
Web Service Authorization Framework

Thomas Ziebermayr, Stefan Probst

Software Competence Center Hagenberg, Hauptstrasse 99, 4232 Hagenberg, Austria

thomas.ziebermayr@scch.at, stefan.probst@scch.at

Abstract

Web Services represent an important technology for

distributed applications and will replace various other

technologies for distributed application development

soon. A lot of problems of the early days of Web

Services are solved now. However, for authorization

no appropriate solution is available and ready to use.

We define requirements for authorization of Web

Services and investigate existing authorization

solutions concerning these requirements. Based on

existing authorization solutions and the defined

requirements, a Web Service Authorization framework

is developed. We describe concepts and the design of

the proposed framework and give an overview of

selected implementation aspects (e.g. authorization

data access, descriptive deployment). The framework

emphasizes easy deployment of Web Service

authorization and is ready to use. Practical experience

using the framework concludes the paper.

Keywords: Web Service, Authorization, Security,

Service, Framework

1 Introduction

Security is an absolute need in today’s software

applications. Since the trend is to use web-based

software, new security issues arise. Software does not

run anymore in a small and manageable environment

but rather in an environment with many uncertainties

concerning the users, the participating parties and

systems. Thus, the application itself must address

security and provide adequate mechanisms.

As illustrated in Figure 1, security consists of

several layers. Low-level security addresses the secure

transmission of data via an untrusted net, using

cryptography and communication security

mechanisms. High-level security aims to protect the

application itself by defining a security model. A

security model comprises several mechanisms to

enforce the desired security policy, which are in

particular [11]:

Authentication: establishes the identity of one party

to another. Thus, authentication needs to prove the

identity of a certain user to the system.

Access Control: determines whether a user

(subject) is allowed to access an object or not. This

decision is based on the authorization of the system

wide security policy.

Auditing: gathers data about activity in the system

and analyzes it to discover security violations and

diagnose their cause.

Auditing

Cryptography
(e.g. Hashing, Cryptography, Digital Signatures, Certificates)

Communication Security
(e.g. VPN, IPsec, SSL/TLS, S/MIME, Firewalls)

Authentication
(e.g. Password, Challenge-

Response, Biometrics, Kerberos)

Authorization and Access Control
(e.g. DAC, RBAC, MAC)

Figure 1: Levels of security mechanisms

Reusable components for the development of

security-aware applications are available especially for

the lower levels of IT security, namely, cryptography

and communication security. At higher levels, i.e.

authorization, access control, authentication, and

auditing, adequate components that can be easily

reused and integrated into software applications are

missing. This is especially true when looking for

solutions addressing the Web Service platform.

Existing development environments (e.g. Microsoft

.NET, J2EE driven by Sun) already offer such security

models and mechanisms. These mechanisms are

mostly not expressive enough, respectively not

sufficiently adaptable to complex application

requirements [18]. Consequently, the enforcement of

high-level security mechanisms at the application- and

business-logic layers results in a practice of

permanently re-inventing the wheel. This motivates to

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

have closer look on Web Service authorization and its

requirements.

The remainder of this paper is structured as follows:

section 2 defines requirements for Web Service

authorization. Section 3 presents a solution for Web

Service authorization based on the results of previous

sections. Section 4 introduces the implementation of

the Web Service authorization framework and

describes experiences with the implementation. Section

5 discusses open issues and future work concerning the

Web Service authorization framework. Section 6

investigates related work concerning authorization and

studies them compared to the defined requirements.

Finally section 7 concludes the paper and provides

remarks.

2 Web Service Authorization

Requirements

Web Services [20] provide mechanisms to connect

distributed components. They can be used in various

application scenarios and only limit the application by

the current absence of environmental services like

security and transactions. This paper focuses on one

security aspect, on Web Service authorization. In the

following we list the common requirements of Web

Service authorization:

Independent from Web Service carrier protocol

Conform to Web Service protocols

Service, not object authorization

Abstract solution deployable to various Web

Service scenarios

These requirements underlines the necessity for

platform independent authorization solutions, but they

only address the common needs of Web Service

authorization, they do not describe the authorization

needs of “real world” Web Services. Therefore we

describe a “real world” Web Service scenario and

derive additional requirements from this scenario.

In this scenario Web Services are used for platform

independent communication between the business

logic at the server and the presentation tier. These Web

Services provides access to sensitive data and are

located on one server and are not distributed over the

Web. The client is used by many users that lead to a

large amount of requests to the Web Services. The

presentation layer is responsible for authentication of

the users but authorization is moved to the Web

Service layer. Sensitive data delivered by the Web

Services is queried based on service parameters. These

parameters need to be included into authorization as

they define the data set delivered to the user. The Web

Service implementation is based on existing

frameworks. Administration of authorization data

needs to be done in parallel to the use of Web Services

and the authorization used for these Web Services

should be applicable to other similar Web Services as

well. Based on this scenario we identified the

following additional requirements:

Fine grained authorization at parameter level

Efficient access to authorization data

Descriptive tailoring of authorization

Easy usage and deployment

Applicable to existing Web Service frameworks

Multi user access to authorization data

In our opinion most of the currently implemented

Web Service scenarios are similar to the previously

described scenario, but no appropriate authorization

framework exists. Especially the fine-grained level is

missing. In the following section thus we provide a

solution that meets these requirements.

3 Web Service Authorization

Framework

Within this section the Web Service Authorization

Framework (WSAF) is introduced. Previously it is

necessary to investigate the basics of authorization as

basis for the design of the framework.

Authorization is described by giving a subject the

right to access an object (to authorize the subject). This

decision is based on predefined rules that describes

who is allowed to access an object. Authorization rules

describe relations between subjects and objects that

represent allowed access paths. So the basis for the

rule description is the unique description of subject and

object. This paper does not focus on authentication;

therefore the definition of a subject is used as it is

defined for authentication [11]. But it is necessary to

introduce a notion for describing an object tailored to

the intended application area: to services.

Literature concerning service authorization provides

various proposals for the description of services. One

that nearly fits our need is provided by [12]. This

approach provides an abstract definition of Web

Services. [12] defines a hierarchical structure, the Web

Service object and its Web Service methods (see

Figure 2).

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Figure 2: Web Service method [12]

This definition is rather complex and contains

information that is not necessary for authorization of

simple services. WSAF tailors this definition to its

needs and only uses necessary attributes. It is neither

necessary to consider the result of the Web Service

method for authorization nor to consider the URN of a

Web Service as WSAF does not consider distributed

authorization. So minimizing the definition to the

necessary data leads to the following definition of a

service in the authorization context: A service

description consists of a component name that offers

services, a service name and the names of the

parameters of the service (see Figure 3). This

definition is simple but sufficient for the definition of

the service and match an actual service call to the

description in the rule base.

For authorization it is necessary to define

connections between object and subject. These

connections define who is allowed to use which

service. These authorization rules are the basis of the

authorization framework. Most of the current solutions

allow defining rules on method level. But often this is

not enough e.g. given a method to retrieve the details

of an account

getAccountDetails(accountID). All people

with an account are allowed to call this method, thus

this restriction is not enough. It is necessary to involve

the parameter value into the authorization rules.

WSAF allows to define who is allowed to call

which service with which parameters. In case of the

previous service the accountID for the caller is

defined, preventing unallowed access to account data.

Figure 3 shows how the authorization rule connects

subject and object.

Figure 3: User service relation

An access control rule consists of a reference to a

service definition, a reference to a user and additional

rule information. Additionally for all parameters that

should be considered in access control a value or value

range is defined.

Applied to the previous example this means that the

own accountID is defined as value for the parameter

named accountID for the service

getAccountDetails. All other values are not

allowed, thus a service request containing another ID

is rejected by the access control framework.

The ID of the subject defines the connection from

the subject to the rule. Additionally the rule contains

metadata for access control like a “valid until” date.

This simple rule definition is enough to protect the

service from unauthorized access.

To understand how WSAF works we will describe

the function by an example. Given a subject (called

user) who uses a service to retrieve data about the

actual weather. This user is already registered at the

service provider for using this service. The user does

not pay for the worldwide weather service but for the

European one. The access control therefore has to

check whether the user is allowed to access the service

and the region. Next the activities during access

control are described following this example (refer to

the illustration in Figure 4).

When the user sends a service request, the access

control searches for the user and his rights before the

request is forwarded to the service implementation.

First the user must exist in the rule base; otherwise a

system error occurred. This assumption is allowed,

because during authentication the data entered by the

user will be compared to stored data about the user, if

the user does not exist, authentication does not

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

succeed. The authorization service first searches for an

exact match of the service request to the service rights

of the user (component, service). When the user is

allowed to use the service, the access control checks

whether the service is protected by parameter

restrictions. When the user has the rights to use the

service without restrictions, the access control task is

finished and access is allowed. If the user has

parameter restrictions, the access control compares the

parameter of the service request with the defined

restrictions. The parameter restrictions can be defined

by a single value but also by a range of values. If the

parameter check succeeds, the service call is allowed.

If no rule can be found for the actual user that

matches the service request at service level, the access

control logic searches the rule base for matches at the

component level. Rules at this level describe

unrestricted access to all services of a component. It is

not possible to define parameter restrictions within

such access control rules. If no rule can be found for

the actual user that matches the requested service at

component level, access is not allowed. Without

definition of rules for a user, a user is not allowed to

access any service. When rules are defined, the

granularity of the rule defines which services are

allowed to access and if it is restricted by parameter

definitions. The evaluation order of the rules follows

the performance requirements of the secured

application (see Figure 4).

Figure 4: Authorization activities

In the most cases rules will be defined at service

level, therefore it is faster to start searching for rule

definitions at this level. Authorization rules at

component level are high-level rules that deliver a lot

of rights to the user. Therefore such rules should be

used carefully. Rules at component level can be

avoided when defining all rights at service level. If a

component consists of four services, it will be

necessary to define four service rights as equivalent to

one component rule.

4 Implementation and Experiences

The implementation of the framework is tailored to

the use for Web Services. Therefore Web Service

enabling technologies are used. The framework

follows the n-tier architecture [6] (refer to Figure 5).

Figure 5: Architecture overview

The framework data (service definition, user

definition, access rules) is stored in a relational

database (database layer). In the current

implementation PostgreSQL [9] is used as database.

The logic for interpretation of the authorization

rules is implemented in a separate middleware layer

(logic layer). This logic is used to decide whether

someone is allowed to call the service or not. The

communication between authorization filter and

authorization logic is not Web Service based as there is

no need for Web Service technologies. Web Services

provides a lot of advantages but also disadvantages

like decreased performance, therefore they should only

be used when necessary.

A Servlet filter [17], [16] implements the

authorization client. This filter is positioned in front of

the Web Service. The Servlet filter parses the Web

Service request and uses the authorization components

to decide whether access is allowed or not. If the user

is not authorized, the request is rejected; otherwise the

call is forwarded to the Web Service. The filter is

tailored to the SOAP [19] protocol for Web Service

access. The information contained in SOAP requests is

used for access control decisions. The filter parses the

SOAP request and the relevant data (service name and

parameters) are used. The SOAP request does not

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

contain information about the component, which is

needed for authorization. We decided to group related

Web Services through the address (URL) of the Web

Services. A group of related Web Services can be

accessed at the same address. Every address has its

own filter, the component name is therefore configured

for every filter and is not gained through the service

request dynamically. It is necessary to align the

component name configured for the filter and the Web

Services names with the service and component names

used for access control rules.

The Web Service itself is published using the

Apache Axis framework [2]. This framework is based

on Java Web Technology (Servlet). The integration of

WSAF does not influence the Web Service

implementation. As the access control entry point is

implemented as Servlet filter, it is only necessary to

integrate the filter into the Web application that

provides the Web Service.

The filter can be used for different Web Services in

parallel, the authorization logic handles parallel access

to the rule base. The usage of the framework

underlines the easy use and shows that the

implementation is able to handle access control to Web

Services and it fulfills the requirements defined within

this paper.

The design and the implementation of WSAF bases

on the requirements defined previously and provides a

simple answer to these requirements as described in

the following:

Independent from Web Service carrier protocol

The client component of WSAF is carrier protocol

dependent, but it is easy to provide additional

authorization clients for other protocols.

Conform to Web Service protocols

WSAF uses information contained in SOAP

messages for authorization.

Service, not object authorization

WSAF describes services as subject.

Abstract solution deployable to various Web

Service scenarios

WSAF uses abstract service and user definition,

therefore it is applicable to other similar Web

Service scenarios.

Fine grained authorization at parameter level

WSAF allows to define parameter restriction for

services.

Efficient authorization data access and

administration

WSAF bases on proved database technology that

allows efficient data access and that ensures

transactional security.

Descriptive tailoring

Deployment of WSAF for other Web Services

means to deploy the filter for Web Services and to

define rules in the database. Touching the code is

not necessary.

Easy usage and deployment

WSAF is simple and does not solve every Web

Service authorization problem, but it is easy to use

and to deploy.

Applicable to existing Web Service frameworks

The implementation of WSAF shows the

applicability.

Multi user access to authorization data

The data layer allows multi user access and

provides transactional security.

WSAF provides a solution to these requirements,

but some work need to be done in the future to

improve the framework and to solve open issues.

5 Open Issues and Future Work

The presented Web Service authorization

framework implements the authorization requirements

for Web Service based applications defined within this

paper. This enables to use this framework for various

scenarios that base on Web Service technology.

Nevertheless, the implementation only addresses Web

Services based on the Java platform. The

implementation of the framework for Web Services

based on other technologies e.g. .NET is an open issue.

The design of this framework is not tailored to Web

Services, but can also be applied for authorization of

service-based applications. To use the framework for

services, it will be necessary to implement

authorization for other protocols than SOAP. This

enforces new approaches for the extraction of access

control information from the service request.

Another open issue is the administration of the

rules. It is necessary to provide tool support for

administration due to the large amount of data and due

to error prone rule definition. This tool should support

rule search and the definition of services and users.

The implementation of WSAF aims to handle a

large amount of users in the rule base. It is an open

issue to implement performance tests of authorization

to measure the time needed for authorization and

identify improvements of this implementation of the

framework.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

6 Related Work

The WSAF is not the first proposal to solve Web

Service authorization, but the only one that meets the

requirements defined in Section 2.

In the following we present related work and

technologies that provides support for Web Service

authorization.

6.1 XACML

The eXtensible Access Control Markup Language

(XACML) [8] is an OASIS standard that describes a

policy language and an access control decision service

interface. The policy is used to describe general access

control requirements, and is extensible. It is possible to

define new functions, data types, combining logic, etc.

The request/response language that is used for the

access control service allows forming a query to ask

whether or not a given action should be allowed. The

response always includes an answer about whether the

request should be allowed using one of four values:

Permit, Deny, Indeterminate (an error occurred or

some required values was missing, so a decision

cannot be made) or Not Applicable (the request can

not be answered by this service). XACML is currently

available in version 1.1 and is not only an OASIS

standard, but implementations are also available from

Sun [13].

Although XACML does provide a standardized way

to describe access policies and a standardized interface

to a decision service, it does not fit to the requirements

for authorization defined in this document. Two of

these requirements are efficient and concurrent access

to rule data. XML-based data does not fulfill this

requirement. It is necessary to provide additional

environment that supports transactional access from

multiple users and that provides performant access to

the rule data. Such an environment is an XML-

Database that is rather expensive and rarely available

[1].

One important feature of XACML is the possibility

to distribute the access control decision services. The

results of all the services involved in an access control

decision is combined following the rules defined by

XACML, so that it is possible to come to a decision.

The definition of the access control decision service as

Web Service leads to the question how to secure this

service. It will be also necessary to provide access

control to the access control decision service. Solving

access control by providing an access control Web

Service introduces a new point of attack for denial of

service attacks.

The previously defined requirements for access

control do not include the need for distributed access

control services, so one of the strengths of XACML

are not utilized for these common scenario. XACML

tries to provide a general solution to Web Service

access control; this leads to a rather complex solution.

Furthermore, having the inadequate rule base for a

large amount of users and the additional access control

service, XACML is not the solution to the previously

defined requirements.

6.2 Distributed Access Control Processor for

Network Services

[12] describes in his work the design of a

distributed access control processor for network

services on the web. It uses a general definition of

Web Services for the definition of access rules to these

services. This seems to be the solution to some of the

previously defined requirements. It is necessary to be

able to define Web Services in a general way, so that

the access rules can be defined for different Web

Service applications. The disadvantage of this

approach is that the description of the Web Service is

needlessly complex. Although abstract solutions are

applicable to more usage scenarios, it is necessary to

minimize the complexity to avoid performance

problems and sources of errors. Additionally, this

approach does not provide a solution how to store

access rules; it only addresses the theory.

The approach of [12] aims on distributed access

control. Distributed access control is not a requirement

for our solution; therefore the biggest advantage of this

solution is not utilized. Although the whole concept is

not applicable for our needs, the approach has

interesting ideas that can help us to solve access

control problems.

6.3 Java Security Mechanisms

Java provides various libraries addressing security

issues. We will focus on solutions for access control of

distributed applications, which is the application

domain we address.

Java provides support for server applications by the

Java Enterprise Edition (J2EE) [14]. This Java server

platform provides support for declarative security.

Declarative security means that security issues are not

addressed directly in the application code by writing

special security code. The behavior concerning

security is defined in descriptors outside the code

whereas the environment enforces this externally

defined security policy. In fact, the runtime

environment for J2EE applications, the so-called

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

application servers, interprets these descriptors.

Although this concept is a good approach for

providing security to applications, J2EE security does

not provide appropriate mechanisms to define fine

granular access control. For example, J2EE only

allows the assignment of access rules to a role on

method level. Therefore access restrictions of a single

user at parameter level cannot be defined with J2EE

security mechanisms.

Lai et al. [3] present an extension to the standard

Java platform, namely the Java Authentication and

Authorization Services (JAAS). JAAS offers

mechanisms for authentication and authorization, thus

enabling the development of high-level security

models in Java. JAAS maps users into principals.

Access control evaluates, if a certain principal has

appropriate permissions on an object. Principal is a

common class for subjects, thus a principal can be a

user, a role or any other subject-type.

The authorization itself must be done

programmatic, meaning that the code contains

security-relevant statements that check if a certain

principal is authorized to execute a code-piece or not.

This leads to the fact that the code must be touched

every time the security policy changes. Furthermore,

programmatic security has negative impact on

reusability, since the code contains security-statements

that address specific, security-relevant domain-

requirements.

JAAS itself supports a role-based access control

model. Other models can be implemented, using the

offered mechanisms provided in JAAS. However,

JAAS only offer mechanisms for building security

models. Thus the implementation of security models is

up to developer, resulting in an error-prone process

and often customized, not standard-conform security

models.

Other approaches built in into application servers or

Web Servers only provide access control on service

level. This means that it is only possible to define who

is allowed to use which service. But it is not possible

to define additional restrictions to a service access

right that allows fine granular access control. In most

cases this access control is done in a role-based manner

[6]. Such access control mechanisms are provided by

Enterprise Java Beans (EJB) [14],[4] application

servers or by the .NET framework [5].

6.4 .NET Security Mechanisms

Microsoft’s .NET platform provides a wide variety

of security features, which enable the implementation,

and integration of high-level security models into

applications [5]. Unfortunately, .NET does not provide

declarative security, which means that security must be

addressed directly into the code by providing

appropriate statements. The .NET framework uses a

role-based access control model, allowing to state that

specific code pieces can only be executed by certain

roles. However, this model can be extended to provide

a finer granularity in access control. This of course

would require some additional effort from the

programmer, resulting in the implementation of

customized access control models. Since this can be an

enormous task resulting in code pieces that are not

reusable and specific to the aimed target application

domain, the mechanisms are not appropriate enough in

order to meet the authorization requirements defined in

section 2 when providing small service based

applications.

7 Conclusion

A variety of technologies, techniques and

implementations are currently available that address

the increasing need of security for distributed

applications. But no solution supports authorization of

Web Services in an easy way and no solution is

available ready to deploy for simple Web Service

based applications. The framework presented within

this paper fills this gap. It provides a simple solution

for current Web Service applications and is ready to

use. This framework does not address all existing Web

Service scenarios, but the most common. In our

opinion it is not necessary to find a solution that solves

every possible authorization problem. Providing a

solution that solves the most common Web Service

authorization problems without unnecessary

complexity provides real value to the industry. The

simplicity of Web Services was one of the main

arguments for using them instead of other technologies

for distributed computing. Introducing complex

environment destroys this advantage.

8 Acknowledgment

The authors acknowledge support of the Kplus

Competence Center Program which is funded by the

Austrian Government, the Province of Upper Austria,

and the Johannes Kepler University Linz.

9 References

[1] A. Chaudhri, A. Rashid, R. Zicari, XML Data

Management: Native XML and XML-Enabled

Database Systems, ISBN 0-201-84452-4,

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Addison Wesley, 2003

[2] Apache, Web Services – AXIS,

http://ws.apache.org/axis/, December 2003

[3] C. Lai, L. Gong, L. Koved, A. Nadalin, R.

Schemers (1999) User Authentication and

Authorization in the Java Platform. In Proc. 15th

Annual Computer Security Applications

Conference, Phoenix, AZ, USA, 1999

[4] E. Jendrock, S. Bodoff, D. Green, K. Haase, M.

Pawlan, B. Stearns (2002) The J2EE Tutorial,

ISBN 0-201-79168-4, Addison Wesley, 2002

[5] Foundstone Inc., CORE Security Technologies:

Security in the Microsoft ® .NET Framework,

http://www.foundstone.com/pdf/dotnet-security-

framework.pdf.

[6] H. Steiert, Towards a Component-based n-Tier

C/S-Architecture, ISAW3 Orlando Florida USA,

1998

[7] Jiffy Software, XACML Implementation,

http://www.jiffysoftware.com/ , 2003

[8] OASIS, Extensible Access Control Markup

Language (XACML) Version 1.1, Committee

specification August 2003, http://www.oasis-

open.org/committees/xacml/repository/cs-xacml-

specification-1.1.pdf, January 2003

[9] PostgreSQL.org, PostgreSQL,

http://www.postgresql.org/, January 2004

[10] R. Sandhu, D. Ferraiolo, R. Kuhn, The NIST

Model for Role-Based Access Control: Towards

A Unified Standard. Proc. 5th ACM Workshop

on Role-Based Access Control, July 2000.

[11] R. Sandhu, P. Samarati; Authentication, Access

Control, and Audit. ACM Computing Surveys,

Vol. 28, No. 1, March 1996

[12] Reiner Kraft; Designing a Distributed Access

Control Processor for Network Services on the

Web, ACM Workshop on XML Security,

November 2002

[13] Sun; XACML Implementation;

http://sunxacml.sourceforge.net/ ; January 2004

[14] Sun, Enterprise Java Beans Technologie,

http://java.sun.com/products/ejb/, January 2004

[15] Sun, Java 2 Platform, Enterprise Edition (J2EE),

http://java.sun.com/j2ee/index.jsp, January 2004

[16] Sun, Java Servlet Technologie,

http://java.sun.com/products/servlet/index.jsp,

January 2004

[17] Sun, The Essentials of Filters,

http://java.sun.com/products/servlet/Filters.html,

January 2004

[18] W. Essmayr, S. Probst, E. Weippl; Role-Based

Access Controls: Status, Dissemination, and

Prospects for Generic Security Mechanisms.

Electronic Commerce Research Vol 4(1), pp.

127-156. Jan. 2004

[19] W3C, SOAP Version 1.2 Part 1,

http://www.w3.org/TR/SOAP/, June 2003

[20] W3C, Web Service Architecture Requirements,

http://www.w3.org/TR/2002/WD-wsa-reqs-

20021114#id2604831, January 2004

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

	footer1:

