
Towards a Reliable Distributed Web Service Execution Engine

Xinfeng Ye
Department of Computer Science, Auckland University, New Zealand

xinfeng@cs.auckland.ac.nz

Abstract

This paper presents an approach for providing a
reliable distributed Web Service Execution Engine.
Instead of using a Web Service Execution Engine
running on a single host to conduct the execution of a
composite service, the responsibility of conducting the
execution of the composite service has been delegated
to the service providers that are chosen to provide the
main functionalities of the tasks in the composite
service. The operations of the tasks are represented as
a set of XML-based notations. The notations are
platform independent. Thus, they can be (a) retrieved
by service providers based on different platforms, and,
(b) interpreted and executed by the service providers.
The approach also provides a mechanism for coping
with possible failure in the system.

1. Introduction

Web services are the fundamental building blocks
for constructing distributed systems on the Internet. A
composite service can be built from existing Web
Services. A composite service consists of many tasks.
The main functionalities of the tasks are provided by
Web Services. For each task, apart from accessing a
Web Service, users can also specify the operations for
manipulating the information retrieved from the Web
Service.

The execution of a composite service is conducted
by a Web Service Execution Engine (WSEE). The
WSEE conducts the execution of the composite service
by invoking the relevant Web Services and
manipulating the data received from the Web Services
according to the operations specified for the tasks.
Normally, the WSEE is hosted on a single site. As the
WSEE needs to (a) interact with the Web Services that
provide the functionality of the composite service and
(b) carry out the required processing, it might become
a hot spot in the system in terms of communication and
computation. Research in mobile agent technology [3,

9, 14] has used the “moving code to data” concept to
alleviate the hot spot problem mentioned above.

A mobile agent is a software component that has the
ability to move from one host to another. A mobile
agent carries both code and state. It can migrate to a
host where the information to be manipulated resides.
Then, the mobile agent manipulates the information at
the host according to its code. Since the information no
longer needs to be sent to a remote host, e.g. a WSEE,
the network traffic can be reduced. A mobile agent
moves amongst the hosts and carries out operations on
the hosts that it migrates to. Thus, the computation has
been distributed across the system. Hence, using the
mobile agent technology can help to balance the load
across the system.

This paper discusses an approach for providing a
reliable distributed Web Service Execution Engine.
Although it does not use mobile agents, it uses the
“moving code to data” concept in conducting the
execution of a composite service to address the hot
spot problem facing the traditional WSEE. In this
paper, instead of using a WSEE running on a single
host to conduct the execution of a composite service,
the responsibility of conducting the execution of the
composite service has been delegated to the service
providers that are chosen to provide the main
functionalities of the tasks in the composite service.
For a service provider that is chosen to execute a task,
apart from providing the service requested by the task,
the service provider is also responsible for executing
the task’s operations relating to the manipulation of
data and the invocation of other tasks. The operations
of the tasks are represented as a set of XML-based
notations. The notations are platform independent.
Thus, they can be (a) retrieved by service providers
based on different technology, and, (b) interpreted and
executed by the service providers. A mechanism for
coping with possible failure in the system is also
provided.

From the users’ point of view, the approach in this
paper should be attractive, since it should reduce the
communication costs as well as the users’ total reliance
on a particular service provider for hosting WSEE. The

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

approach in this paper should also be attractive to the
service providers, since the service providers gain a
new opportunity to collect revenue by hosting the
distributed WSEE as a service.

2. Terminologies

Within a composite service, the tasks can be
specified to run sequentially, concurrently or
conditionally. If the execution of a task, say B, cannot
start until another task, say A, terminates, A is called
the predecessor of B, and, B is called the successor of
A. For example, in Figure 1, T2 is the successor of T1,
and, T1 is the predecessor of T2. A successor task is
invoked by its predecessor. The invocation of some
tasks might depend on the execution outcomes of their
predecessors. For example, in Figure 1, T2 decides
whether T3 or T4 will be activated according to the
operations specified by the user in T2. T2 is called a
conditional branch task, since only one of T2’s
successors will be activated in a run.

It is assumed that a task in a composite service only
accesses the operations provided by one Web Service1.
For each task, it is assumed that multiple service
providers are available for providing the services
needed by the task. The user will choose one of the
service providers to carry out the execution of the task
while the other tasks are added to a candidate list for
fault tolerance purpose. The service provider chosen to
provide the service is called the primary provider
while the ones on the candidate list are called
candidate providers. For each task, the primary
provider and the candidate providers form a group
called service provider group of the task.

3. A Distributed Web Service Execution
Engine

3.1. An Overview of the System

Figure 2 shows the interactions between the entities
in the system. A Web Service Composition Tool
(WSCT) is developed for specifying a composite
service. A task description language is used to describe
the operations to be carried out by the tasks in the

1 If a task needs to access the operations of multiple Web
Services, the task can be broken into several tasks.

composite service. Users can use the WSCT to locate
service providers for each of the tasks in a composite
service. Once the user completes the composition of a
composite service, for each task in the composite
service, the WSCT converts the operations of the task
to a set of XML-based notations and stores the
notations in a file, called task file. It is assumed that
there exist some service providers, called the task code
repository (TCR), that provide the service of hosting
the task files. The WSCT dispatches the task files to
the TCRs for storage. A task file is stored on several
TCRs for fault tolerance purpose. The user can invoke
a composite service using the WSCT. In turn, the
WSCT instructs the primary provider of the first task
in the composite service to retrieve the task file of the
task and execute the task.

In order to execute a task, a service provider needs to
have an interpreter to interpret and execute the
operations stored in the task file. The service providers,
which have the ability to run tasks, offer this ability as
a service. They have a web operation for accepting the
invocation calls for tasks. When a task is activated, the
primary provider of the task retrieves the task file from
a TCR and uses the interpreter to execute the task.

The task file of a task includes the operations for
invoking the successor of the task. Thus, the WSCT
only needs to activate the first task in a composite
service. The other tasks will be activated by the service
providers of the tasks’ predecessors when their
predecessors are executed.

3.2. The Web Service Composition Tool

The Web Service Composition Tool (WSCT) is
based on the light-weight visual tool for Web Service
Orchestration [18]. The tool in [18] allows users to
interact with a service registry to browse available
Web Services that can be used for composing a
composite service. Then, the user can use the tool to
specify the service composition using the available
Web Services. [18] only provides limited capability in
describing the processing of the data retrieved from the
Web Services. WSCT extends the work in [18] by
introducing the Task Description Language (TDL) that

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

allows the data retrieved from the Web Services being
manipulated easily. Apart from specifying the primary
provider for a task, WSCT allows users to provide a
list of candidate providers for carrying out the task to
cope with possible failures in the system. The user
assigns ranks to the candidate providers according to
the user’s preference.

3.3. The Task Description Language (TDL)

The Task Description Language (TDL) is used for
describing the operations of a task. It is based on Java,
albeit much simple than Java. TDL supports
sequential, while loop, and, if statements as well as
some arithmetic, relational and logical operators, e.g.
+, |, >, etc. It also allows users to use primitive data
types, e.g. int, bool, etc. Users can also define objects.

A task is defined like a procedure with a list of
input parameters as shown in the example below. In
the example, the name of the task is T. It accepts two
input parameters, Para1 and Para2, of type ParaType1
and ParaType22.
T(ParaType1 Para1, ParaType2 Para2) {
 … // operations of the task
}

In TDL, a call to a Web Service is represented like a
procedure call as shown in the following example.
Record r = WSCall(WS_URL, Op, ParameterList)

In the above example, Record is a user-defined class
type that corresponds to the result returned from the
call to the Web Service. WS_URL points to the location
where the WSDL file of the Web Service is stored. Op
is the name of the web operation to be called. The
parameters to be passed to the Web Service are
concatenated to form a string with “;” as the delimiter
separating the parameters3. The string is denoted as
ParameterList in the above example. The interpreter
for executing the task will generate the client-side stub
for accessing the Web Service according to the WSDL
file given at WS_URL. The interpreter extracts the
parameters from the ParameterList and carries out the
call to the Web Service through the client-side stub.

Once a user completes the specification of a
composite service, for each task, the WSCT converts
the TDL descriptions of the task to a set of XML-based
notations and stores them in a task file. Each task is
given a unique name that is used as the title of the file.

2 If a task is the joining point of several predecessor tasks,
each predecessor task will set the values of the parameters
relevant to it and set the irrelevant ones to a special null value.
The task should include the code for retrieving the values
passed in by its predecessors from the parameters.
3 Although object can be represented in TDL, the prototype
implementation only supports string type parameters.

A task file is partitioned into two parts. One part
contains the operations of the task. The other part
contains the variables referenced in the task’s
operations. The example below shows converting a
TDL code fragment into XML-based notations.
Assume that the if statement is the last operation
carried out by T2 in Figure 1. Depending on the values
of a and b, either T3 or T4 will be activated next. The
activation of a task is through calling the Web Service
that will host the execution of the task. Assume that the
service providers of T3 and T4 provide web operation
“activateTask” for task activation purpose. The
parameters to be passed to the activateTask operation
should include a list of locations from where the task
file of the activated task can be retrieved, the ID of the
task to be activated, and, the data to be passed to the
task. In this example, it is assumed that (a) the IDs of
the tasks are T3 and T4 respectively, (b) the task files
can be downloaded at tcr.com/T3.xml and
tcr.com/T4.xml4, and, (c) there are no data to be passed
to T3 and T4 when they are invoked. Thus,
ParameterList in the call to T3’s and T4’s service
providers are “tcr.com/T3.xml;T3;” and
“tcr.com/T4.xml;T4;” respectively. It should be noted
that “;” delimits the parameters to be passed to the
activateTask method; and, the last “;” in ParameterList
is followed by an empty string since no data are passed
to T3 and T4 in this example.
if (a < b) {
 WSCall(“provider1.com/wsee.asmx?WSDL”,
 “activateTask”, “tcr.com/T3.xml;T3;”);
}
else {

WSCall(“provider2.com/wsee.asmx?WSDL”,
 “activateTask”, “tcr.com/T4.xml;T4;”);

}
The XML-based notations representing the above

TDL fragment are as below. The notations for the else
branch of the if statement have been omitted, since
they are similar to the then branch. It can be seen that
XML tags, e.g. if, condition, then, wscall, etc., are used
to represent the meaning of the operations. Tag var
represents a variable.
<if>
 <condition>
 <operator opName=”lt”>
 <parameter>
 <var varName=”a”/>
 </parameter>
 < parameter>
 <var varName=”b”/>
 </parameter>

4 For simplicity, this example assumes that the task files are
only stored on one TCR.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

 </operator>
 </condition>
 <then>

 <wscall>
 <parameter>
 provider1.com/wsee.asmx?WSDL

 </parameter>
 <parameter>
 activateTask

 </parameter>
 <parameter>
 tcr.com/T3.xml;T3;

 </parameter>
 </wscall>

 </then>
 <else>
 …// omitted
 </else>
</if>

A task file can be represented as a tree. To execute
the operations of a task, the interpreter carries out a
traversal of the tree (with some nodes being skipped in
the conditional branch case). Depending on the
meaning of the tags, the interpreter executes the
operations accordingly. For variables, the interpreter
needs to search the tree to locate the values for the
variables5.

3.4. Code Pre-fetching

For the discussion up to now, it is assumed that the
service provider of a task retrieves the task file from a
TCR when the task is activated. Thus, the execution of
the task would not start until the service provider
receives the task file. This introduces a delay in the
execution of the task. It is possible to eliminate this
delay in some cases through pre-fetching the task file.

If a task, say T, is not a conditional branch task in a
composite service, when T is activated, the service
provider of T can also inform the service provider of
T’s successor to retrieve the task file of T’s successor.
For example, in Figure 1, when T1 is activated, the
service provider of T1 informs the service provider of
T2 to retrieve T2’s task file from a TCR. Thus, the
execution of T1 and the retrieving of T2’s task file are
carried out simultaneously. If the time for retrieving
T2’s task file is shorter than executing T1, when T2 is
activated later, T2’s task file is already available on the
service provider of T2. As a result, T2 can be executed
immediately without any delay.

If a task is a conditional branch task, e.g. T2 in
Figure 1, it is impossible to determine which task will

5 TDL does not support variable scoping. Thus, a variable
can only be defined and used once in a task.

be executed next until the execution of T2 completes.
However, it is possible to ask the service providers of
all the successors of the conditional branch task to
retrieve the successors’ task files. For example, in
Figure 1, when T2 is activated, the service providers of
T3 and T4 are both informed to retrieve the task file of
T3 and T4 respectively. When T2 is completed, either
T3 or T4 will be activated. Since the code of T3 and T4
has already been retrieved by their respective service
providers, if they are activated, their execution can be
started immediately. Of course, this approach is a
trade-off between the execution efficiency and the
communication cost. This is because the task file of the
task that is not activated will be discarded. Thus, the
effort of retrieving the file is wasted.

In our prototype implementation, the service
provider of a task, say T, asks its successor pre-fetch
the successor’s task file only if T is not a conditional
branch task. When a user completes the composition of
a composite service, the WSCT checks the type of each
task in the composite service. If a task, say T, is not a
conditional branch task, the WSCT inserts some
instructions into T’s task file. The instructions ask the
service provider of T’s successor pre-fetch T’s
successor’s task file.

3.5. Reliable Execution

The successful execution of a composite service
depends on the successful execution of each of the
tasks in the composite service. Replication has been
widely used to achieve reliability in many systems
[17]. To make their service reliable, service providers
can replicate their services to mask failure and make
failure transparent to the users [1, 19]. However, there
is still a (small) possibility that the mechanisms
deployed by a service provider fail to handle the
failures of the system adequately. As a result, the
service provider fails to deliver the service being
advertised. This section discusses how to cope with
this type of failure.

It is assumed that multiple service providers are
available for carrying out a task in a composite service.
Thus, we can always find a service provider to take
over from the failed service provider. The mechanisms
used in this paper achieve two objectives, i.e. non-
blocking and exactly-once semantics. Non-blocking
means the failures of a service provider does not block
the progress of the computation of a composite service.
Exactly-once semantics means that the effects of
executing a task are only made permanent on one
service provider. To make the mechanisms work, for
each task T, the WSCT adds some information to T’s
task file to make T’s service providers know the

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

identities of all the service providers of T’s successor
task and the identity of the primary provider of T’s
predecessor task.

3.5.1. Non-blocking The key to non-blocking is to
ensure that the failure of a service provider that is
executing a task can be detected. Since each task has a
group of service providers, to satisfy the non-blocking
requirement, the candidate providers need to monitor
the failure of the primary provider. When the primary
provider fails, the candidate providers run an election
protocol [6] to elect the next highest ranked candidate
provider as the new primary provider. The new
primary provider will re-execute the task. Thus, the
failure of a service provider will not block the progress
of a composite service.

To allow the monitoring of the primary provider,
when the primary provider of a task is activated, it
informs the candidate providers in the task’s service
provider group and passes the data that it received from
the predecessor task to the candidate providers in case
they need to carry out the task if the primary provider
fails. The primary provider will periodically send
alive-message to the candidate providers. When a
candidate provider suspects that the primary provider
has failed, it initiates an election algorithm to choose a
new primary provider.

The other issue that needs to be considered is how to
ensure the successful invocation of a task. A successful
invocation of a task means two conditions are satisfied
(a) the primary provider of the task starts executing the
task, and, (b) the candidate providers start monitoring
the primary provider. Condition (b) needs to be
satisfied, since it is necessary to discover the failure of
the primary provider during the execution of the task.
To ensure that condition (b) can be satisfied, the
candidate providers need to acknowledge the primary
provider when they are informed about the invocation
of the task. Once condition (b) is satisfied, the primary
provider informs its predecessor. In turn, the
predecessor task terminates. That is, the primary
provider of the predecessor task discards the
predecessor task’s file and the candidate providers of
the predecessor task stop monitoring the primary
provider. This is because the computation has
successfully progressed from the predecessor task to its
successor. On the other hand, if the primary provider of
a task does not inform its predecessor that it has been
activated successfully, the predecessor will regard the
primary provider as failed. The predecessor will
activate the highest ranked candidate provider to
execute the task.

3.5.2. Exactly-once Semantics [16] points out that in
the Internet, it is impossible to detect the failure of the

system reliably due to the unpredictable
communication delays. Thus, during its execution, a
primary provider might be wrongly suspected of
having failed. As a result, a new primary provider is
elected and carries out the task. Hence, the task is
executed twice (i.e. by the original primary and the
new primary providers respectively). Similar problem
occurs if a service provider is wrongly suspected of not
being activated successfully, since the predecessor will
activate another service provider.

For idempotent operations (i.e. the operations
without side effects), multiple execution of a task does
not create any problem. The effects of many non-
idempotent operations can be undone by executing
compensating operations. For example, the effect of
reserving a flight ticket can be undone by executing a
reservation cancellation operation. In this paper, it is
assumed that the effects of all the non-idempotent
operations can be undone by executing compensating
operations. This means that the service providers also
provide operations to undo the effect of each web
operation being offered. Thus, to solve the problem of
multiple execution of a task caused by incorrectly
suspecting a primary provider of having failed, a
scheme is needed to (a) detect the occurrence of
multiple execution of a task, and, (b) undo the effects
caused by the multiple execution of the task.

The mechanism used in this paper detects multiple
execution of a task at task activation time. Rule 1 and
2 of the mechanism handle the multiple execution of a
predecessor task while Rule 3 deals with the multiple
invocation of a task.

In the absence of a failure, a task is to be executed
by its primary provider. Thus, the primary provider,
say pp, will activate the successor task. The service
providers of the successor task regard pp as the default
activator.
Rule 1: If the service provider of a task, say T, receives
another activation call from service provider sp after
receiving the activation call from the default activator,
sp will be notified that an activation call has been
received from the default activator. As a result, sp will
undo the operations of the task.

Figure 3 depicts the problem being handled by Rule
1. SG1 and SG2 are the service provider groups of two
tasks. Each group consists of three service providers.
Original, the primary provider of SG1 is sp11. Thus, all
the service providers in SG2 regard sp11 as the default
activator. Figure 3(a) shows that sp11 has completed its
task and sends an activation call to sp21. In the
meantime, sp11 is incorrectly suspected by sp12 and sp13
of having failed. As a result, sp12 and sp13 run the
election algorithm to choose sp12 as the new primary
provider for SG1. Figure 3(b) shows that sp12 has
completed the execution of the task and sends an

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

activation call to sp21. Since sp21 has already received
an activation call from sp11, Figure 3(c) shows sp21
informs sp12 that sp11 is the default activator. Thus, sp12
will undo the task.

Rule 2: If the service provider of a task T receives an
activation call from a provider that is not the default
activator6, the service provider initiates an agreement
protocol amongst T’s service providers. The agreement
protocol determines the identity of the new default
activator. If multiple service providers have made the
activation call, the provider whose activation call is
received first will become the new default activator7.
The service providers that made the activation calls are
notified of the identities of the new default activator. If
a service provider does not become the default
activator, it will undo the operations of its task.

Figure 4 shows the scenario being dealt with by
Rule 2. Figure 4(a) shows that sp12 and sp13 wrongly
suspect that sp11 has failed and sp12 becomes the new
primary provider of SG1. sp12 sends out the activation
call on completion of the task. sp12’s activation call is
received by sp21 before sp11’s activation call arrives.
Since sp12 is not the default activator, the providers in
SG2 run an agreement protocol to agree on having sp12
as the new default activator and inform sp12 as shown
in Figure 4(b). Figure 4(c) shows that the activation
call from sp11 finally arrives at sp21. Since sp11 is no
longer the default activator, sp11 is in the same
situation as sp12 in Figure 3(b). Thus, sp11 will undo the
operations of the task.

Rule 3: If a candidate provider of a task T receives an
activation message from the default activator 8 , the

6 This is the case that another service provider has executed
T’s predecessor task.
7 The original default activator can still become the new
activator if its activation call is received first.
8 This is the case that the predecessor suspects that the
primary provider has failed and invokes the task on a
candidate provider.

candidate provider initiates an agreement protocol
amongst T’s service providers. The agreement protocol
determines who will carry out the task being activated.

Figure 5 illustrates the problem addressed by Rule 3.
In Figure 5(a), sp21 is activated by sp11. Figure 5(b)
shows that sp11 wrongly suspects sp21 of having failed
as sp11 does not receive the reply from sp21 in time.
Thus, sp11 activates sp22. sp22 initiates the agreement
protocol. Since sp21 has started executing the task, the
service providers in SG2 will agree that sp21 will still
be responsible for executing the task.

The prototype implementation of the system uses the
agreement protocol described in [5] that has a
relatively low overhead. It allows an agreement to be
reached as long as the majority of the service providers
are alive.

The last task in a composite service does not have a
successor. Thus, we cannot rely on the mechanism
described above to ensure exactly-once semantics. If a
task T is the last task, the primary provider initiates an
agreement protocol amongst T’s service providers
when it completes the execution of the task. The
agreement protocol makes the service providers agree
on who is responsible for executing the task. This is to
ensure that only one provider makes the effects of the
task permanent.

The WSCT inserts the necessary instructions for
carrying out the mechanisms that ensure non-blocking
and exactly-once semantics into the task file of each
task. Thus, users do not need to consider these issues
when they write the tasks.

3.6. Web Services Supports

To host a distributed execution engine, a service
provider needs to implement a service interface that
contains several web operations. The most important
operations are explained below.
activateTask is called when a task is activated. This
operation has three parameters, i.e. a list of locations of
the task file on the TCRs, the unique name assigned to
the task, and, a list containing the parameters to be
passed to the task. activateTask checks whether the file
of the specified task has already been fetched from the

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

TCR9 . If the task file is not available, the service
provider will first fetch the task file from the TCR
before starts executing the task. activateTask needs to
implement the interpreter that executes the operations
in the task file.
prefetchCode is used to inform a service provider to
pre-fetch the task file of the specified task. This
operation has two parameters, i.e. a list of locations of
the task file and the unique name assigned to the task.
activationAck operation is called by the service
provider of a task T to inform the service provider of
T’s predecessor task about whether T has been
activated successfully. The operation has two
parameters. One is the flag indicating whether the
activation is successful; and, the other shows the
identity of the default activator of T. If the service
provider whose activationAck operation is called is not
the default activator, the service provider has to undo
the operation of the task as discussed in §3.5.2.

Each service provider also needs to provide some
web operations to allow the execution of the leader
election algorithm and the agreement protocol as well
as the operations relating to failure monitoring to
counter possible failures.

4. Related Work

Research in Mobile Web Services focus on
integrating mobile agents with Web Services. [7]
proposes a framework for Mobile Web Services. In the
framework, mobile agents carry the execution plan and
the code for processing data retrieved from Web
Services. As an agent needs to carry the complete
execution plan of a composite service and the code for
interacting with all the Web Services used in the plan,
the communication overhead of agent migration need
to be carefully balanced with the gains obtained by
having the agent processing the data at the service
providers locally. The framework also does not address
the handling of failures. For the approach in this paper,
a service provider only retrieves the code of the task
that it is responsible for. Hence, it does not cause any
unnecessary communication overhead.

[12] describes an approach of using mobile agent to
carry out the execution of a composite service. It also
uses mobile agents to select the service providers for
executing the tasks in a composite service. As [7], a
mobile agent also needs to carry the complete
execution plan of the composite service. Although [12]
mentioned that reliability of execution can be achieved

9 The task file might have not been pre-fetched if the
predecessor of the task is a conditional branch task.

through a backup approach, it did not address the
issues like agent lost and duplicated executions of tasks.

[13] presents an architecture that allows Web
Services to be transferred to mobile devices and
execute there. The system is built on Aglets [10]. Thus,
it requires a Java-based environment to run the service.
In contrast, the approach described in this paper
represents the operations of the tasks using a set of
XML-based notations. Thus, as long as the service
providers have interpreters that understand the
notations, the operations of the tasks can be carried out
on platforms that are based on different technology.

BPEL4WS is an XML based Web Service
composition language. It is used to compose multiple
web services into an end-to-end business process. As
BPEL4WS is designed for Web Services
choreography, it is not always easy to describe some
operations to manipulate data in BPEL4WS. [11]
describes an approach that overcomes this limitation of
BPEL4WS. [11] enables Web Services to accept and
run mobile code. In [11], the code of a task is first
translated into an XML-based language called X#. The
X# code can then be deployed to the service
containers. The X# code is translate back to a platform
specific language at the service containers and installed
there. The installed code can be activated through a
normal Web Service call. The focus of [11] is on
developing a platform-neutral language to represent the
code of a task. Our approach not only addresses the
issue of representing the operations of a task in a
platform-neutral way, it also discusses the execution of
a composite service and the techniques for handling
failures.

Although the approach in this paper does not use
mobile agents, it uses the same principle as mobile
agents in terms of sending code to the locations where
the data reside. Many approaches to make mobile
agents tolerate failures have been proposed. Some of
the approaches, e.g. [4] and [8], are based on the
assumption that there is a perfect failure detector.
However, in the Internet, the upper-bound of the
network delay and service delay are not known in
advance. Therefore, failure detectors are unreliable, i.e.
they might declare the failure of a service incorrectly.
[15] proposes a fault tolerant mobile agent system that
prevents blocking (when the majority of the machines
in the system are alive) and detects duplicated
execution. It is based on agent replication and it
requires all the agents run an agreement protocol when
they complete a task. Running an agreement protocol is
an expensive operation in terms of the
synchronizations being carried out amongst the
participating agents. In contrast, the approach in this
paper only requires the service providers to run the
agreement protocol when there are possible failures or

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

duplicated execution in the system. Thus, the
overheads caused by the operations for tolerating
failures have been minimized.

5. Conclusions and Future Work

This paper describes an approach for providing a
distributed Web Service Execution Engine. Users use a
graphical tool to carry out service composition as well
as describing the operations of the tasks in a composite
service. The operations of each task are converted to a
set of XML-based notations. As a result, the tasks can
be executed on platforms using different technologies.
In contrast to the mobile agent based approach, instead
of sending the operations of all the tasks in a composite
service to each service provider, a service provider in
this paper only needs to obtain the task that the service
provider has been selected to execute. Thus, the
approach in this paper has lower communication
overhead when transmitting the operations to a service
provider. The fault tolerant mechanism in this paper
uses a demand-driven approach. It only runs the
expensive agreement protocols when there is a
(possible) failure in the system. Thus, in the absence of
system failure, the overhead of running the fault
tolerant mechanisms is kept low.

The biggest obstacle to the adoption of the
approach in this paper seems to be persuading the
service providers to provide the interpreter used to
execute the tasks. However, hosting the WSEE is
provided as a service. This means it provides an
opportunity for the service providers to generate
revenue by offering the service. Hopefully, this
financial incentive will convince the service providers
to adopt the approach discussed in this paper.

We are currently working on integrating a service
broker into the WSCT. The broker uses a scheme
similar to [2] and [20] to select the service provider for
each task in a composite service to maximize the QoS
of the composite service. With the help of the broker,
users do not need to manually select service providers.
We are also evaluating how the system affects the
network load under various application scenarios.
Acknowledgment. We would like to thank the
anonymous reviewers for their useful comments.

References

[1] N. Aghdaie, Y. Tamir, Fast Transparent Failover for
Reliable Web Service, Proc. of Intl Conf. on Parallel and
Distributed Computing and Systems, 2003

[2] D. Ardagna, B. Pernici. "Global and Local QoS
Constraints Guarantee in Web Service Selection," IEEE
International Conference on Web Services, 2005

[3] D. Chess, C. Harrison, and A. Kershenbaum. Mobile
agents: Are they a good idea? IBM Research report,
RC19887, 1994

[4] P. Dasgupta, Fault tolerance in MAgNET: A mobile
agent e-commerce system. In Proc. of the 6th Int.
Conference on Internet Computing, 2000

[5] X. D´efago, A. Schiper, and N. Sergent, Semi-passive
replication. In Proc. of the 17th IEEE Symposium on
Reliable Distributed Systems (SRDS’98), 43–50. 1998

[6] H. Garcia-Molina, “Elections in a Distributed Computing
System”, IEEE Transactions on Computers 31(1), pp.48-
59, 1982

[7] F. Ishikawa, N. Yoshioka, Y. Tahara, and S. Honiden,
“Towards Synthesis of Web Services and Mobile
Agents.” In AAMAS2004 Workshop on Web Services
and Agent-based Engineering, 2004.

[8] D. Johansen, K. Marzullo, F. Schneider, K. Jacobsen, and
D. Zagorodnov, NAP: Practical fault-tolerance for
itinerant computations. In Proc. of 19th IEEE Int.
Conference on Distributed Computing Systems, 1999

[9] D. Kotz, R. Gray, and D. Rus, “Future Directions for
Mobile-Agent Research,” IEEE Distributed Systems
Online, 3(8), Aug. 2002.

[10] D. Lange, M. Oshima, G. Karjoth, and K. Kosaka,
“Aglets: Programming Mobile Agents in Java,” In Proc.
Worldwide Computing and its Applications, 1997.

[11] P. Liu and M. Lewis, Mobile Code Enabled Web
Services, IEEE International Conference on Web
Services, pp. 167-174, 2005.

[12] Z. Maamar, Q. Z. Sheng, and B. Benatallah.
“Interleaving web services composition and execution
using software agents and delegation.” In AAMAS2003
Workshop on Web Services and Agent-based
Engineering, 2003.

[13] Z. Maamar, Q.Z. Sheng, and B. Benatallah, "On
Composite Web Services Provisioning in an
Environment of Fixed and Mobile Computing
Resources", Information Technology and Managemenl,
Kluwar Academic, 2004, pp 251-270. Vol 5, No 3-4

[14] D. Milojicic. Mobile agent applications. IEEE
Concurrency, 7(3):7–13, 1999

[15] S. Pleisch, and A. Schiper, Fault-tolerant mobile agent
execution. IEEE Trans. Comput. 52, 2 (Feb.), 209–222.
2003

[16] S. Pleisch, A. Schiper: Approaches to fault-tolerant and
transactional mobile agent execution -- an algorithmic
view. ACM Comput. Surv. 36(3): 219-262, 2004

[17] Y. Saito, and M. Shapiro, Optimistic replication, ACM
Comput. Surv. , 37 (1): p. 42-81, 2005

 [18] H Wan, Building Dynamic Inter-organization Business
Processes by Orchestrating Web Services, MSc Thesis,
Dept. of Computer Science, Auckland University, 2005

[19] X. Ye, and Y. Shen: A Middleware for Replicated Web
Services. IEEE International Conference on Web
Services, pp. 631-638, 2005

[20] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas, J.
Kalagnanam, H. Chang. "QoS-Aware Middleware for
Web Services Composition," IEEE Transactions on
Software Engineering, vol. 30, no. 5, pp. 311-
327, May, 2004.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

