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Abstract—In this paper, we discuss the relevance of training
data on modern object detectors used on onboard applications.
Whereas modern deep learning techniques require large amounts
of data, datasets with typical scenarios for autonomous vehicles
are scarce and have a reduced number of samples. We conduct
a comprehensive set of experiments to understand the effect of
using a combination of two relatively small datasets to train
an end-to-end object detector, based on the popular Faster
R-CNN and enhanced with orientation estimation capabilities.
We also test the adequacy of training models using partially
available ground-truth labels, as a consequence of combining
datasets aimed at different applications. Data augmentation
is also introduced into the training pipeline. Results show a
significant performance improvement in our exemplary case
as a result of the higher variability of the training samples,
thus opening a new way to improve the detection performance
independently from the detector architecture.

I. INTRODUCTION

Object detection is an issue frequently discussed in the
computer vision literature, which has given rise over time to
a plethora of methods aimed to solve the problem. The ITS
community is not alien to this trend, given that the robust
identification of road agents is widely recognized as one of the
cornerstones of autonomous driving. In fact, safe operation of
autonomous vehicles depends to a great extent on the quality
of the data produced by the perception algorithms.

Research interest in semantic segmentation algorithms is
experiencing enormous growth in recent years since they can
arguably perform different functions which were previously
divided into different modules [1]. Notwithstanding the po-
tential of this kind of techniques, most methods are still
unable to distinguish between different instances of the same
category [2], which does not sit well with the requirements of
autonomous navigation. Automated cars drive in a complex
environment where individual agents diverge in behavior and
therefore need to be appropriately identified and tracked.
Recent developments in instance-aware semantic segmentation
[3] show that this task is closely related to object detection.
This is one of the reasons why object detection continues to
be an active research topic, especially when applied to the
particularly challenging road scenarios.

Computer vision, in general, and object detection, in partic-
ular, are nowadays unquestionably dominated by deep learning
approaches, due to their superior performance. However, the
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Fig. 1. Pipeline of the training procedure for object detection combining the
KITTI and Cityscapes datasets and applying data augmentation.

optimization process involved in feature learning algorithms
require a vast amount of data to obtain models with gen-
eralization abilities. Huge datasets, such as ImageNet [4]
and COCO [5], have been developed to fulfill the demands
of these data-hungry algorithms for the image recognition
task. Nevertheless, traffic environments pose additional chal-
lenges which are not always covered by those generalistic
datasets, such as occlusions and far objects. Although some
autonomous-driving-oriented datasets, namely KITTI [6] and
Cityscapes [7], are geared towards the requirements of these
applications, the number of samples available in them is
significantly lower, thus affecting the performance of learning
algorithms. Additionally, labeled data differs between datasets,
thus complicating the task of leveraging data from diverse
sources.

Using these two datasets, we investigate in this paper
the influence of training data on the performance of object
detection algorithms. In particular, we focus on the improve-
ment capabilities provided by introducing additional samples
into the training process, as well as the possibility of using
heterogeneous labels in a multi-task learning method. Tests
are performed on our previously introduced object detection
algorithm [8], which is based on the state-of-art architecture
Faster R-CNN [9]. The procedure is sketched in Fig. 1.

The rest of this paper is structured as follows. In Section
II, we provide a review of recent object detection works. In
Section III, a brief description of the employed datasets, as
well as the detection algorithm, is provided. Experiments and
an interpretation of the results are given in Section IV, while
the conclusions of the paper are drawn in Section V.
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II. RELATED WORKS

Since a few years ago, practically all state-of-art object
detection approaches on images are based on convolutional
neural networks (CNNs). These structures provide end-to-end
pipelines which can learn complex hierarchies of features,
which enabled a breakthrough in the accuracy of the detection
task; however, this comes at the cost of requiring much more
extensive databases for training. Transfer learning alleviates
this issue since, as was proved by Razavian et al. [10], image
descriptors learned by a CNN are a generic representation that
can be exploited to perform tasks different than those for which
they were specifically trained.

Convolutional networks, initially used for image classi-
fication, were soon applied to object detection, first using
classical sliding-window approaches [11], and later within
tailored techniques, such as the “recognition using regions”
(R-CNN) paradigm [12]. The latter proposed applying CNNs
to previously selected region proposals to obtain features that
could be finally classified by an SVM. While accurate, the
approach was slow since it involved duplicate computations.
Fast R-CNN [13] tried to overcome this problem by computing
features over the whole image, then classifying only the object
proposals by pooling the corresponding regions of the feature
maps; the SVM classifier was also shown to be unnecessary.

The performance of the approaches based on this method-
ology was profoundly compromised by the quality of the
incoming proposals. Particularly poor results were obtained on
traffic environments due to the complexity inherent to those
images, featuring objects at many different scales which are
often occluded or truncated. Different region proposal methods
were proposed to mitigate this shortcoming, such as 3DOP
[14], which generates class-specific 3D proposals, and MS-
CNN [15], which employs proposal sub-networks working at
different scales in the feature pyramid.

However, the most influential approach for proposal gen-
eration was introduced by Ren et al. as Faster R-CNN [9].
They embed the region proposal stage into the learnable
pipeline using a small region proposal network (RPN). This
approach was able to provide high accuracy detection at online
framerates, although not without problems, mainly caused by
the fixed receptive field of the RPN.

Recent approaches aimed at detection in densely populated
traffic scenes propose sophisticated paradigms to improve
the results of the RPN, such as the scale-dependent pooling
(SDP) by Yang et al. [16]. Although these solutions effec-
tively improve the accuracy, they also introduce a significant
overhead which prevents its practical application into onboard
detection systems. Simpler detection meta-architectures have
been proposed, including R-FCN [17], a variant of Faster R-
CNN which defer the feature pooling step to the last layer
prior to prediction.

Notwithstanding the interest of the architectural variants of
object detectors, we argue that training data is a factor of
paramount importance in the performance of object detectors,
and is frequently overlooked in the literature.

III. EXPERIMENTAL SETUP

A. Datasets

We rely on the KITTI Object Detection dataset [6] to
validate our hypotheses. The KITTI dataset is made of 7,481
training images, profusely annotated and riddled with a variety
of challenging instances with different sizes, poses, and occlu-
sion status. Labels include the axis-aligned boxes of visible
objects belonging to seven categories. This dataset is widely
used in the literature to evaluate object detection algorithms in
demanding scenarios. We use the training/validation subsets of
[14], with 3,712 and 3,769 images, respectively. The validation
subset is employed as the reference testbed throughout this
work, enabling comparison between the different alternatives
which will be analyzed.

We conduct experiments by including images from the
Cityscapes dataset [7]. We employ the 2,975 frames available
for training. Annotations from the Cityscapes dataset are pixel-
wise as they are aimed at semantic segmentation algorithms.
To use them in our object detection framework, we had to
convert the annotations to the bounding box format featured
by the KITTI dataset, suitable for object detection. We let each
bounding box be the minimum enclosing rectangle of the set of
polygons defining an instantiable object. Samples belonging to
the Rider category are merged with the corresponding vehicle
annotation, following the Cyclist class specification from the
KITTI dataset. Besides, Person labels are assumed equivalent
to the KITTI Pedestrian labels.

In order to leave the too heavily occluded or truncated
samples out of the training procedure, we also provide each
instance with an estimation of its occlusion and truncation,
a la KITTI. We assume that occlusion takes place whenever
a box belonging to a foreground object intersects with the
bounding box of a background object. The degree of occlusion
is estimated as the ratio between the size of the intersection
and the area of the background box. On the other hand,
truncation is considered to occur when any of the sides of the
bounding box coincides with the image boundaries. Although
both are rough estimations, we found them valid for our
filtering purposes.

A region of interest of 2048 x 620 is extracted from the
Cityscapes images to make them similar to the available KITTI
frames regarding the vertical field of view; additionally, this
cropping removes the hood of the ego-car, which is otherwise
visible in the lower part of the images.

The KITTI dataset defines three difficulty levels: Easy,
Moderate and Hard. We decided to ignore the samples not
meeting the requirements imposed by the Hard level; that is:

1) Height: larger than 25 pixels.

2) Maximum occlusion: difficult to see, which corresponds
to the level 2 in the KITTI annotations and 75% in the
Cityscapes annotations.

3) Maximum truncation: 50%. Hence, we conservatively
discard all the samples from the Cityscapes dataset
which are adjacent to the image boundaries.



It is important to note that the ignored annotations are not
used either a positive or negative samples to avoid confusion.
Table I contains the number of samples that we will use in
this paper for our experiments.

TABLE I
NUMBER OF SAMPLES ON THE KITTI AND CITYSCAPES DATASETS

category KITTI Cityscapes
train val total total
Car 10753 10963 21716 21637
Pedestrian 2104 2172 4276 15788
Cyclist 594 600 1194 1481

B. Object Detection Method

We adopt Faster R-CNN as the object detection framework,
with the configuration and adaptations described in [8]. Faster
R-CNN is a two-stage detection method where a common set
of feature maps, obtained through a particular feature extractor,
is sequentially used by a region proposal network (RPN) to
generate regions of interest, and by a classification stage to
assign a category to those proposals. Proposals are generated
from a set of predefined anchors, and the final bounding box
is regressed during the classification step to provide a more
accurate location.

Taking advantage of the multi-task nature of the approach,
we introduced the viewpoint estimation task into the pipeline
to infer the objects’ observation angle along with the classified
bounding boxes. We pose the problem as a multiclass classi-
fication where objects are assigned a viewpoint bin, spanning
a discrete range. In this work, we use eight viewpoint bins.
The whole pipeline is depicted in Fig. 2.
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Fig. 2. Object detection and viewpoint estimation framework built upon the
Faster R-CNN meta-architecture.

The three last branches (or heads) share almost all the
processing except for one last specific fully connected layer
(one per branch). Both the bounding box refinement and
the viewpoint estimation are class-aware; i.e., independent
predictions are given for each possible category, and the one
corresponding to the inferred class is chosen.

We tried to keep the detector architecture as close to the
original proposal as possible, to increase the generalizability
of the conclusions of this study. Hence, we use the default set
of anchors and most settings from [9]. Features corresponding
to each proposal are sampled from the last convolutional
layer using ROI pooling. In this paper, we only consider the
configuration based on the VGG-16 architecture [18]. Input
images are rescaled so that the shortest side is 500 pixels.

C. Multi-Task Training

We adopt the approximate joint training strategy from [9].
Therefore, we use a multi-task loss with five components: two
from the RPN (objectness and bounding box regression), and
the remaining three from the classification stage, accounting
for the class, the bounding box refinement, and the viewpoint
estimation. Regression losses are Smooth-L1 losses, whereas
the objectness, class, and viewpoint are optimized through
multinomial logistic losses. For the class estimation, we use a
weighted multinomial logistic loss letting the underrepresented
categories have a higher contribution to the final loss, as
discussed in [8].

The training process is carried out using single-image
batches, where proposals are extracted by the RPN to train
the classification part. Whereas KITTI samples are endowed
with all the ground-truth labels contained in the multi-task
loss, Cityscapes lacks the viewpoint annotations. We handle
this issue by letting the contribution of the viewpoint task be
nil when processing a Cityscapes frame.

We use a standard SGD for training, with a step decay
learning rate schedule. An initial learning rate of 0.001 is
chosen. We drop the learning rate by a factor of 0.1 every
50k iterations. Unless otherwise specified, models are trained
for 80k iterations.

IV. ANALYSIS

We compare different alternatives for improving the object
detection performance by modifying the training data. As
previously above, results are obtained on the KITTI validation
set. We use the measures established by the KITTI dataset
[6]; namely, average precision (AP) and average orientation
similarity (AOS). The former is obtained by averaging the
precision values over different thresholds corresponding to
equispaced recall values and is aimed to assess the detection
accuracy; the latter is the comparable measure for joint de-
tection and orientation assessment and is based on the cosine
similarity. We limit our quantitative analysis to the commonly
studied categories: Car, Pedestrian and Cyclist, for which a
representative number of samples is available.

A. Combined Datasets

Firstly, we investigate the effect of adding the 2,975 training
frames from Cityscapes on top of the KITTI training split,
made of 3,682 images. In each training iteration, an image is
randomly chosen from the mix of both datasets.

To decouple the analysis of the viewpoint estimation func-
tionality, we first analyze the vanilla Faster R-CNN, without
the viewpoint head (see Fig. 2), in the first place. In Table
I, we study the change in average precision for the three
difficulty levels when adding the Cityscapes data. We also
include the results when using the Cityscapes dataset alone.
The performance on the KITTI validation set is improved
for all categories and difficulty levels by incorporating the
Cityscapes frames. The overall effect is an increase of 4.24
points in mean AP (mAP) across the three classes on the
Moderate data.



TABLE II
DETECTION PERFORMANCE ON THE KITTI VALIDATION SET (%,
AVERAGE PRECISION) USING DIFFERENT SETS OF TRAINING DATA

category tr. data Easy = Mod. Hard
KITTI 90.05 7932 70.04
Car Cityscapes 81.37 63.66 53.47
KITTI+ CS 90.31 8494 70.33
KITTI 7580  67.17  58.58
Pedestrian  Cityscapes 72.00 6392 5533
KITTI + CS  77.77 68.72  60.05
KITTI 7747 5696 54.64
Cyclist Cityscapes 63.09 50.14 46.85
KITTI + CS 8290 62.50 58.05

Next, we consider the full pipeline, including the viewpoint
estimation branch. In addition to the ‘pile-up’ strategy, we
also explore an additional approach to take advantage of the
Cityscapes data: we pre-train a model using the Cityscapes
set and transfer the weights as initial values of a new training
process using the KITTI training split. Table III shows the
results based on the AP and AOS measures, with ‘KITTI +
CS’ representing the first strategy and ‘KITTI (w. CS pret.)’,
the second one. Mixing both datasets proves more effective
than using Cityscapes in a pre-training stage. Moreover, the en-
hancement is even more prominent than it was when evaluating
detection exclusively. All categories experience a boost with
an overall effect on the mAP of 7.71 points on the Moderate
subset.

Average orientation similarity, responsible for jointly assess
detection and orientation estimation, is also improved, even
when, as stated before, Cityscapes samples do not have ori-
entation annotations. Increase on mAOS reaches 6.64 points
on the Moderate difficulty level. This effect will be further
discussed in Sec. IV-C.

Finally, we test if the limited set of images from the
Cityscapes dataset is enough to dispense with the commonly-
employed ImageNet pre-training. Hence, we trained a model
with the combined dataset, starting from weights initialized us-
ing a zero-mean Gaussian distribution with standard deviation
0.01 (except for the bounding-box regression and viewpoint
estimation heads, initialized with standard deviation 0.001).
We intentionally do not modify the training schedule. Results,
in Table IV, show that initialization with a large, generalist
dataset is still an essential requirement for the model to achieve
a proper generalization ability.

B. Overfitting

The relatively low number of samples available, even when
both datasets are combined, might arguably lead to overfitting.
In Fig. 3, we analyze the evolution of mAP and mAOS on the
KITTI Moderate validation set with the number of training
iterations. We provide here data until 150k iterations, using
the same step decay learning schedule described above. In
both cases, performance plateaus shortly after the first learning
rate decay at 50k, which justifies the choice of 80k iterations
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Fig. 3. Evolution of performance measures with the number of training
iterations, with and without using Cityscapes samples: (a) mean average
precision; (b) mean average orientation similarity.

Iterations  x 1,000

as stopping point. However, symptoms of overfitting are not
observed.

Nonetheless, we also analyze the effect of using dropout
regularization [19], with p = 0.5, on a model trained exclu-
sively with the KITTI training split. Results, summarized in
Table V, show no apparent benefit.

C. Heterogeneous Annotations

Results in Table III seems to suggest that using Cityscapes
samples, which are not endowed with viewpoint annotations,
benefits the orientation estimation performance. However, it
is important to note that AOS evaluates the joint detection
and orientation performance, and is, indeed, upper bound by
the AP. Therefore, it is expected an increase in AOS when
improving the AP, even when the viewpoint estimation per-
formance remains constant. Nevertheless, it could be argued
that alternating samples with and without orientation labels
may hurt the viewpoint estimation performance itself.

As we are using a discrete approach, we analyze the perfor-
mance as an isolated problem by using the ‘mean precision in
pose estimation’ (MPPE) measure proposed by [20], which is
the mean of the elements on the main diagonal of the confusion
matrix of the viewpoint bin classification problem. We use
the average MPPE across different recall values. As shown in
Table VI, performance is comparable, or even better in some
instances.

Following this line, we also proved the validity of training
a model with an extended set of classes from both datasets,
with the following categories: Car, Truck (including the
KITTI’s Van class), Pedestrian (including Person_sitting), Cy-
clist, Train (including Tram) and Traffic Sign. It is noteworthy
that the latter is only available in the Cityscapes dataset, while
it is considered as background in the KITTI samples; yet, the
model can detect some well-visible instances, as will be shown
in Sec. IV-E.

D. Data Augmentation Techniques

Data augmentation is frequently used to improve the robust-
ness of deep learning methods. All models were trained with



TABLE III
DETECTION AND VIEWPOINT ESTIMATION PERFORMANCE ON THE KITTI VALIDATION SET (%) USING DIFFERENT SETS OF TRAINING DATA

category tr. data Detection (AP) Orientation (AOS)
Easy = Mod. Hard Easy  Mod. Hard
KITTI 90.01 79.03 69.67 8826 7735 6797
Car KITTI + CS 90.39 8459 7021 88.68 8279 68.57
KITTI (w. CS pret.) 9033 86.16 70.58 88.63 8443 69.01
KITTI 71.19  64.05 5575 6531 57.62 50.01
Pedestrian ~ KITTI + CS 76.32 6798 59.11 67.83 59.65 51.69
KITTI (w. CS pret.) 7454 66.01 57.68 6733 59.01 51.52
KITTI 7733 5487 5289 69.73 4879 47.06
Cyclist KITTI + CS 86.11 6849 6346 77.66 61.23 56.83
KITTI (w. CS pret.) 83.18 60.37 5735 7555 5436 51.74
TABLE IV standard deviation between O and 5.1.

DETECTION AND VIEWPOINT ESTIMATION PERFORMANCE ON THE KITTI
VALIDATION SET (%) WITH AND WITHOUT PRE-TRAINING ON

IMAGENET
init.  tr. data Detection (mAP) Orientation (mAOS)
Easy @ Mod. Hard Easy Mod. Hard
Yes  KITTI 7951 6598 5944 7443 61.25 55.02
No K.+ CS 5380 4299 3725 4793 39.13 33.00
TABLE V

DETECTION AND VIEWPOINT ESTIMATION PERFORMANCE ON THE KITTI
VALIDATION SET (%) WITH AND WITHOUT DROPOUT

dropout Detection (mAP) Orientation (mAOS)
Easy @ Mod. Hard Easy Mod. Hard

No 7951 6598 5944 7443 61.25 55.02

Yes 7920 65.34 5843 7377 60.73 54.16

random horizontal flipping, but we further study the effect of
other augmentation techniques in this section. In particular,
we focus on texture augmentation methods, affecting color
and illumination. Four typical transformations are applied:
1) Addition. A random value between -40 and 40 is added
to all pixels in the image.
2) Multiplication. All pixels in the image are multiplied
by a factor randomly chosen from the range [0.5, 1.5].
3) Additive Gaussian noise. We add a small jitter to each
pixel, following a Gaussian distribution with mean 0 and

TABLE VI
PURE ORIENTATION PERFORMANCE ON THE KITTI VALIDATION SET (%,
MPPE) USING DIFFERENT SETS OF TRAINING DATA

category tr. data Easy Mod. Hard
c KITTI 9224 8093 6929
ar KITTI + CS  92.13 8340 7172
Pedestri KITTI 5903 5102 43.71
cdestiian g ITTI + €S 57.74  51.35  44.41
Cvelist KITTI 70.71  49.84  49.00
yels KITTI + CS 6495 51.60 49.11

4) Addition to ‘hue’ and ‘saturation’. A value randomly
sampled in the range [-20, 20] is added to the H and S
channels of the image expressed in HSV color space.

Not every transformation is applied to all frames, but instead

a random number between 0, none of them, and 4, all of
them, is chosen. We rely on the imgaug' library for the im-
plementations of the augmentations. We conducted separated
experiments with the KITTI training set and the combined
set; the latter might especially benefit from this idea given the
notable difference in contrast and color balance between both
sources. However, as shown in Table VII, the impact of texture
augmentations is reduced. The most relevant effect takes place
on the Hard subset of the combined dataset (+0.9 pp mAP).

TABLE VII
DETECTION AND VIEWPOINT ESTIMATION PERFORMANCE ON THE KITTI
VALIDATION SET (%) WITH AND WITHOUT DATA AUGMENTATION

tr. data aug. Detection (mAP) Orientation (mAOS)
Easy Mod. Hard Easy  Mod. Hard
K No 79.51 6598 5944 7443 61.25 55.02
’ Yes 8039 6587 5896 7456 61.00 54.38
K +CS No 84.27 73.69 06426 78.06 67.89 59.03
’ Yes 8396 7414 65.16 7795 68.09 59.59

E. Qualitative Results

Fig. 4 depicts a comparison, based on some selected exam-
ples from the KITTT test set, between the baseline model and
a model trained with the combined dataset, as well as data
augmentation. It can be noticed that some instances that were
not detected using the baseline model are correctly identified
using the enhanced training data.

On the other hand, examples in Fig. 5 shows the results with
the mix of categories introduced in Sec. IV-C. As shown, some
instances of traffic signs are correctly detected.

V. CONCLUSION

We have proved that modestly enhancing the training data
can lead to notable improvements on the results obtained by a

Thttps://github.com/aleju/imgaug
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Fig. 4. Selected examples of object detection and viewpoint estimation results on the KITTI test dataset. Upper row: with a model trained on the KITTI

training split; lower row: with a model trained on the combined dataset.
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Fig. 5. Selected examples of object detection and viewpoint estimation results on the KITTI test dataset with additional categories.

CNN-based object detector, which is especially interesting on
onboard applications, where scarcer data is usually available.
The variability introduced by the reduced number of samples
from the Cityscapes dataset can achieve a non-negligible
improvement from a model trained on the KITTI dataset alone,
even when tests are conducted on frames from the latter.
Results of our experiments pave the way for future works
taking advantage of multiple sources of data.
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