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Abstract

Diabetic retinopathy is one of the major causes of blind-
ness. However, diabetic retinopathy does not usually cause
a loss of sight until it has reached an advanced stage. The
earliest sign of the disease are microaneurysms (MA) which
appear as small red dots on retinal fundus images. Vari-
ous screening programmes have been established in the UK
and other countries to collect and assess images on a reg-
ular basis, especially in the diabetic population. A con-
siderable amount of time and money is spent in manually
grading these images, a large percentage of which are nor-
mal. By automatically identifying the normal images, the
manual workload and costs could be reduced greatly while
increasing the effectiveness of the screening programmes.
A novel method of microaneurysm detection from digital
retinal screening images is proposed. It is based on filter-
ing using complex-valued circular-symmetric filters, and an
eigen-image, morphological analysis of the candidate re-
gions to reduce the false-positve rate. We detail the image
processing algorithms and present results on a typical set of
89 image from a published database. Our method is shown
to have a best operating sensitivity of 82.6% at a specificity
of 80.2% which makes it viable for screening. We discuss
the results in the context of a model of visual search and the
ROC curves that it can predict.

1. Introduction

Diabetic retinopathy is present in 30% of diabetic pop-
ulation and is the leading cause of blindness in the devel-
oped world [4]. Blindness from retinopathy can in theory
be prevented but requires regular eye checks and aggres-
sive control of blood sugar levels. Retinopathy may also
be an early indicator of other health problems such as heart
disease. In the UK, community based retinal screening pro-
grammes have been set up where patients with diabetes are
routinely screened and images stored in a central database.

For each patient, four images are taken every year. These
are then manually graded by trained retinal screeners to
identify sight threatening retinopathy. Patients are referred
to eye specialists for certain treatments (laser) to prevent
them developing advanced retinopathy and blindness; but a
significant number of patients (approximately 60-70%) do
not have retinopathy. This is a time-consuming process and
involves a dozen or so screeners for Warwickshire.

When the patient is screened, one or more digital pho-
tographs of each eye are acquired then examined by op-
tometrists who grade the images on a standard scale. The
aim is to identify so called “RR” or referable retinopathy
when the patient is sent for assessment to a consultant oph-
thalmologist. In most cases, however, the images show no
signs of disease and are classed “R0”, and the patient will be
asked to return typically after 12 months. Manual grading
of these images is a skilled yet laborious task and only about
30 or so cases can be screened by one grader per day. The
scale of the problem becomes clear when typically, there
are tens of thousands of patients (e.g. Warwickshire region
have 35,000 patients) with mulitple images per patient (e.g.
100,000 per year) that need to be manually assessed. These
are some of the reasons that a robust, computer aided diag-
nositc (CAD) system is needed. The cost benefits of a sys-
tem that could reduce the load, even by 50% are clear. But
there also other gains to be had: quality assurance improve-
ments, by maintaining a consistently high-quality standard
for the screening; better utilization of skilled graders; and
in the near future, using results from the system to per-
form longitudinal analysis of the disease and its treatment,
e.g. [8].

Fundus images are acquired non-invasively, thorough
the dialated pupil of the eye, using a digital camera and a
flash. Typically, the resolution of state-of-the-art system
is very good with up to 2500 x 1500 pixel resolution im-
ages being digitized. Microaneurysm (MAs) are the earliest
signs of retinopathy at the so called pre-proliferative stage.
They persist as the disease continues to progress. If the
early signs are not immediately treated, the disease quickly
reaches the proliferative stage when new vessels are created



(neovascularization) threaten eye sight and may cause the
retina to become detached. The grading process decides on
referable cases, “RR”, when there is one or more MAs iden-
tified on the fundus photographs. These need not be in the
critical foveal region; a single optic-disc radius around the
fovea is sometimes used to signal more critical cases. MAs
are caused by high-sugar levels in the blood which causes
the walls of tiny blood vessels (capillaries) to distend and
they appear as roughly circular dark spots of fairly con-
sistent size on the red-free images (green channel). They
have similar intensity values to the blood vessels and in-
deed small, spot shaped aretefacts can sometimes appear in
and around the vessels. These are true-negative lesions but
a trained grader can quickly dismiss these. Latter stages of
the disease, blot-aneurysms, cannot normally be confused
with MAs as they are diffuse in appearance. The main fac-
tors that make the manual and automatic assessment of the
disease difficult are:

• fundus images can have significant contrast variation
related to the field of view (FoV) and insufficient di-
alation of the pupil,

• variation in pigmentation because of ethnicity and
other types of disease lesions such as those related to
age,

• spot artefacts near vessels that have similar shapes and
hue

Approaches to MA detection have principally focussed
on their intensity characteristics, size and shape. Most of
the presented methods have used mathematical morphology
operators but all methods perform a series of basic steps: (1)
contrast normalization to remove shading artefacts (see fig-
ure 4); (2) detection of candidate lesions (these are dark
spots); (3) reduction of the candidate set by eliminating
false-positive detections. False-positive detection of regions
which are on or near the vessels is particularly problematic.
Some reported methods have performed explicit vessel de-
tection to exclude such regions [5, 9, 2]. A number or vessel
detection methods exist and can be applied to mask and ex-
clude such detections. Others have extended the basic math-
ematical morphology framework to locally measure linear
structures and suppress candidates at these points.

One of the better performing systems has been reported
by Fleming et al. [5] . Their system has a sensitivity of
85.4% with a specificity of 83.1%. Recently, they reported
that at 50% sensitivity, an area-under-roc curve (AUR) of
0.911 for MAs. This implies that for grading, their CAD
system would be able to reject 50% of the normal cases
with high sensitivity (95% or more). Much of the problem
however of insufficiently high sensitivity has been because
of the false-positives not being filtered correctly. Fleming’s
method consists of a number of stages: contrast normaliza-
tion based on a median filter; candidate detection using top-
hat morphological operations; region growing after thresh-
olding; candidate evaluation based on fitting a 2D Gaussian;
background region growing using a watershed segmenta-
tion; vessel exclusion using linear structuring elements; fur-
ther classification of the remaining candidates using a kNN

classifier. The number of steps and associated parameters
(thresholds) makes it hard to reproduce their technique and
to readily analyse its shortfalls and advantages. In this work,
we have consciously kept the number of stages and param-
eters to a minimum.

Streeter and Cree [10] reported a method which begins
by suppressing vessel like structures by first running 8 di-
rectional linear structuring elements of size 25 pixels using
a tophat step. Then a pair of circular-symmetric matched fil-
ters of size 17 and 13 are applied to the output. The output
is thresholded and produces an inital set of 250 false pos-
itive lesions per image. Regions growing from these seed
points with two further intensity thresholds then leaves a
set of candidate points. Eighty features each are derived
from these candidates and after forward-backward feature
selection reduced to 16 discriminating with an LDA classi-
fier. The final classification was tested and shown to pro-
duce about 6 false-positives per image at a sensitivity of
56%. Here we also uses matched filters and a feature selec-
tion/classifier, but based on an eigen-image analysis of the
candidate regions. Our approach only has two user defined
thresholds, one of which is set using a supervised analysis
of MA and non-MA neighbourhoods and the second which
can be taken as the optimal operating point from an ROC
analysis.

The main contributions of this paper are: a new fast and
robust MA detector based on a complex-valued, circular-
symmetric operator; a filtering method on an eigen-image
analysis of their shapes; and the use of a model of visual
search recently proposed by Chakraborty [3]. The presented
method is both simple and verifiable. The eigen-image
classifier is highly effective and our results on a standard
retinopathy database [11] confirm the visual results for sen-
sitivity and specificity. After a description of the method,
presentation of results, we discuss the ROC analysis with
reference to the model of visual search and make predic-
tions for the algorithm performance on larger data.

2. Method

The key idea of our approach is that the microaneurysms
have a particular shape profile which is very different from
other features present in the fundus image like vessels. This
is exploited by employing an orientation matched filter. But
before this can be done, the images are preprocessed to en-
hance features and make it suitable for further processing.
Thresholding on the output of orientation matched filter ob-
tains a set of potential candidates. This technique also picks
up certain noise artifacts which resemble the shape profile
of a microaneurysm, to remove these false-positives, eigen
image analysis is applied on the potential candidate regions
and a second threshold applied on the eigen-space projec-
tion of the candidate regions. The main stages of the meth-
ods are:

1. contrast normalization using a median filter

2. blob detection using a Laplacian of Gaussians (LoG)



3. shape filtering using a circular-symmetry operator on
an orientation map of the data; combining the outputs
with the LoG produces a candidate set

4. small windows around candidates are then used as fea-
tures into an eigen-space learnt from ground-truth TPs
and FPs.

Only 3 parameters are required: the size of the LoG blob de-
tector; the threshold on the combined shape/orientation field
analysis; and the classifier threshold on the eigen-space pro-
jection. We show that in fact, that for a given image reso-
lution, only the second threshold requires tuning by finding
the best performing value against ground truth data (ROC
analysis).

2.1. Speckle reduction and Contrast normalization

The green channel, I , of a colour image of size W ×H
pixels is taken and filtered using 3 × 3 median filter to re-
move any salt and pepper noise. The median filtered output
M is multiplied by a local-mean filtered image, L25, ob-
tained by calculating a moving average mean in windows
of size 25 × 25. At the same time, a confidence map C is
produced by thresholding the output against a low intensity
value, Imin = 20:

M(x, y) = [M3×3 ∗ I(x, y)]× L25(x, y) (1)

C(x, y) =
{

1 if L25(x, y) ≥ Imin

0 otherwise.
(2)

This is effective at eliminating regions with low contrast
and also estimating a quality value for the image, QI =∑

C(x, y)/(W ×H).
Due to shape of the eye and improper illumination, fun-

dus images are corrupted by a shading artifact. A simple
model for the shading artefact across an image is a multi-
plicative model I = Î × S×, where S× is the shading bias.
To estimate the contrast normalized image, Î , a number of
methods have been reported which all assume that the shad-
ing bias is low-frequency and the unbiased image is piece-
wise constant. In this work, a large window median filter is
used to obtain an estimate of S×.

Ŝ×(x, y) = M53×53 ∗M(x, y). (3)

Then, the contrast normalised image is Î(x, y) =
M(x, y)/(Ŝ×(x, y)+1). The confidence map, C, is applied
to the output contrast is rescaled to one standard deviation
either side of the mean of Î (figure 4).

2.2. Blob detection

After preprocessing the input, a Laplacian of Gaussians
filter is used to enhance small, spot features (figure 1).

L∇2(x, y) = ∇2(σ) ∗ Î(x, y), (4)

∇2(σ) = − 1
πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2 .

This results in strong positive responses for dark blobs of
extent σ and strong negative responses for bright blobs of
similar size. However, this also enhances features other
than MAs like certain parts of vessels and noise artefacts
(figure 4).

Î ∇2 L∇2

∗ =

,
∗ =

.
meiΘ f R

Figure 1. Top: Laplacian of Gaussians and Difference of
Gaussians profiles. LoG used as blob detector is controlled
by σ; DoG is the radial magnitude, f(r; σ2), of circular-
symmetry filter, f . Bottom: LoG and orientation filtering
operations on a single MA region shown in Î .

2.3. Circular-Symmetry Operator

The complex valued, circular symmetry operator [6]

f(x, y) = f(r)ei2(βφ+α) (5)

where f(r) is a radial magnitude function, is correlated with
a orientation map of the contrast normalised image,

R(x, y) = m(x, y)eiΘ(x,y) ∗ f∗(x, y) (6)

and the magnitude and phase of the orientation map is ob-
tained by running a pair of directional filters (Sobel opera-
tors in sx and sy directions)

m(x, y) = ‖Î(x, y) ∗ (sx(x, y), sy(x, y))T ‖, (7)

Θ(x, y) = arg[Î(x, y) ∗ (sx(x, y), sy(x, y))T ].

Here the superscript, ∗, is a complex conjugation, and T the
transpose.

The circular-symmetry operators, f , belongs to a class
of double-angle filters which can be varied by changing the
harmonic number β and the phase offset α. We have used
the simplest form, β = 1

2 , α = 0, which defines single-
angle circular patterns of orientation (see figure 4) and
matches well the appearance of the orientation field around
a microaneurysm. The output of the circular-symmetry op-
erator filtering, R, is also complex valued and has positive
phases for dark spots, such as MAs, and negative phase for



white spots such as hard-exudates. This allows us to easily
distinguish MAs in the presence of proliferative lesions in
advanced retinopathy. The radial profile, f(r), of the oper-
ator is also matched to the expected amplitude profile of the
edges-map around a MA as the difference of Gaussians

f(r;σ2) = e
− r2

2σ2
2 − e

− r2

4σ2
2 . (8)

We have tuned σ2 to correspond with σ used for the LoG
filtering (see figure 1).

2.4. Candidate selection from matched filtering

The outputs of LoG and Circular-symmetry operators are
combined by taking the product, L∇2 × ‖R‖. This map is
thresholded at t, to locate a set of candidate lesion regions.
The centroids of these regions are stored for further process-
ing by the next stage. In the evaluation presented below,
we explain how the value of t is chosen by finding the best
operating-point on a receiver operator characteristic (ROC)
curve.

2.5. Eigen-image analysis of candidate regions

At this point, the candidate regions are likely to include
non-MA lesions as well as MA regions. We can class these
as false-positive detections, FPs, and true-positive detec-
tions, TPs. Figure 2 shows a few examples of FP and TP
regions. These are obtained by taking a small, square win-
dow of size B around each candidate centroid.

To further discriminate between TPs and FPs, an eigen-
image analysis is employed (see for example [7]). Each can-
didate region is projected into an eigen-space obtained from
a principal component analysis (PCA) of a set of training
sample regions - like those shown in figure 2. Each square
region can be represented by a B2 dimensional vector, vi,
then the PCA performed by calculating the mean and co-
variance of the set of N training samples vi. The projected
region is obtained by the linear transformation

wi = WT vi (9)

where the projection matrix W is the M principal eigen-
vectors, ej , of the covariance of the data:

∑
(vi−m)(vi−

m)T ,m = 1
N

∑
vi. Now, the dimensionality of w is M

and significantly less than that of the data, v ∈ RB×B . In
the evaluations we used a window of size, B = 21 and
the variance analysis of the PCA (figure 2) shows that only
the first 10 or so modes are significant. Hence, M = 10 is
reasonable. In fact, if we visualize the training regions using
only the first three principal dimensions, it appears that the
first mode, e0, is sufficient to discriminate the TP and FP
regions (figure 3). Hence, we can use a simple threshold of
approximately 1000 on the projection eT

0 vi to discriminate
any remaining false-positive regions.

TP regions

FP regions

m e0 e1 e2 e3

Figure 2. Top: Selection of TP and FP candidate regions
used to perform PCA. Middle: Plot of eigen values from
PCA of TP and FP training regions. Bottom: the mean
eigen-image, m, and the first 5 eigen vectors of the PCA.
Variation is circular-symmetric in 1st and 4th modes, while
the remainder is a result of local contrast variation.

Figure 3. Scatter plot showing coordinates of TP and FP
candidate regions in principal coordinates of eigen-space.
A single mode, e0, is strongly discriminating at value 1000.

3. Evaluation

3.1. Materials

We have used a set of 89 images from the DIARETDB1
database published by the University of Kuopio, Fin-
land [11]. This database is a set of high-resolution RGB
fundus images of size 1500 x 1152 pixels (50 degree field
of view) together with labelled ground-truth by 3 experts
of various lesions: MAs, hemorrhages, hard-exudates, soft-
exudages and neovascularization. In this work, we are in-
terested in only the MA labelled images.



Original Green channel

Normalized Orientation map

LoG output Circular-symmetry output

Thresholded output TP map

Figure 4. Stages of MA detection method on image078 of DIARETDB1 database. MA detections shown in red on green channel
(bottom left). True-positive detection from ground-image.



There were 205 separate MA lesions across the entire
set, with 9 images containing no MAs. Figure 4 illustrates
the results on one image of the test data (image078). This
image had two true-positive lesions marked on the ground-
truth, plus two true-negatives. The automatic detector has
found two microaneurysms not picked up by expert reader
and also one of the two true-negatives which are the result
of dust on the camera lens (these persist on other images of
the DIARETDB1 dataset).

3.2. ROC Analysis

Receiver Operator Characteristics (ROC) analysis was
applied to validate the MA detection method against the
example images from the DIARETDB1 database. All the
images were processed by the automatic method with the
LoG and circular-symmetric operators tuned to with σ = 3
and σ2 = 1. The eigen-image classfier threshold was set to
1000. The threshold t on the product of the matched filters
L∇2 ×‖R‖ was varied between the interval t = [160, 240],
to produce a set of MA detections for each input image.
These pixels from these detection were then tested with
the hand labelled ground truth to calculate sensitivity (true-
positive rate), and specificity (true-negative rates):

Sen =
TP

TP + FN
Spec =

TN

TN + FP
, (10)

where TP is true-positive, FP is false-positive, TN is true-
negative and FN is false-negative. The sensitivity is the pro-
portion of actual MA regions that are found and the higher
this number the more accurately the algorithm is detecting
the disease regions. The specificity is the proportion of non-
MA regions correctly detected. In the ROC plots presented
below, 1 − Spec is plotted, which is the false-positive rate,
and this has to be small indicating that algorithm does not
produce too many false-alarms. For our application, reduc-
ing the 1 − Spec rate will correspondingly allow a greater
proportion of the images to be discarded without referral to
an expert. However, since the DIARETDB1 images do not
show the TN lesions, we have to use a statistical argument
to determine which pixels could be classed as such.

Blurred ground truth Confidence intervals

Figure 5. Confidence intervals TN = [0.3, 0.75]
(green), TP = [0.75, 1.0] (red) on ground-truth data used
to generate ROC. Example shown for image003 of DI-
ARETDB1 database.

To acertain the number of true-negatives, we took confi-
dence intervals of the labelled ground-truth (GT) data. The

GT images are labelled in an additive way; i.e. each grader’s
markup is summed, and no restriction was placed on how
the labelling should be done [11]. It is then possible to blur
this markup and take confidence intervals as shown in fig-
ure 5. For example, to find those pixels that have the highest
agreement between the graders, a confidence level of 0.75
can be taken. Similarly, we can take an intermediate in-
terval, e.g. [0.3, 0.75], to locate pixels which are potential
true-negative regions because at least one grader believes
they could be lesions. Figure 6 is a plot of the ROC analysis
for all the DIARETDB1 images. The best operating point
on this curve is at a sensitivity of 82.6% at a specificity of
80.2%.

Figure 6. ROC curve for threshold t on matched fil-
ter product on DIARETDB1 database. The best operating
point is 82.6% at 80.2%.

3.3. A Model for Visual Search

One of the problems with using ROC curves is that al-
though they can be an effective way of finding the best op-
erating point for a given algorithm, and assess its perfor-
mance independently, it can be hard to compare between
ROC curves from other algorithms when the data is differ-
ent. In particular, it would be informative to predict the
algorithm performance as if the data were worse or better
than that given. Or, indeed, to hypothesize how it might
perform on different data knowing only, for example, the
relative incidence of disease in the poplulation. In [3],
Chakraborty proposed a model for visual search which can
be used to predict ROC curves for a free-response paradigm
such as an observer searching for lesions in an image. The
model is parameterized by perceived lesion-to-noise ratio
and how good the observer is at detecting the lesions and
non-lesions. Here, we fit the model to the performance
curves of our algorithm and use it to predict the performance
as the model parameters are varied.

The visual search model proposed in [3] makes a num-
ber of statistical assumptions. It assumes that the observer
is presented with an image containing a number of lesion
sites, some of which are signal sites and some noise sites.
The observer then makes decisions for each potential site
marking it as a TP or not. The parameters of the model
therein are



1. The number of noise sites, n, are drawn from a Poisson
distribution with rate parameter λ.

2. The number of signal sites, u, are drawn from a Bino-
mial distribution with trial size s, and success proba-
bility ν.

3. The decision at each site is based on a random variable,
ζ, drawn independently from a unit variance, Gaussian
distribution, N(m, 1), where m = 0 for a noise site,
and m = µ for a signal site.

Translating these parameters to our MA detection problem,
we can deduce that the trial size of the number of signal
sites, s, is the same as the estimate of the expected value for
the number of MAs per image. In our data, this was 205/80,
as 9 images had no MAs and a total of 205 were present,
hence s = 2.5. We can relate the success probability, ν,
to some large value as we expect that our method is able to
find all potential MA sites. It is designed to over-segment
the data and the expectation is that all the signal sites will
be located every time. We can nominally set ν = 1.0. The
parameter, µ, which separates the decision distributions in-
dicates the discriminating power of the algorithm: the larger
the µ, fewer errors are made and the better are the ROC
curves which result.

To plot an ROC curve, in [3], the sensitivity and speci-
ficity under the above model are analytically derived as

Spec(ζ|n) = e
−λ

2 + 1
2 λ erf( ζ√

2
)
, (11)

Sen(ζ|µ, λ, ν, s) = 1−
(

1− ν

2
+

ν

2
erf(

ζ − µ√
2

)
)s

·

(12)

e
−λ

2 + 1
2 λerf( ζ√

2
)
.

For our experiments, since our threshold t takes arbitrary
values, we do not know the spread of the decision vari-
able ζ, so we add additional parameters µn and ς to model
the spread of the Gaussian normal distributions from which
it is drawn. This can be simply achieved by substituting
ζ → ζ−µn

ς into the error functions. We used non-linear
regression fitting to estimate the unknown parameters: λ,
{µn, ς} and µ for our experimental data and plotted the re-
sulting curve in figure 7.

Finally, we illustrate the predictive abilities of the ROC
model by altering the estimated parameters. In figure 8, the
separation of the noise and signal normal distributions, µ, is
increased and decreased which correspondingly improves
or worsens the performance of the algorithm. Similarly,
changing the expected rate of MAs per image, controlled
by s, worsens the performance significantly if s = 1.5.

4. Conclusions

Development of computer aided methods for the screen-
ing for diabetic retinopathy is an important and active area
of research in medical image analysis. Although a num-
ber of algorithms have been proposed, none have shown the

Spec(ζλ, µ, ς) Sen(ζ|µ, ς, λ, ν, s)

Figure 7. Fitting to ROC data using model of visual
search. s = 2.5, λ = 7.6, ν = 1.0, µ = 58.5, ς = 31.

Figure 8. Predictions from ROC analysis. Top: Varying
the separation power of detector: µ = 68.5, µ = 38.5. In-
creasing µ improved the performance. Bottom: Varying the
incidence of MAs per image s = 3.5, s = 1.5. Decreasing
s, worsens the performance.

promise of performance which can easily be scaled. Many
of the methods presented elsewhere use sets of arbitrary im-
age processing steps and perhaps do not fully exploit the in-
tensity and shape characteristics of the microaneurysm le-
sions. This make it hard to reproduce from explainations
in the literature and harder still to tune them to their best
performance. We have presented a model based approach
to the problem that employs fairly standard linear filtering
and eigen-image analysis. We employ both intensity and
shape filters, using a circular-symmetric operator on an ori-



entation map of the input. The output of these allows us to
quickly identify a set of potential MA regions. These are
then classified using a PCA and a linear classifier.

The method only requires the tuning of two parameters
that are tied to image resolution and leaves a threshold that
can be adjusted using a simple ROC analysis. The resultant
method has been shown to perform comparably well on a set
of 89 standard retinal fundus images for which ground truth
was made available. Our ROC analysis of the detector per-
formance have shown it to produce a sensitivity of 82.6% at
a specificity of 80.2%. At a specificity of 67% the sensitiv-
ity is 89% which compares well with the results published
elsewhere (see for example [9]). However, given that we
have only run the detector on 89 images, it remains to be
seen if the performance can be maintained on larger data
where the numbers of true-positive images will be much
smaller. We shown how a model for visual search can be
used to fit to the ROC data and enable predictions on the
performance of the method on enhanced or degraded data
to be made. We believe that this sort of extrapolation could
be useful to gauge both the power and robustness of a given
method.

A number refinements are still be made to our system.
We have not fully explored the eigen-image analysis and
it is apparent that there is some residual contrast variation
that the initial normalization step is not removing fully. We
are exploring parametric normalization schemes which may
cure this problem [1]. In the near future, we will be acquir-
ing a much larger set of example images (1000 or more), to
test further the performance. Our current results are encour-
aging but we acknowledge that the lower incidence rates of
MAs in larger cohorts may be problematic.
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