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Abstract— In this paper, we consider the standard state
estimation problem over a congested packet-based network.
The network is modeled as a queue with a single server
processing the packets. This provides a framework to consider
the effect of packet drops, packet delays and bursty losses on
state estimation. We use a modified Kalman Filter with buffer
to cope with delayed packets. We analyze the stability of the
estimates with varying buffer length and queue size. We use
high order Markov chains for our analysis. Simulation examples
are presented to illustrate the theory.

I. INTRODUCTION

Traditionally the areas of control and communication
networks are studied separately as they have almost distinctly
different underlying assumptions. For example, control en-
gineers generally assume perfect communication within the
closed loop and data processing is done with zero time
delay. On the other hand, in communication networks, data
packets that carry the information can be dropped, delayed
or even reordered due to the network traffic conditions.
These different assumptions have for a long time inhibited
researchers from the two fields from collaborating with each
other. However, as new applications keep emerging, the two
fields are coming closer together. For instance, advances in
large scale integration and microelectromechanical system
technology have made sensor networks an interesting area
of research. In sensor networks, the measurement data from
different sensors is sent to the controller through a data
network where data packets might be dropped if the network
has severe traffic.

In recent years, networked control problems have gained
much interest. In particular, the state estimation problem
over a network has been widely studied. The problem of
state estimation and stabilization of a Linear Time Invariant
(LTI) system with a finite bandwidth digital communication
channel capacity was introduced by Wong and Brockett
[12], [13] and further pursued by [8], [4], [10], [6]. In [2],
Sinopoli et. al have discussed how packet loss can affect
stable state estimation and they showed that there exists a
certain threshold of the packet loss rate, above which the
expected value of the error covariance becomes unbounded.
They also provided lower and upper bounds of the threshold
value. Following the spirit of [2], in [7], Liu and Goldsmith
extended the above idea to the case where there are multiple
sensors and the packets arrived from different sensors are
dropped independently. They gave similar bounds on the
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packet loss rate for a stable estimation. The authors here
gave a different point of view on the state estimation problem
over general networks in [9]. There they showed that for any
nonzero information gain, the state estimate is stable almost
surely though the expected value of the error covariance
could diverge.

In spite of the progress that the previous researchers
have made, the problems they have studied have certain
limitations. For example, in both [2] and [7], they assumed
that packets are dropped independently, i.e. they model
packet arrivals as i.i.d Bernoulli random variables which is
certainly not true in the case of bursty communications or in
queuing networks where adjacent packets are not dropped
independently. The authors also did not consider packet
delays or packets arriving out of order, both inherent with the
communication network. In this paper we propose a queuing
network model which is simple for analysis yet provides
enough richness that it allows us to consider packet drops,
delays and reordering in one setting. In the current work, we
focus on packet drops and delays induced by the dedicated
queue, as packet reordering is normally considered to be a
rare event and is largely ignored by network community [11].
Even though packet reordering is rare, we plan to consider
related issues in future work. It turns out that considering
only the state estimation, packet delays have no significant
effect by properly using the delayed packets. We propose an
algorithm to modify the standard Kalman filter and hence
take the delayed packets into account. Because of particular
network structure we propose, the previous i.i.d packet drops
[2] and [7] can be just considered as a special case of ours
for some special network parameters.

The rest of the paper is organized as follows. In Section II,
the mathematical model of our problem is given. We then
study the state estimation problem over the proposed network
and give conditions for the expected value of the error
covariance to diverge in Section III. Section IV presents
a method for analyzing the stability conditions, aided by
several examples. We conclude with a short summary and
overview on the future work in Section V.

II. PROBLEM SET UP

Consider the following discrete-time LTI system

xk+1 = Axk + wk (1)

yk = Cxk + vk. (2)
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We assume A is unstable, the pair (A, C) is detectable,
xk ∈ R

n is the state vector, yk ∈ R
m is the observation

vector, wk ∈ R
n and vk ∈ R

m are Gaussian random vectors
with zero mean and covariance matrices Q ≥ 0 and R > 0,
respectively. Assume ws is independent from wk and vs is
independent from vk for s �= k, and ws is also independent
from vk for all s and k.

The problem of interest to us is to get a stable estimate
of the state vector xk at time k given all past measurement
y0, . . . , yk sent over a packet based network. Each packet
yi, i ∈ {0, . . . , k} can be dropped or delayed by the network.
The packet-based network is modeled as follows (see Fig. 1).
The observation unit (sensor) is directly linked to a router,
which drops packets based on the network traffic condition.
If the queue is full, the router drops each arriving packet with
probability one. As the queue has more space, the arriving
packets are dropped with relatively lower probability. We
will refer to the function describing the packet acceptance
probability w.r.t. the queue length as λ = F(Q).

Fig. 1. A simple queueing network model

Ideally the router may also route the packets to other
queues, thus resulting in packets being received out of order
at the Kalman filter. Since packet reordering is not so critical
in network estimation problems, we assume that all the
packets are routed to the same queue. The queue is assumed
to have a finite capacity of N > 0 packets. There is a time
shared server which processes a packet from the queue with
probability ρ at any given time instant. Once a packet is
processed, it is delivered to a Kalman filter. The Kalman
filter is used to estimate the state vector.

To take delayed packets into account we propose an algo-
rithm that uses a Kalman filter with buffer, see table I. The
Kalman filter always performs the time update (prediction)
step. The measurement update (correction) step is performed
on the estimate of xk only if the packet containing the
information yk is eventually received (delayed or instantly).
See Table I for a description of the algorithm and [1] for
a detailed description of the time and measurement update
steps. Let L be the size of the buffer. Therefore any packet

TABLE I

ALGORITHM FOR MODIFIED KALMAN FILTER WITH BUFFER

1) Wait for packet at time k ;

• If no packet received at time k
− Perform Time Update (TU) and save the time

updated entry in the buffer with index k;
− k = k + 1 ;
− Goto 1 ;

• ElseIf packet received at time k with timestamp l;
− If l = k;

∗ Perform TU and Measurement Update (MU);
∗ Erase the buffer;
∗ Goto 1;

− ElseIf l < k;
∗ Retrieve index l entry from the buffer

and perform MU on this entry;
∗ Re-calculate time updated entries for all indices

between l + 1 and k and store them in the buffer;
∗ Erase all entries in the buffer with indices ≤ l;
∗ k = k + 1;
∗ Goto 1;

which is delayed more than L time steps can not be used by
the Kalman filter. We assume all packets to be timestamped.
Let the timestamp on the packet received at time k be l.

If the network has the information that any packet older than
L time steps waiting in the queue is useless, then it can flush
all such packets. This assumption of flushing of old enough
packets in the queue simplifies the analysis a great deal and
will enable us to employ Lth order Markov chains to analyze
such queueing networks in Section III.

Since the Kalman filter has a finite buffer length L, it
outputs the best estimate of xk at time k + L. If the packet
yk is delayed by more than L steps then it will be flushed at
the queue. Therefore in this paper our metric of estimation
will be the value of the error covariance matrix P k+L

k =
E(ek+L

k ek+L
k ), where ek+L

k = xk− x̂k+L
k and the superscript

indicates that we look at this metric at time k + L, after
which the estimate is fixed and cannot be improved further.
For notational simplicity we will drop the superscript k + L
for the rest of this paper.

For our analysis let us define the indicator function

Ik =
{

1 kthpacket received instantly or with delay
0 kthpacket dropped or flushed

and the following relations for X ∈ Sn, the set of all positive
semi-definite matrices of size n.

h(X)
�
= AXA′ + Q (3)

f(X)
�
= AXC ′(CXC ′ + R)−1

CXA′ (4)

g(X)
�
= h(X) − f(X) (5)

At this point we would like to remind the reader that under
the estimation scheme described in Table I the recursion of
the error covariance matrix can be written in terms of h and
g as,

Pk+1 =
{

h(Pk) Ik+1 = 0
g(Pk) Ik+1 = 1 (6)
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The problem at hand is to determine conditions on the
function F at the router and the server service probability ρ,
for which the expected value of the error covariance remains
bounded as k → ∞. In the following section we establish
that as long as the staying probability in the dropped or
flushed state is below certain threshold the estimates are
stable. We find this staying probability in terms of F and
ρ for three different combinations of L (buffer length) and
N (queue length).

III. STABILITY OF THE ERROR COVARIANCE

Before we state our main result we derive and present
some properties of the functions h and g.

Lemma 1: If X ≥ Y , then g(X) ≥ g(Y ) and h(X) ≥
h(Y ).
Proof : See [2].

QED

Lemma 2: If U ∈ S
+
n , the set of all positive definite

matrices of size n, and V ∈ Sn, then ∃ a scalar t ≥ 0
such that tU − V ∈ Sn.
Proof : By Weyl’s Theorem [5], t ≥ 0

λmin(tU − V ) ≥ λmin(tU) + λmin(−V ),
= tλmin(U) − λmax(V ),

where λmin is the minimum eigenvalue and λmax is the
maximum eigenvalue So any t ≥ λmax(V )

λmin(U) proves the
Lemma. Such a t always exists because λmin(U) > 0.

QED

Lemma 3: g(X) ≥ Q,∀X ≥ 0 and if C is invertible then,
g(X) ≤ AC−1RC

′−1A′ + Q,∀X ≥ 0.
Proof : Clearly g(X) ≥ g(0) = Q. For any X ≥ 0, as

C−1RC
′−1 ∈ S

+
n , by Lemma 2, there exists t ≥ 0 such that

X ≤ tC−1RC
′−1,

g(X)
a≤ g(tC−1RC

′−1),

= t/(t + 1)AC−1RC
′−1A′ + Q,

≤ AC−1RC
′−1A′ + Q,

by using Lemma 1 in a.

QED

Lemma 4: (a) If A is unstable then

lim
k→∞

hk(X0) = ∞, ∀X0 ∈ Sn.

(b) If the spectral radius of A, α < 1 and the pair
(A,

√
Q) is observable, then the Lyapunov difference

equation Xk+1 = h(Xk) converges to a unique positive
semidefinite solution T > 0 as k → ∞. In other words
the following infinite sum

lim
k→∞

[
AkX0A

′k +
k−1∑
m=0

AmQA′m
]

is a finite positive definite matrix T > 0 for all X0 ≥ 0,
where T = h(T ).

Proof : See [3]

QED

Under the flushing assumption introduced in Section II, the
fate of the kth packet does not depend on what happened to
packets with timestamps k −L− 1 or less, and thus we can
analyze the network using an Lth order Markov chain. We
first present stability results for L = 1 and then later we
generalize them for all L.

Define the following probabilities

ωh→h = Pr[Ik+1 = 0|Ik = 0] (7)

ωh→g = Pr[Ik+1 = 1|Ik = 0] (8)

ωg→g = Pr[Ik+1 = 1|Ik = 1] (9)

ωg→h = Pr[Ik+1 = 0|Ik = 1] (10)

Let ηg be the steady state probability of the event Ik = 1, i.e.
the kth packet is eventually received. For technical reasons
lets assume that first packet is received with probability ηg .
In other words the Markov chain describing the packet drop
process starts at steady state. This assumption here is just
for the simplicity of the proofs.

Theorem 1: For a Kalman filter with buffer length L = 1,
the estimates are stable/unstable under the following condi-
tions.

(a) Let (A, C) be detectable and (A,
√

Q) be observable,
now if

ωh→h ≥ 1
α2

,

where α is the spectral radius of A, then limk→∞ E(Pk)
is unbounded.

(b) If C is invertible and if

ωh→h <
1
α2

,

then limk→∞ E(Pk) is bounded for all initial conditions
P0 ∈ Sn.

Proof :

(a) Pk+1 can take 2k+1 different values with different
probabilities for a given value of P0 depending on the
values of I1, I2 · · · Ik+1. From Lemma 3 we know that
g(X) ≥ Q, and from Lemma 1 we know that h is an
increasing function. Therefore

E[Pk] ≥ ηgQ +
(1 − ηg)
ωh→h

ωk
h→hhk(P0)

+
ηgωg→h

ωh→h

k−2∑
i=0

ωi+1
h→hhi+1(Q) (11)

To illustrate how we obtain the above inequality we
consider the case when k = 3, in Table II. The right
hand side of the above equation is the inner product
of the 1st and 3rd rows of the table. Using Lemma 4
limk→∞ E(Pk) is unbounded if

ωh→h ≥ 1
α2
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TABLE II

ILLUSTRATION OF HOW TO FIND THE LOWER BOUND

Probabilities Values Lower bounds
(1 − ηg)ω2

h→h h3(P0) h3(P0)
ηgωg→hωh→h h2g(P0) h2(Q)

(1 − ηg)ωh→gωg→h hgh(P0) h(Q)
ηgωg→gωg→h hg2(P0) h(Q)

(1 − ηg)ωh→hωh→g gh2(P0) Q
ηgωg→hωh→g ghg(P0) Q

(1 − ηg)ωh→gωg→g g2h(P0) Q
ηgω2

g→g g3(P0) Q

(b) If C is invertible then we can find an upper bound using
Lemma 3

E[Pk] ≤ ηgM +
(1 − ηg)
ωh→h

ωk
h→hhk(P0)

+
ηgωg→h

ωh→h

k−2∑
i=0

ωi+1
h→hhi+1(M) (12)

where M = AC−1RC ′−1
A′ +Q Now the first term on

the right hand side is finite. From Lemma 4 the second
term is finite as k → ∞ if ωh→hα2 < 1. The third term
after summing the geometric series can be rewritten as

ηgωg→h

ωh→h

[
k−1∑
i=1

ÃiM(Ãi)′

+
ωh→h

1 − ωh→h

k−2∑
i=0

ÃiQ(Ãi)′(1 − ωk−1−i
h→h )

]

where Ã =
√

ωh→hA. Again using Lemma 4 we know
that this term is finite as k → ∞ if ωh→hα2 < 1.

QED
Now we state a general result for buffer length L but

before that we define

ωhh · · ·h︸ ︷︷ ︸
Ltimes

→h

as the probability that the kth packet is dropped or flushed
given that the L previous packets are dropped or flushed.

Corollary 1: For buffer length L

(a) Let (A, C) be detectable and (A,
√

Q) be observable,
now if

ωhh · · ·h︸ ︷︷ ︸
Ltimes

→h ≥ 1
α2

,

where α is the spectral of A, then limk→∞ E(Pk) is
unbounded.

(b) If C is invertible and if

ωhh · · ·h︸ ︷︷ ︸
Ltimes

→h <
1
α2

,

then limk→∞ E(Pk) is bounded for all initial conditions
P0 ∈ Sn.

Proof : The proof is very similar to that of Theorem 1.
We omit the detailed proof due to space constraints. As an

example, the lower bound and upper bound on E(Pk) for
L = 2 are given by the relation

ηgX + ηghh(X ) +
k−3∑
i=0

ηghωgh→hωi
hh→hhi+2(X )

+ηhhωk−2
hh→hhk(P0)

with X = Q and X = M for the lower and upper bound
respectively. In this case the analysis tool is a second order
Markov chain. Here ηgh is the steady state probability that
the k − 1 th packet is eventually received and k th packet
is dropped or flushed. Similarly, ηhh is the steady state
probability that both k−1 th and k th packets are dropped or
flushed. While ωgh→h is the probability that k +1 th packet
is dropped or flushed given that k − 1 th was received and
k th lost.

IV. ANALYZING DIFFERENT BUFFER AND QUEUE

LENGTH COMBINATIONS

In this section we will analyze different combina-
tions of buffer and queue length. We will make use
of Markov chains to facilitate the analysis. For buffer
length L, the state of the Markov chain at time k will
be given by Mk = (M1

k , M2
k , · · · , ML

k ), where M i
k ∈

{−1, 0, 1, 2, 3, · · · , L,∞} represents what happens to the
data packet sent to the router at time k − i + L. Note
M i

k = M i+1
k−1 for 1 ≤ i < L. If M i

k = −1, the packet
is dropped by the router, i.e. does not enter the queue. If
M i

k ≥ 0, it signifies the packet entered the queue and if
0 ≤ M i

k = m ≤ L the packet is passed by the server
to the Kalman filter with delay m timesteps. If M i

k = ∞
the packet entered the queue but was not processed by the
server for L timesteps and hence was flushed from the
queue. As described in Corollary 1, we are interested in
the staying probability that all packets do not get processed
by the Kalman filter, that is they are either dropped by the
router (M i

k = −1) or flushed from the queue (M i
k = ∞).

Switching notation from here on to f(λ, ρ) = ωhh · · ·h︸ ︷︷ ︸
Ltimes

→h,

we see

f(λ, ρ) = Pr[M i
k = {−1,∞},∀i = 1, · · · , L |

M i
k−j = {−1,∞},∀i = 1, · · · , L and ∀j = 1, ..., L]

(13)

where as before λ = F(Q) a vector function of the proba-
bility the router will allow a packet to enter the queue based
on the number of packets currently in the queue (i.e. λ0 for
an empty queue, λ1 for 1 packet in the queue, etc.) and ρ
is the probability the server processes a packet a from the
queue. We will denote the value of f(λ, ρ) as fbLqN for
buffer length L and queue length N . Note the smaller the
value of f the better the estimate, in the sense that estimates
of larger unstable system by the Kalman filter with buffer
algorithm will not diverge.
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A. Buffer Length = 1, Queue Length = 1

Here we consider a Kalman filter with buffer length 1 and
a network with queue that can hold only 1 packet. Packets
are flushed from the queue if they are not processed by the
server after 1 time step. This leads to four possibilities for
any packet arriving at the router at time k; the packet is
either (i) dropped at the router, (ii) serviced at time k, (iii)
serviced at time k+1, or (iv) flushed from the que after time
k + 1. This is depicted by the Markov chain in Fig. 2 (for
queue length 1, set λ1 = 0).

Fig. 2. Markov chain for buffer length 1 and queue length 1 or 2.

Since the network is a first order Markov chain, according
to Eqn. (13) we see

fb1q1 = Pr[M1
k = {−1,∞} | M1

k−1 = {−1,∞}]
=

π−1(1 − λ0 + λ0(1 − ρ)2) + π∞
π−1 + π∞

,

where πi represents the steady state probability of the
Markov chain in Fig. 2 being in state i. These can be easily
computed and hence

fb1q1 =
−5λ0ρ + 2λ2

0ρ
2 − λ2

0ρ
3 + 1 + 2λ0ρ

2 + 1
−3λ0ρ + 1 + λ0 + λ0ρ2

. (14)

B. Buffer Length = 1, Queue Length = 2

Now the queue length is increased to 2, thereby ensuring
the queue will never appear full to the router. Hence the
server will allow packets into the queue with probability λ1

when a packet is in the queue, as opposed to probability 0
when the queue length is 1. The Markov chain describing
this network is shown in Fig. 2. Note that setting λ1 = 0
will revert to this system to be equivalent to that of queue
length 1.

The function for stability for this case and all the remain-
ing cases in this paper can be readily computed but are too
complicated to write out. To compare queue length 1 with
queue length 2 one must look at the value of ωh→h for both
cases. It is not too difficult to compute

fb1q2 − fb1q1 =

λ0λ1ρ(λ0 − 1)(ρ − 1)2(λ0ρ
2 − 2λ0ρ + 1) /[

(1 + λ0ρ
2 + λ0 − 3λ0ρ)

(1 + λ0λ1ρ + λ0ρ
2 + λ0 − 3λ0ρ − λ1)

]

which is negative for all 0 ≤ λ0, λ1, ρ ≤ 1, meaning fb1q2 ≤
fb1q1. Hence for fixed buffer length of 1 it is better to use
queue length 2.

C. Buffer Length = 2, Queue Length = 1

The next scenario considered is that of buffer length 2
and queue length 1. In this case packets are flushed from the
queue if they are not processed by the server after 2 time
steps. There are five possibilities for any packet arriving at
the router at time k; the packet is either (i) dropped at the
router, (ii) serviced at time k, (iii) serviced at time k + 1,
(iv) serviced at time k + 2, or (v) flushed from the que after
time k + 2. Since packets can stay in the queue for 2 time
steps, this queueing network must be described by a second
order Markov chain as depicted in Fig. 3. We can compare

Fig. 3. Markov chain for buffer length 2 and network with queue length
1. The states of the Markov chain represent what happens to the last two
packets sent to the queue. For clarity the shaded circles are used to show that
the states entering these circles transition to the same states with the same
probabilities as the unshaded circles with same number, i.e. state (0, 0) has
the same transition probabilities to the same states as state (−1, 0).

the stability properties with that of the previous situations. It
can be shown fb2q1 ≤ fb1q1 for all 0 ≤ λ0, ρ ≤ 1 so using a
buffer length of 2 will improve performance when the queue
length is fixed at 1.

D. Buffer Length = 2, Queue Length = 2

The queue length is increased to 2 while keeping
the buffer length fixed at 1. The resulting Markov
chain is omitted for brevity, but it is very simi-
lar to that of Fig. 3 with the addition of the states
(1, 1); (1, 2); (1,∞); (2, 2); (2,∞); (∞, 2); (∞,∞) and ap-
propriate changes to the state transition probabilities. Again
it is possible to show fb2q2 ≤ fb2q1 for all 0 ≤ λ0, λ1, ρ ≤ 1,
and consequently fb2q2 ≤ fb1q1.

E. Buffer Length = 2, Queue Length = 3

The queue length is increased to 3. Once again it can
be shown fb2q3 ≤ fb2q2 for all 0 ≤ λ0, λ1, ρ ≤ 1, and
consequently fb2q3 ≤ fb2q1 and fb2q3 ≤ fb1q1.
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F. Simulations

We compare estimates using the Kalman filter with buffer
algorithm for the buffer and queue length combinations listed
above. A common initial condition for P0 was used in all
simulations. Randomly choosing a value from the steady
state distribution of the Markov chains determined if the
first L packets were passed to the Kalman filter which then
determined the number of packets of the queue for time
L + 1 (i.e. for buffer length 2 queue length 2 if the random
toss resulted in choosing the Markov state (−1, 2) the first
data packet would be dropped at the router and the second
delivered to the Kalman filter with delay 2, resulting in the
queue containing 1 packet after timestamp 2.). After time
L + 1 the router allows packets into the queue based on the
number of packets currently in the queue and the probability
vector λ, likewise the server will pass packets from the queue
to the Kalman filter with probability ρ.

The network properties are given by (λ0, λ1) = (0.5, 0.5)
and ρ = 0.6. The first system is given by Eqn. (1) - (2)
with A = 1.15, C = 1, Q = 20, R = 2.5. All the network
combinations listed above will keep E[Pk] bounded. A total
of 100,000 simulations were run for each buffer queue length
combination with the same initial condition P0 = 200.
Plotted in Fig. 4 is the average across all the runs for each
combination. The best estimates are by b2q2 and b2q3 which
are virtually identical, followed by b2q1 and b1q2 which are
also virtually identical, b1q1 gives the worst estimate.

2 4 6 8 10 12 14 16 18

10
2

timestamp

E[P
k
]

Stable Estimates

b1q1
b1q2
b2q1
b2q2
b2q3

Converging

Fig. 4. Comparison of E[Pk] for different buffer and queue length
combinations, all converge.

The value of A was increased to 1.33 while holding all
other parameters fixed. All of the estimates in this case will
diverge as can be seen in Fig. 5. The relative quality of the
estimates is the same as in the converging case.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present both an algorithm for estimation
over a queueing network that deals with dropped and delayed
packets and stability conditions. The algorithm consists of
a modified Kalman filter with buffer. We also give an

2 4 6 8 10 12 14 16 18

10
3

timestamp

E[P
k
]

Unstable Estimates

b1q1
b1q2
b2q1
b2q2
b2q3

Diverging

Fig. 5. Comparison of E[Pk] for different buffer and queue length
combinations, all diverge.

analysis method for arbitrary buffer and queue length based
on Markov chains whose order is determined by the buffer
length. Simulations of several different queue and buffer
lengths are presented.

There are several avenues of research to follow up on this
paper. Namely, looking at other network congestion models.
Designing an algorithm to handle packets that are received
out of order. Joint synthesis of the network and estimation
algorithm with a feedback controller.
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