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Abstract

Service directories are a key component of distributed
systems where shared information must be managed effi-
ciently. For a directory with a large numbers of entries,
the result set of a query may be large, too. In this case it
is important to order the results according to heuristics and
to retrieve them incrementally. Our contribution is an in-
tegrated directory system specially adapted to large-scale
service discovery and composition. We introduce DirQL,
a flexible query language for the matching and ranking of
service descriptions. As results are incrementally retrieved,
our system is able to lazily compute the result set based on:
1) the organization of the directory as a special balanced
search tree that has an extra “intersection” discriminator,
2) a scheme for transforming the original query into one
taking into account the tree structure of the directory, and 3)
the organization of partial results in a heap structure sorted
according to the transformed query. We also report on ex-
perimental results regarding the usage of the directory by a
composition engine solving randomly generated problems.1

1 Introduction

Service composition is an exciting area which has re-
ceived a significant amount of interest in the last period.
Initial approaches to web service composition [17] used a
simple forward chaining technique which can result in the
discovery of large numbers of services. There is a good
body of work which tries to address the service compo-
sition problem by applying planning techniques based ei-
ther on theorem proving (e.g., Golog [11, 12]) or on hier-
archical task planning (e.g., SHOP-2 [18]). All these ap-
proaches assume that the relevant service descriptions are
initially loaded into the reasoning engine and that no discov-
ery is performed during composition. Recently, Lassila and
Dixit [9] have addressed the problem of interleaving discov-
ery and integration in more detail, but they have considered

1The work presented in this paper was supported by the European
projects KnowledgeWeb (FP6-507482) and DIP (FP6-507483).
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only simple workflows where services have one input and
one output.

The current and future state of affairs regarding web ser-
vices will be quite different since due to the large num-
ber of services and to the loose coupling between service
providers and consumers we expect that services will be
indexed in directories. Consequently, planning algorithms
will have to be adapted to a situation where operators are
not known a priori, but have to be retrieved through queries
to these directories. Basic planning systems check all the
operators in the planning library against the current search
state for determining which actions to perform next. In con-
trast, in the case of service composition, the search state is
used to extract the specification of possible operators. This
specification together with some constraints specific to the
composition algorithm is used for formulating queries to the
service directory.

In order to support efficient service composition, the di-
rectory system has to meet the following requirements:

• Efficient search: The internal structure of the direc-
tory has to enable an efficient search in the presence of
a large number of service descriptions.

• Flexible matching and ranking: The query language
should allow algorithm-specific heuristics so that the
most promising elements of a (possibly large) result
set are returned first. However, the internal directory
structure should not be exposed to the client.

Our main contribution is a directory system (see Fig. 1)
that addresses the two requirements mentioned before in a
novel way, first by organizing the directory as a balanced
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search tree and secondly by providing DirQL, a flexible lan-
guage for the matching and ranking of service descriptions.
We provide a transformation framework for DirQL expres-
sions that automatically relaxes user queries, enabling the
matching and ranking of inner nodes in the directory tree.
As internal nodes are expanded, they are stored in a heap
structure (sorted according to the ranking), resulting in a
best-first directory search.

The current system builds on previous work [3], where
performance evaluations pointed up to the necessity of
opening the directory to application-specific heuristics tai-
lored to specific service composition algorithms. In turn,
supporting ranking of results requires an efficient procedure
for evaluating large numbers or search nodes. In our previ-
ous system, these issues were addressed by having ranking
functions defined through a specialized API and a restricted
version of the Java language shipped by the client to the di-
rectory for remote evaluation. This approach had a number
of disadvantages, the most important being the fact that the
user-specified ranking functions could be correctly applied
only to leaf nodes of the search tree. Also the system was
limited to Java platforms and the query API had only a few
basic constructs.

This paper is structured as follows: In the next section
we present our approach for flexible selection and ranking
of service descriptions. We start by reviewing the current
state of the art regarding matchmaking ; then we describe
interval constraints, the formalism that we use to model ser-
vice advertisements and requests. We introduce DirQL, our
directory query language. In Section 3 we first show how
existing approaches to efficient propositional inference can
be applied in our case when multiple constraints have to be
matched. This section also gives some insights regarding
the organization of the directory as a balanced search tree,
where the inner nodes have an “intersection” discriminator
in addition to the classic “union” discriminator. Section 4
shows how query transformations combine the flexibility of
our query language with the efficiency provided by the in-
ternal directory organization. In Section 5 we present an
experimental evaluation of our approach on randomly gen-
erated composition problems. Finally, Section 6 concludes
this paper.

2 Flexible Matchmaking and Ranking

In this section we start by briefly reviewing the current
state-of-the-art regarding matchmaking. Then we introduce
interval constraints, a supporting formalism which we use
for describing service advertisements and requests. Finally,
we present DirQL, our language for flexible matching and
ranking of service descriptions.

2.1 Matchmaking – Current Approaches

Previous work regarding the matching of software com-
ponents [19] has considered several possible match types
based on the implication relations between preconditions
and postconditions of a library component S and a query
Q. For example, the PlugIn match, one of the most useful
match types, is defined as:

matchPlugIn(Q, S) =
(preQ ⇒ preS) ∧ (postS ⇒ postQ).

In LARKS [16] the above condition was adapted,
replacing the implication with a more tractable operation,
the θ subsumption over sets of constraints (�θ):

matchPlugIn(Q, S) =
(preQ �θ preS) ∧ (postS �θ postQ).

A set of constraints preS θ-subsumes a set of constraints
preQ (preQ �θ preS or otherwise preQ � preS or
preQ ⇒ preS), if every constraint in preQ is subsumed by
a constraint in preS (similarly for postconditions):

preQ �θ preS ⇔
(∀CQ ∈ preQ)(∃CS ∈ preS)(CQ �θ CS).

Most recent work regarding matchmaking [13, 10, 3] ex-
tended these approaches by using languages based on de-
scription logic [1] like OWL (http://www.w3.org/
TR/owl-ref/) for defining terms of service advertise-
ments and requests.

2.2 Interval Constraints

For describing service advertisements and requests, we
use constraints on sets of intervals (possibly generated from
class descriptions [3]). A constraint is a special form of first
order predicate that universally quantifies over the values
of the interval sets. If an interval represents the encoding of
a class, the constraint corresponds to a quantification over
all the individuals in the class:

P (C1, ..., Cn) ⇔
(∀x1 ∈ C1) ... (∀xn ∈ Cn)P (x1, ..., xn).

We define a number of possible relations between two
interval sets C1 and C2:

C1 � C2 ⇔ (∀i1 ∈ C1) (∃i2 ∈ C2)(i1 ⊆ i2),
C1 ≡ C2 ⇔ C1 � C2 ∧ C2 � C1,
C1�̇C2 ⇔ (∃i1 ∈ C1) (∃i2 ∈ C2)(i1 ∩ i2 = ∅).
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The relation ¬�̇ is the logical negation of �̇ and holds
when the argument interval sets are disjoint. We define also
two special relations: top �̇ that always holds and bottom
⊥̇ that never holds. There is a similarity between the θ sub-
sumption relation between sets of clauses and the interval
set subsumption relation �. We assume that constraints
have unique arities, i.e., constraints with the same name
have always the same number of terms.

We define ent, a complex entailment relation between
two constraints P1(C11, ..., C1n) and P2(C21, ..., C2n)
with the same arity n but possibly different names P1 and
P2. The predicate ent(P1, P2, op1, ..., opn) holds if each
of the terms C1i and C2i of the two constraints are in the
relation specified by the respective operator opi:

ent(P1, P2, op1, ..., opn) ⇔ ∧n
i=1 C1i opi C2i

where opi ∈ {≡,�,�, �̇,¬�̇, �̇, ⊥̇}, 1 ≤ i ≤ n.

We define notEnt, a non-entailment relation hav-
ing semantics in concordance with those of ent: The
predicate holds if at least one of the terms C1i and C2i

is not in the relation specified by the respective operator opi:

notEnt(P1, P2, op1, ..., opn) ⇔ ∨n
i=1 ¬(C1i opi C2i)

where opi ∈ {≡,�,�, �̇,¬�̇, �̇, ⊥̇}, 1 ≤ i ≤ n.

Constraints can be grouped in constraint stores. A
constraint store S is logically equivalent to the conjunction
of the constraints in the store:

S = {P1(C11, ..., C1n), ..., Pk(Ck1, ..., Ckm)} ⇔
P1(C11, ..., C1n) ∧ ... ∧ Pk(Ck1, ..., Ckm).

By combining universal (all) and existential (some)
quantifiers over a pair of constraint stores Q and S we
can define eight predicates (e.g., allQallS , allQsomeS ,...,
allSallQ, allSsomeQ,..., etc). Each of the predicates
holds if the two stores contain constraints according to the
quantifications qQ and qS that are in a relation as defined
above by ent:

q1q2(PQ, PS , op1, ..., opn) ⇔
((∀ | ∃)(PQ | PS))((∀ | ∃)(PS | PQ))
(PQ ∈ Q)(PS ∈ S) ent(PQ, PS , op1, ..., opn),

where q1, q2 ∈ {allQ, allS , someQ, someS},
store(q1) = store(q2) and where store(quantX ) = X for
quant ∈ {all, some}, X ∈ {Q,S}.

We also explicitly define the negation of the quantifica-
tion predicates with semantics that can be straightforwardly
deduced by the application of DeMorgan’s laws for quan-
tifier transformation. After applying these transformations

(assumed to be already done on the right part of the
expression below) the formula can be written in terms of
the non-entailment predicate notEnt:

¬q1q2(PQ, PS , op1, ..., opn) ⇔
((∃ | ∀)(PS | PQ))((∃ | ∀)(PQ | PS))
(PQ ∈ Q)(PS ∈ S) notEnt(PQ, PS , op1, ..., opn),

where q1 and q2 are defined as above and the negation
is propagated over the quantifiers using the extended De-
Morgan laws: ¬all → some¬, ¬some → all¬, ¬ent →
notEnt.

We define count, a function which returns the cardinal-
ity of a set of constraints selected from the constraint store
S according to their entailment relation with constraints in
the store Q :

countQ,S(PQ, PS , op1, ..., opn) =
| {PS ∈ S : PQ ∈ Q, ent(PQ, PS , op1, ..., opn)} |.

We introduce also countQ and countS , two functions
which return the cardinality of a set of constraints having a
given name P from the stores Q or S:

countQ(P ) =| {P (C1, ..., Cn) ∈ Q} |,
countS(P ) =| {P (C1, ..., Cn) ∈ S} |.

2.3 Describing Services by Interval Constraints

We use constraint stores to define service advertisements
or service requests. In this paper we consider the latter to
be user queries. Input and output constraints are defined
over the two elements that describe a parameter – roles for
semantics and types for compatibility of data representa-
tions. Preconditions and effects are defined over concepts
describing features of the world. The exact semantics
of input resp. output parameters are those described in
our previous work [6]. Preconditions and effects have
semantics similar to those defined by the OWL-S specifica-
tion (http://www.daml.org/services). Service
advertisements or service requests are defined trough four
kinds of constraints:

- IN(R, T ): Defines an input parameter through its role
R and type T .

- OUT (R, T ): Defines an output parameter through its
role R and type T .

- PRE(F ): Defines a precondition through the concept
F .

- EFF (F ): Defines an effect through the concept F .

Let’s consider as an example a service description with
two input parameters having roles A resp. B and types a1–
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a2 resp. b1, two output parameters having roles C resp. D
and types c1 resp. d1–d2, two preconditions p1 resp. p2, and
one effect g1. This service description would be represented
by the following constraint store: S = { IN(A, a1 − a2),
IN(B, b1), OUT (C, c1), OUT (D, d1 − d2), PRE(p1),
PRE(p2), EFF (g1) }.

Our formalism is different from the ones reviewed in
Section 2.1, as our approach uses a more fine-grained de-
composition of service descriptions as sets of individual
preconditions or effects. This implies that for the service
to work correctly, each of the individual preconditions has
to be satisfied. This is more general than the approach of
Zaremski or LARKS, where only one precondition as a
whole (possibly containing several clauses) has to be sat-
isfied. In particular the θ subsumption of set of clauses in
LARKS is equivalent in our case with the inclusion rela-
tion � of a set of intervals from a precondition or effect
constraint. In both cases the relation is true if for any com-
ponent (clause or interval) in the subsumed component set
there is a “larger” component in the subsuming component
set.

Below we show how the basic PlugIn match type is
expressed in our formalism. For a query store Q and a
service store S this match type can be specified as:

matchPlugIn(Q,S) =
allSsomeQ(INQ, INS,�role,�type)∧
allQsomeS(OUTQ, OUTS ,�role,�type)∧
allSsomeQ(PREQ, PRES ,�)∧
allQsomeS(EFFQ, EFFS ,�).

2.4 DirQL – A Query Language for Directories

As directory queries may retrieve large numbers of
matching entries (especially when partial matches are taken
into consideration), our directory supports sessions in or-
der to incrementally access the results of a query [4]. By
default, the order in which matching service descriptions
are returned depends on the actual structure of the direc-
tory index. However, depending on the service integration
algorithm, ordering the results of a query according to cer-
tain heuristics may significantly improve the performance
of service composition. In order to avoid the transfer of
a large number of service descriptions, the pruning, rank-
ing, and sorting according to application-dependent heuris-
tics should occur directly within the directory. As for each
service integration algorithm a different pruning and rank-
ing heuristic may be better suited, our directory allows its
clients to define custom selection and ranking functions
which are used to select and sort the results of a query.

A query consists of provided inputs and required outputs
(both sets contain tuples of parameter roles and associated
types), provided preconditions and required effects, as well

dirqlExpr : matchExpr | rankExpr | matchExpr rankExpr ;

matchExpr : ’match’ boolExpr ;

rankExpr : ’rank’ ’by’ (’asc’ | ’desc’) numExpr ;

boolExpr : ’(’ (’and’ | ’or’) boolExpr+ ’)’
| ’(’ ’not’ boolExpr ’)’
| ’(’ quantOP word word relOP+ ’)’
| ’(’ cmpOP numExpr numExpr ’)’ ;

quantOP : ’allQallS’ | ’allQsomeS’ | ’someQallS’
| ’someQsomeS’ | ’allSallQ’ | ’allSsomeQ’
| ’someSallQ’ | ’someSsomeQ’ ;

relOP : ’EQUIV’ | ’SUBSET’ | ’SUPERSET’
| ’OVERLAP’ | ’DISJOINT’ | ’T’ | ’F’ ;

cmpOP : ’<’ | ’>’ | ’<=’ | ’>=’ | ’==’ | ’!=’ ;

numExpr : ’(’ (’+’ | ’*’) numExpr numExpr+ ’)’
| ’(’ (’-’ | ’/’) numExpr numExpr ’)’
| ’(’ (’max’ | ’min’) numExpr+ ’)’
| ’(’ ’if’ boolExpr numExpr numExpr ’)’
| ’(’ ’count’ word word relOP+ ’)’
| ’(’ ( ’countQ’ | ’countS’ ) word ’)’
| number ;

Table 1. A grammar for DirQL.

as a custom matching and ranking function. The matching
and ranking function is written in the simple, high-level,
functional query language DirQL (Directory Query Lan-
guage). An (informal) EBNF grammar for DirQL is given
in Table 1. The non-terminal number, which is not shown
in the grammar, represents a numeric constant (integer or
decimal number) and the non-terminal word represents an
alphanumeric word of length bigger than 0 used for con-
straint names.

The semantics of the boolean expressions allQallS,
etc., and their negations (not (allQallS )), etc.,
and of the numeric functions count, countQ, and
countS are those defined in Section 2.2 for the predi-
cates allQallS , etc., for their negated versions, and for the
functions countQ,S , countQ and countS . The seven rela-
tion specifiers EQUIV, SUBSET, SUPERSET, OVERLAP,
DISJOINT, T, and F correspond to the seven operators ≡,
�, �, �̇, ¬�̇, �̇, ⊥̇.

3 Efficient Directory Search

Our approach for efficiently matching constraint stores
has similarities with the approach for efficient propositional
inference initially proposed by [15] and then developed
and extended by [7, 14, 2]. They proposed a compilation
technique where a generic propositional formula is ap-
proximated by two Horn formulas Σ and Σ that satisfy the
following:

Σ |= Σ |= Σ or equivalently M(Σ) ⊆ M(Σ) ⊆ M(Σ).
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Figure 2. Formula approximations for fast in-
ference.

In the literature Σ is called the Horn lower bound or core
of Σ while Σ is called the Horn upper bound or envelope
of Σ. As it can be also seen in Fig. 2, Σ is a complete
approximation of Σ while any of the models of the core
(lower bound) formula is also a model of the original for-
mula. Conversely the envelope (upper bound) is a sound
approximation of the original formula as any model of the
original formula is also a model of the envelope.

Interval sets in constraints can be also seen as sets of
models of a propositional formulas. Interval sets from dif-
ferent constraints can be seen as different formulas (e.g.
Σ1, Σ2) and can be approximated using the same technique
as in the case of Horn clauses (see Fig. 2): their union can
be considered an upper bound and their intersection can be
considered a lower bound. Before testing individual match-
ing conditions between a query Γ and existing entries Σ1

resp. Σ2, the upper and lower bounds can be checked first
whether they satisfy a relaxed but necessary version of the
original condition, also called pruning condition. If the
query description does not match the bound under the re-
laxed condition, it will certainly not match the original de-
scription either. I.e., further tests can be pruned. If the query
matches the bound then further tests may be needed, for ex-
ample on more refined bound approximations.

As an example, let’s consider that given an interval Γ we
want to determine which of several interval sets Σx, x =
1, 2, ... satisfy Γ � Σx. If the intervals Σx are bounded
by Σ and Σ, we can use Γ � Σ as a pruning condition. If
this condition does not hold, without further tests we can
infer that no interval Σx satisfies the original query. If the
condition holds, further tests are necessary.

In Fig. 3 we list all other possible inclusion implications
between two interval sets Γ and Σ and implicitly the re-
quired pruning conditions for Σ and Σ. We considered five
possible set relations: equivalence ≡, subset �, superset �,
overlapping sets �̇ and disjoint sets ¬�̇. For the case where
no particular relation could be deduced, we have used the

Positive relations (ent(...)).

Γ ≡ Σ ⇒ Γ � Σ

Γ � Σ ⇒ Γ � Σ

Γ � Σ ⇒ Γ �̇ Σ

Γ �̇ Σ ⇒ Γ �̇ Σ
Γ ¬�̇ Σ ⇒ �

Γ ≡ Σ ⇒ Γ � Σ
Γ � Σ ⇒ �
Γ � Σ ⇒ Γ � Σ
Γ �̇ Σ ⇒ �
Γ ¬�̇ Σ ⇒ Γ ¬�̇ Σ

We apply (A ⇒ B) ↔ (¬B ⇒ ¬A) and get:

Negative relations (notEnt(...)).

¬(Γ ≡ Σ) ⇒ ¬(⊥)
¬(Γ � Σ) ⇒ ¬(⊥)

¬(Γ � Σ) ⇒ ¬(Γ � Σ),

¬(Γ ≡ Σ)
¬(Γ �̇ Σ) ⇒ ¬(⊥)

¬(Γ ¬�̇ Σ) ⇒ ¬(Γ ¬�̇ Σ)

¬(Γ ≡ Σ) ⇒ ¬(⊥)
¬(Γ � Σ) ⇒ ¬(Γ � Σ),

¬(Γ ≡ Σ)
¬(Γ � Σ) ⇒ ¬(⊥)
¬(Γ �̇ Σ) ⇒ ¬(Γ�̇Σ),

¬(Γ � Σ)
¬(Γ ¬�̇ Σ) ⇒ ¬(⊥)

Figure 3. Selection criteria and required prun-
ning conditions for Σ and Σ (right side of the
implications).

truth symbol � (i.e., to make the implication a tautology).
The lower table in Fig. 3 is for the case when the match

predicate apears in the query formula negated (e.g., in the
body of the notEnt(...) predicate). For determining the
pruning conditions for this case he have used the fact that
A ⇒ B is logically equivalent to ¬B ⇒ ¬A and the impli-
cations of positive relations between Γ and Σ, Σ previously
determined.

We use the individual pruning conditions above in order
to determine pruning forms of the predicates ent(...) and
notEnt(...). This is done by replacing in the formula each
of the individual tests opi by a relaxed version accordingly
to the right side of the upper left table. Also the second
operand is not to be the value from the original constraint
but rather its upper approximation Σ. If any of the relaxed
tests fail then the predicate will be necesarly false also for
the original constraint.

Equivalently for notEnt(...) we generate pruning con-
ditions accordingly to the right side of the lower right table
that uses lower bounds Σ. If any of the pruning conditions
is true then the tested condition will be necessarly true also
for the original constraint and thus the predicate value will
be false (due to the negation in notEnt(...)).

3.1 Multidimensional Access Methods - GiST

The need for efficient discovery and matchmaking leads
to a need for search structures and indexes for directories.
We consider service descriptions represented by interval
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constraints as multidimensional data and we use techniques
related to the indexing of such kind of information for orga-
nizing the directory.

The indexing technique that we use is based on the Gen-
eralized Search Tree (GiST) structure which was initially
proposed as a unifying framework by Hellerstein [8] and
later having extensions regarding aspects like concurrency
or ranked search. The design principle of GiST arises from
the observation that search trees used in databases are bal-
anced trees with a high fanout in which the internal nodes
are used as a directory and the leaf nodes point to the actual
data. In the classic GiST each internal node holds a key in
the form of a predicate and a number of pointers to other
nodes (depending on system and hardware constraints, e.g.,
filesystem page size). Predicates of inner nodes subsume
predicates of all child nodes. To search for records that
satisfy a query predicate, only some paths of the tree are
followed, those having inner predicates that can satisfy the
query being processed. For a given inner node the associ-
ated predicate can be seen as an upper bound or envelope
(see above Σ) of the predicates in the leaf nodes of the sub-
tree originated at the node.

3.2 Using Lower Bounds in GiST

Our approach extends the basic GiST framework by as-
sociating to each inner node a second predicate that is sub-
sumed by all values below. This new predicate can be
seen as a lower bound or core (see above Σ) of the pred-
icates in the leaf nodes of the subtree originated at the node
defining the predicate. Core predicates Σ are required for
pruning conditions that include negative entailment tests
(notEnt(...)).

As it can be seen in the example in Fig. 4, while the
size of envelope predicates normally increases as they are
closer to the root of the tree, normally core predicates be-
come smaller or even empty (⊥) as they approach the root.

For inner nodes the constraints in the core are computed
as an intersection of the constraints in the cores of children
nodes. In turn this is done by intersecting the intervals sets
of fields with the same index. Conversely constraints in the
envelope are constructed by having for the value of each
field in the constraint the union of values of the respective
fields of constraints in the envelopes of children nodes.

3.3 Best first tree traversal

By default, the order in which matching service descrip-
tions are returned depends on the actual structure of the di-
rectory index (the GiST structure discussed before). How-
ever, depending on the service integration algorithm, order-
ing the results of a query according to certain heuristics may
significantly improve the performance of service composi-
tion. In order to avoid the transfer of a large number of
service descriptions, the pruning, ranking, and sorting ac-
cording to application-dependent heuristics should occur di-
rectly within the directory. As for each service integration
algorithm a different pruning and ranking heuristic may be
better suited, our directory allows its clients to define cus-
tom matching and ranking functions which are used to se-
lect and sort the results of a query.

While the query is being processed, the visited nodes are
maintained in a heap or priority queue, where the node with
the most promising heuristic value comes first (see Fig. 1).
Always the first node is expanded: If it is a leaf node, it is re-
turned to the client. Further nodes are expanded only if the
client needs more results. This technique is essential to re-
duce the processing time in the directory until the first result
is returned, i.e., it reduces the response time. Furthermore,
thanks to the incremental retrieval of results, the client may
close the result set when no further results are needed. In
this case, the directory does not spend resources to compute
the whole result set. Consequently, this approach reduces
the workload in the directory and increases its scalability. In
order to protect the directory from attacks, queries may be
terminated if the size of the internal heap or priority queue
or the number of retrieved results exceed a certain threshold
defined by the directory service provider.

4 Query Transformation

In this section we give an overview of our transformation
scheme that integrates the flexibility and transparency pro-
vided by the DirQL language with the efficiency provided
by the internal directory structures, i.e., the balanced tree
and the heap.

Processing a user query requires traversing the GiST
structure of the directory starting from the root node. For
validating the final result, the original DirQL expression is
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applied to leaf nodes of the directory tree, which correspond
to concrete service descriptions.

The client defines only the selection and ranking func-
tion for leaf nodes (i.e., to be invoked for concrete service
descriptions), while the corresponding functions for inner
nodes are automatically generated by the directory. The di-
rectory uses a set of simple transformation rules that enable
a very efficient generation of the selection and ranking func-
tions for inner nodes (the execution time of the transforma-
tion algorithm is linear with the size of the query DirQL
expression).

If the client desires ranking in ascending order, the gen-
erated ranking function for inner nodes computes a lower
bound of the ranking value in any node of the subtree; for
ranking in descending order, it calculates an upper bound.

The actual transformation rules start by putting the ini-
tial formula in a negated normal form where negation ap-
pears only in front of a boolean expression. Positive
ent(...) expressions are relaxed using the rules in the up-
per left section of Fig. 3 applied to the upper bound ap-
proximation Σ. In the case of negated expressions of
the form notEnt(..) the lower right section of the table
is used. In inner nodes the allS quantifier is relaxed
to someS. Numerical expressions are relaxed by hav-
ing lower or upper bounds propagated using basic interval
arithmetic (e.g., [Xl, Xu] + [Yl, Yu] = [Xl + Yl, Xu + Yu],
[Xl, Xh] − [Yl, Yh] = [Xl − Yh, Xh − Yl], etc.) Lower
bounds are computed as low interval ends and upper bounds
are computed as high interval ends. The numeric ranking
functions use the core Σ for lower numeric approximations
and the envelope Σ for upper numeric approximations. A
detailed table of all the transformation rules had to be omit-
ted due to space limitations.

5 Evaluation

The service composition planner used for evaluating our
approach is based on forward chaining. It iteratively selects
an applicable service S (i.e., all inputs required by S have to
be available) and applies it to the current world state. The
process terminates, if either the requested functionality is
provided (i.e., all required outputs are provided) or no solu-
tion could be found. Details of such a service composition
algorithm are explained in [6].

In the example in Table 2, a matching and ranking func-
tion suited for a service composition algorithm using for-
ward chaining with partial type matches is shown. Our for-
ward chaining approach requires that all inputs needed by
the service be provided by the query (and the service has
to be able to handle some parameter types of the provided
inputs, i.e., the types in the query have to overlap with the
ones in the service). The results are sorted in ascending or-
der according to the number of still missing outputs after

match (and
(allSsomeQ IN IN SUBSET OVERLAP)
(allSsomeQ PRE PRE SUBSET))

rank by asc
(+

(- (countQ OUT) (count OUT OUT SUPERSET SUPERSET))
(- (countQ EFF) (count EFF EFF SUPERSET)))

match (and
(someSsomeQ IN IN SUBSET OVERLAP )
(someSsomeQ PRE PRE SUBSET))

rank by asc
(+
(- (countQ OUT) (count OUT OUT OVERLAP OVERLAP))
(- (countQ EFF) (count EFF EFF OVERLAP )))

Table 2. Original and transformed query.
Changes are indicated in bold. The bars indi-
cate the bound in use.

application of the service. The code for inner nodes is gen-
erated according to the transformation scheme described in
the previous section.

0

10

20

30

40

50

60

70

80

90

100

1500 3000 4500 6000 7500 9000 10500 12000

Number of Services in Directory

P
er

ce
nt

ag
e 

of
 D

ir
ec

to
ry

 N
od

es
 V

is
ite

d

Fwd Complete Full

Fwd Partial Full

Fwd Complete Best First

Fwd Partial Best First

Best First Search

Full Result Set

Figure 5. Average percentage of visited direc-
tory nodes per query.

We evaluated our approach by carrying out tests on ran-
dom service descriptions and service composition problems
generated as described in [5]. The composition problems
were solved using two forward chaining composition algo-
rithms: One that handles only complete type matches and
a second one that can compose partially matching services,
too (see [6]). Since we were interested in the efficiency of
the directory search, we considered as performance metrics
the percentage of the total number of index nodes (internal
and leaf nodes) evaluated in average for any query submit-
ted by the service composition engine.

We compared two different directory configurations: In
the first configuration the directory creates the full result set
based on the query selection criteria before ranking the re-
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sults accordingly to the provided query ranking function.
This setting corresponds to our old directory implementa-
tion presented in previous work [3]. In the second con-
figuration we evaluated our novel directory that performs
a best-first search applying the transformed matching and
ranking functions to inner nodes, thus lazily creating the
result set. For both directories we used exactly the same
set of service descriptions and at each iteration we ran the
algorithms on exactly the same random problems. The re-
sults show (Fig. 5) that the number of directory nodes that
are evaluated is consistently smaller in the case of the best
first search by up to a factor of 6 in the case of the algo-
rithm supporting only complete matches and up to a factor
of 3 in the case of the algorithm supporting also partial type
matches.

6 Conclusion

In this paper we presented an extensible directory sys-
tem providing a flexible query language (DirQL) and an ef-
ficient way of managing and searching the published service
descriptions.

The directory is organized as a special balanced search
tree, where nodes contain also an “interesection” discrimi-
nator, in contrast to current systems which usually provide
only an “union” discriminator. This kind of discriminator
is used for early pruning in the case of negated queries and
for providing tighter lower bounds in the case of numerical
functions. For efficient search, the initial user query is au-
tomatically transformed into a query exploiting the internal
directory structure (lower and upper bounds). A best first
search technique is used for the lazy creation of the result
set.

Performance measurements with two kinds of compo-
sition algorithms based on randomly generated service de-
scriptions and problems confirm that this best first search
evaluates considerably less directory nodes than our previ-
ous directory implementation.
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