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Abstract

In this paper, we present a case study that exempli-
fies general ideas of system integration and coordination.
The application field of assistant technology provides an
ideal test bed for complex computer vision systems includ-
ing real-time components, human-computer interaction, dy-
namic 3-d environments, and information retrieval aspects.
In our scenario the user is wearing an augmented reality de-
vice that supports her/him in everyday tasks by presenting
information that is triggered by perceptual and contextual
cues. The system integrates a wide variety of visual func-
tions like localization, object tracking and recognition, ac-
tion recognition, interactive object learning, etc. We show
how different kinds of system behavior are realized using
the Active Memory Infrastructure that provides the techni-
cal basis for distributed computation and a data- and event-
driven integration approach.

1 Introduction

Pushing the construction of computer vision systems
from heuristically motivated approaches to a systematic en-
gineering discipline has been a goal of computer vision re-
search for quite a long time. Early approaches merily fo-
cused on the knowledge engineering task using general in-
ference engines [6, 8, 12, 24]. These had their own lim-
itations when going to broader applications, more unre-
stricted realistic environments, and real-time constraints. In
such broader settings, knowledge can not be defined suffi-
ciently neat and crisp. Furthermore, in many cases it re-
vealed to be difficult to separate system control from do-
main knowledge. As a consequence the interest shifted
from generic computer vision systems towards specialized
techniques and representations for individual object recog-
nition [20, 26, 19] and solving more specific vision tasks
[1], e.g. vehicle guidance [15], people tracking [25], etc.
Furthermore, the paradigm of understanding computer vi-
sion as an active or interactive process poses real-time and

hardware requirements to at least components of a vision
system. Being able to solve more specific tasks in more un-
restricted settings, the general idea is to generate more com-
plex and more general application systems by combining a
wide variety of different specialized vision behaviors.

Following a system approach in computer vision re-
search, the topics of distributed processing, communication
between components, integration, and coordination are be-
coming major issues in the design of computer vision sys-
tems. How to relate these basic technologies to the solution
of computer vision problems has been rarely studied (dif-
ferent aspects can already be found e.g. in [4, 11, 14]), but
it gains much interest in the emerging field of cognitive sys-
tems [10, 29, 31, 22]. However, use cases of building com-
plex vision systems that are actually running in a real-world
scenario and integrate a large number of different vision be-
haviors in a unified framework are only sparsely reported. A
few examples that present complex integrated systems can
be found in [18, 4, 2].

In this paper, we present an AR system that realizes a
cognitive assistant for mixing drinks that includes low-level
as well as high-level visual processing. The system inte-
grates real-time components, human-computer interaction
loops, the processing of dynamic 3-d environments, and
information retrieval capabilities. Processing modules are
decoupled through a repository-style architecture and dis-
tributed over several computing machines. System integra-
tion and coordination is managed by using XML as a uni-
fied data-model and declaratively defined memory events.
These provide the technical basis for a petri-net component
that manages task-dependent control issues.

In the following sections, we sketch the integration and
coordination approach used in system construction and de-
scribe the demonstration system in detail. Exemplarily,
three different system behaviors and corresponding process-
ing paths are discussed that illustrate the integration princi-
ples.
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Figure 1. Integration components of the Active Memory Infrastructure

2 The Active Memory Concept for System
Integration

The interactive application scenario of our cognitive as-
sistant system described in section 3 in particular, and inter-
active cognitive vision systems in general, impose several
constraints on a software framework for system integration.
For us, two of the most important requirements are firstly
that the system should interact with soft real-time perfor-
mance and secondly the ability of the system to track the
interaction context in terms of perceived episodes, events
and scenes.

2.1 Data-driven integration

Given these requirements, we developed an integration
framework for cognitive vision systems [30], called Ac-
tive Memory Infrastructure1 (AMI). The basic concepts fol-
lowed there are the ability to integrate distributed processes
with various communication patterns useful for vision sys-
tems and an active data repository allowing for flexible
knowledge representation. To achieve this needed flexibil-
ity all information flow (e.g. object recognition results) be-
tween integrated components is based on XML messages
that can reference attached binary data (e.g. images).

Utilizing these XOP-like data packages [27], the XML
enabled Communication Framework (XCF) [29] supports
(a-)synchronous remote method invocation (RMI) and

1The resulting SDK is available for download at:
http://xcf.sourceforge.net

publisher-subscriber communication semantics to distribute
components over several computing nodes. A component
interface provides AMI processes with default implementa-
tions for external process control and reconfiguration. Ex-
posed methods are bound and invoked dynamically, with
XML schemas optionally providing runtime type safety of
exchanged parameters.

On top of the communication framework, the Active
Memory XML Server serves as the basis for coordination
and shared data management in our integration approach as
shown in figure 1. XML data like object or action recogni-
tion results and/or binary data like image patches for recog-
nition algorithms are fed into an active memory server and
can be retrieved via XPath statements.

2.2 Event-driven coordination

Basic coordination between the components is provided
by a flexible event-notification mechanism. The event man-
ager of the active memory server is co-located with the per-
sistent back-end, a native XML database. Event subscrip-
tions specify an XPath to narrow down documents of inter-
est and the associated type of database action. If an action
in the active memory server matches an event subscription,
the subscriber is notified, if available. Coordination is thus
data-driven and not bound to explicit links between a fixed
set of components present in the system.

To provide more complex coordination methods for mul-
tiple concurrent components in a cognitive vision system,
we developed an application of petri-nets for system inte-
gration purposes. Petri-nets, in general [21], extend clas-
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(a) AR gear (b) Training new objects interactively (c) The system guides the user to the next ingredient

Figure 2. The assistance system: Hardware setup and screenshots.

sic state machines by the ability to represent concurrency.
Thus, they are well suited for modeling structure and be-
havior of parallel distributed systems. The current marking
of a petri-net corresponds to a specific system configuration.
Dynamic changes in system behavior are controlled by ac-
tivated transitions. In our approach we extended the clas-
sical petri-net concept by so-called active memory guards
(AMG) which utilize memory event listeners to connect the
model to active memory instances. If the place condition is
fulfilled and the specified memory event occurred, the input
arc as a whole is satisfied and the attached transition is en-
abled. This concept couples the execution of the specified
high-level petri-net model to the overall state. AMGs are
context dependent in a sense that they are activated as soon
as the place condition of its arc is satisfied.

The realization of the active memory petri-net engine
allows a formal and declarative specification of net struc-
ture and active memory guards as well as the attached ac-
tions in an application of the PNML document format [28].
Thus, petri-net coordination models can be extended by new
places and transitions online. As soon as a PNML model is
updated in an active memory server, the instantiated petri-
net execution engine is reconfigured.

Figure 1 shows on a conceptual level how a petri-net con-
trol process is coupled to the overall system. As soon as a
transition fires, a sequence of actions is executed. The set
of possible actions which can be attached to a transition can
be any number of XCF RMI calls, basic actions on an active
memory or local calls to methods of classes that are derived
from a basic action interface. Instances of those actions are
specified in the PNML model and can be configured with
XML parameters. A concrete example for modeling of sys-
tem behavior with petri-nets will be given in section 4.3
along the explanation of our system architecture.

3 The Cognitive Assistant System

An approach for system integration can only be proved
appropriately by realizing integrated systems. In this pa-
per we present how the active memory concept is employed
to construct a cognitive assistant for mixing drinks. The
user wears an augmented reality setup as depicted in fig-
ure 2(a). Images captured by the two front-mounted cam-
eras are augmented by additional information and displayed
on the head-mounted display of the so-called AR gear. This
device thus realizes the interface between the system and
the user by means of GUI elements and visual highlights as
depicted in figures 2(b) and 2(c). As feedback channels a
microphone and a wireless mouse are integrated.

In the scenario, a user A first has to teach the system the
ingredients of the drink by interactively capturing about 4-
5 views of each object. Therefore, the user is prompted to
focus his or her view on the object to be learned. Acquired
views are presented in the head-mounted display for valida-
tion (cf. figure 2(b)). The acquired image patches are used
as training set which is labeled by speech (e.g “This is or-
ange juice.”). Afterwards, the system is able to recognize
these objects and memorize and update their 3D position
autonomously. Another user B can now use the system as
an assistant to really prepare a drink. The system prompts
the user to follow the recipe step by step and supervizes
whether he or she is correctly performing. Furthermore, the
system provides assistance in guiding the user visually by
means of augmented reality arrows (see right of figure 2(c))
to the memorized location of the next ingredient.

To achieve the described functionality of a cognitive as-
sistant several components have to play together. Each of
these components usually reflects an area of research for it-
self. We will briefly outline the most important components
for this scenario in the following.
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Figure 3. Components of the integrated system

Object Recognition & Learning Objects (ingredients)
play a crucial role as the system needs to know where which
object is located and which objects are manipulated by the
user. The integrated appearance based object recognition
subsystem [5] is based on a two-step procedure - segmen-
tation and classification. The first is based on the integra-
tion of different saliency measures such as local entropy,
symmetry and Harris’ edge-corner-detection into an atten-
tion map. This allows to segment objects located on a less-
textured table top. For the classification of the segmented
image patches a combination of Vector Quantization, Local
Principal Component Analysis, and Local Linear Maps is
utilized. These classifiers can be learned interactively with
only few views. The training set is automatically extended
by including rotated and scaled versions of the captured im-
age patches. The classification itself performs at real-time
on recent computers, allowing to apply this approach in the
online reactive system.

3D Vision Sub-System The system needs to know the po-
sition of objects in the real world to guide the user. Since
the environment is perceived only from (visual) sensors
mounted to the AR gear its position with respect to the
environment must be known. The 3D pose is computed
from artificial landmarks [7] as depicted in figure 3(a). To
avoid deficits in visual tracking of the landmark, an inertial
tracker located at the top of the AR gear aids the tracking
process [23]. By means of this hybrid tracking approach,
the precise position and orientation of the user Tpose can be
computed yielding only a very small relative mean distance
error of 0.5%. The availability of the user’s pose allows
the system to compute the 3D position Tobject of objects
located on the table top (or any other known plane) by in-
tersecting the view ray determined by the object position in
the image and the pose with the known table plane Ptable.

Visualization & Multimodal Interaction The AR gear
realizes the interface between user and system. It can guide
the user visually to certain places, and provides feedback
about the system’s status and processing result by means of
visualization. Since the system and the user share the same
view, the scene is indeed augmented by visual elements like
semi-transparent rectangles, three dimensional arrows, etc.
(cf. figure 2(b) and 2(c)). Furthermore, the system is able to
interact with and receive input from the user. The compo-
nent is designed for multimodal interaction comprising GUI
interaction using a mouse wheel or head gestures [16], and
speech input [13]. By means of this it enables interactive
learning and labeling of objects, visual user guidance and
overall control of the system.

Action Recognition As the system should not only guide
the user but also should supervise his actions, a component
for action recognition is integrated. It has to answer the
question whether the user has performed the requested ac-
tion with the correct object or not. We utilize a classification
approach based on the trajectory of the manipulated object
in the video sequence [17]. It is trained with model trajec-
tories of the respective actions and copes with variations of
these by classifying them using a condensation algorithm.
Since objects cannot be reliably recognized by the object
recognition component when being manipulated, visual ob-
ject tracking [3] is integrated to provide the trajectory of
the object as input for the action recognition. Whenever an
object is reliably recognized, visual tracking is initialized
and tracks the object. The robustness of the used approach
against occlusion allows to track the object even when being
manipulated. A visual background movement model allows
to estimate the absolute trajectory compensating the user’s
own movement. Figure 3(b) shows an estimated absolute
trajectory of an object when performing a “pouring” action.
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Figure 4. Architectural sketch of the cognitive assistant

Hypothesis Anchoring Components, as for instance ob-
ject recognition, only provide instant percepts of the envi-
ronment that describe the current visual appearance of the
scene. Inspired by the work of Coradeschi and Saffiotti [9]
a component called hypothesis anchoring maps these per-
cepts to reliable symbols. For objects, anchoring mainly
compares the 3D position of a percept to assign them to
existing anchored hypotheses. If no anchored hypothesis
matches, a new one is created. Thus, hypotheses are an-
chored over time and a specific hypothesis gains increased
reliability if many matching percepts support it. The reli-
ability factor is included in the hypothesis representations
in the active memory. Details about the hypothesis concept
and the role of reliability factors in the active memory con-
cept can be found in [30].

4 Architecture and Data-Flow

The functionality of the system does not only depend on
the individual components, but even more on their adequate
and efficient interplay. In the assistance system presented,
we utilize the active memory infrastructure for the integra-
tion of the different components. Figure 4 presents an ar-
chitectural sketch of the whole integrated distributed sys-
tem running on six computers. Describing this architecture
at all levels of detail would go beyond the scope of this pa-
per. Rather, three scopes of the system are subject to further
explanations about how components work together.

4.1 From images to visualization

Many interesting aspects of how our system mediates
data and coordinates components can be explained by fol-
lowing the path of the visual percept of an object from being
captured by the camera to its visualization. In figure 5(a)
this path is outlined. The component “VIS/Image Server”
is connected to the AR gear and serves images as well as
accepts visualization commands to display information to
the user. By means of this, it closes the interaction cycle.
“Object Recognition” recognizes objects in the image and
is directly connected to “3D Context” where the 2D percept
is extended with 3D information. Here, the active memory
(AM) comes into play. The percept is inserted in the AM
and because “Hypothesis Anchoring” has subscribed itself
on the insertion of such percepts it gets triggered, matches
the percept to anchored hypotheses and assigns a reliabil-
ity to the selected one. The hypothesis is then submitted to
the AM again. Thus, “hypothesis anchoring” constitutes a
memory process in the sense of the AM concept, as it only
works on the memory content.

Following the path further, the hypothesis triggers the
“Highlighter” component only if the hypothesis is reli-
able, since the user should not be bothered with un-
reliable information. In the AM concept this filtering
is realized by registering the component with a more
restrictive XPath as shown in the following example:
/OBJECT[RELIABILITY@value >= 0.9]. Thus,
the data is already interpreted by the AM itself. Finally
the “Highlighter” calls a remote method on the visualiza-
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Figure 5. Data mediation: (a) From images to visualization. (b) Triggering components.

tion server “VIS” to display the anchored, reliable object
hypothesis to the user. In our integrated system, the com-
plete cycle including object recognition and visualization
takes about 0.28 seconds.

4.2 Triggering action recognition

As a second case study we present how action
recognition gets triggered in the system. We fol-
low the idea that a user usually focuses on an ob-
ject before starting to manipulate it. Therefore,
the component “Action Recognition” registers itself on
reliable (/OBJECT[RELIABILITY@value >= 0.9])
and centered (...[@x>160 and @x<240]...) hy-
potheses that are available in the active memory. Figure 5(b)
illustrates the complete flow of data in this case study. The
“Action Recognition” starts tracking the object in the video
stream when it gets triggered by the active memory. The vi-
sualization of the tracked regions provides feedback to the
user and allows him to follow the system behavior. A rec-
ognized action is inserted into the AM.

4.3 Coordinating complex behaviors

Event- and data-driven notification of components as de-
scribed above is often sufficient for control of individual
components. To realize more complex coordination of sev-
eral components running in parallel, we utilize the petri-net
based coordination engine as described in Section 2.2.

To exemplify this, Figure 6 shows a small module of our
high-level petri-net that models an exemplary part of the
system behavior: The handling of self-localization errors of
the 3D vision subsystem. When the user is mixing a drink,

the system guides him with arrows to the next ingredient as
shown in Figure 2(c). For this task, a correct 3D-pose is
necessary. If it gets lost, e.g. due to occlusion of the target,
the system has to cope with this situation and reconfigure
several system components, e.g. the 3D guide widget in the
visualization server. When the pose is again available, the
system has to resume normal operation.

Figure 6(a) shows the system working when the pose is
available and the 3D object guide is activated. If the AMG
of the transition TargetLost is triggered in this state, the
3D context module has inserted information about an illegal
pose in the specified memory instance. Thus, the transition
fires, which leads to a reconfiguration of the system com-
ponents and petri-net model state as shown in Figure 6(b).
A consequence of this model change is that the transition
StopGuide is now fireable. After this transition fires, the
guide is paused which is directly reflected in the model as
illustrated in Figure 6(c). The system now waits for reac-
quisition of the 3D pose and in case one is inserted, Target-
Found and RestartGuide would be fired and their set of
actions be executed. This change would result in the origi-
nal marking as shown in 6(a).

As described in Section 2, a sequence of actions is exe-
cuted when a transition fires. To give an example, a param-
eterized XCF RMI call is attached to the TargetLost tran-
sition to deactivate the 3D object guide on the VIS Image
Server component. With the set of supplied basic actions
most tasks in our system could be carried out and declara-
tively specified in the PNML model. Custom actions have
been added e.g. to control the training process of new ob-
jects with the object recognition component.
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Figure 6. Active petri-net transitions when 3D
pose is lost during object guidance. Rect-
angles depict transitions, circles places and
filled circles tokens in places. Relevant
model elements of each step are drawn in
bold face. Existing AMG specifications are
annotated at corresponding input arcs.

5 Experiences and Conclusion

This contribution demonstrated the application of a data-
and event-driven integration approach for the development
of an interactive vision system for user assistance. We high-
lighted several typical use cases for system integration in vi-
sion systems and their realization with the AMI framework.
The resulting system and previous prototypes have already
been demonstrated successfully at various occasions, e.g.
the EU IST Event 2004 in The Hague, Netherlands as well
as on other international research workshops and is planned
to be shown at the ICVS 2006 exhibition.

Beyond successful demonstration of the resulting inte-
grated systems being a proof of concept, developer feed-
back has been very valuable. First of all, the direct use
of XML data to encode information and not only use it
as a data-exchange protocol was reported very useful, es-
pecially combined with the features of the active memory
and its abilities to process very specific XPath specifications
for queries and event listeners. Additionally, extensibility
and human readability of the exchanged XML data types
directly paid off in shorter development cycles during inte-
gration, because of the ability to view messages at runtime.
The development process furthermore benefits from the de-
coupling of components through the active memory. The
transport and processing of XML data has been no bottle-
neck for system reactivity due to the separation of structured
and binary data contents.

The application of petri-nets for system coordination al-
lows rigorous modeling and simulation of overall system
behavior before a concrete implementation is carried out.
The execution engine can call any type of component in a
generic manner which means that most component imple-
mentations can be directly reused. Furthermore, the con-
cept of active memory guards provides a generic semantic
coupling of this model to actions executed in an integrated
vision system in order to achieve a specific task behavior.

Future work on the integration framework will focus
on an extension of the petri-net engine to colored petri-
nets with typed XML tokens for intra-model data exchange
yielding more powerful parameterized AMGs as well as
more complex basic actions. Regarding the integrated
system, user studies are currently carried out on human-
computer-interaction patterns which are typical for this new
type of proactive vision system.

Finally, we think that our concept enables the shift from
purely technical message passing or remote invocation con-
cepts to a more declarative information-driven integration
approach for cognitive vision systems. We also expect that
the vision of self-adapting and introspective architectures
will become feasible along the lines of the presented con-
cepts.
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