semi-autonomous advanced driver assistance system to
improve the safety and efficiency of the battery electric
vehicle is presented. This system determines proper ecolog-
ical velocity profile to improve the cruising range challenge
based on the road geometry, traffic speed limit zones, and
the preceding vehicle motion information. Stochastic non-

linear model predictive control with a probabilistic constraint
was formulated to regulate cruising velocity autonomously.
A certainty equivalent optimal control problem is obtained
by rolling disturbance estimation and robust reformulation of
probabilistic constraint. Achieved results show the efficiency
of stochastic controller overall performance compared to a
deterministic predictive controller, while the computational
time of the stochastic controller was founded to be real-time
capable. Further practical experiments will be conducted as
the future research part.
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