Dieses Dokument ist eine Zweitveroffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Dirk Habich, Steffen Preissler, Wolfgang Lehner, Sebastian Richly, Uwe Assmann, Mike
Grasselt, Albert Maier

Data-Grey-BoxWeb Services in Data-Centric Environments

Erstveréffentlichung in / First published in:

IEEE International Conference on Web Services (ICWS 200y7). Salt Lake City, 09-13.07.2007.
IEEE, S. 976-983. ISBN 0-7695-2924-0

DOI: https://doi.org/10.1109/ICWS.2007.69

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-788478

TECHNISCHE
il SLUB UNIVERSITAT Oucosa

Wir fiihren Wissen. DRESDEN Quality Content of Saxony

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-788478
https://doi.org/10.1109/ICWS.2007.69

Final edited form was published in "IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, 2007". ISBN0-7695-2924-0.

https://doi.org/10.1109/ICWS.2007.69

Data-Grey-Box Web Services in Data-Centric Environments

Dirk Habich, Steffen Preissler
Wolfgang Lehner
Dresden University of Technology
Database Technology Group
dbgroup @mail.inf.tu-dresden.de

Abstract

In data-centric environments, for example, in the field
of scientific computing, the transmission of large amount
of structured data to Web services is required. In service-
oriented environments (SOA), the Simple Object Access Pro-
tocol (SOAP) is commonly used as the main transport pro-
tocol. However, the resulting 'by value’ data transmission
approach is not efficiently applicable in data-centric envi-
ronments. One challenging bottleneck of SOAP arises from
the XML serialization and deserialization when processing
large SOAP messages. In this paper, we present an extended
Web service framework which explicitly considers the data
aspects of functional Web services. Aside from the possi-
bility to integrate specialized data transfer methods in SOA,
this framework allows the efficient and scalable data han-
dling and processing within Web services. In this case, we
combine the advantages of the functional perspective (SOA)
and the data perspective to efficiently support data-centric
environments.

1. Introduction

Web services (WS) are independent software compo-
nents exposed on the Web, supporting the interoperable
machine-to-machine interaction via Internet. Fundamen-
tally, Web services are considered black-box components,
since they do not offer any information on how they work;
they only expose information on the structure of parame-
ters or data they expect as input and return as result. The
advantages of Web services are their interoperability, the
XML-based self-descriptive interfaces and the seamless us-
age with established Internet protocols such as the HTTP
protocol.

In service-oriented environments, the Simple Object Ac-
cess Protocol (SOAP) is commonly used for the communi-
cation with and between Web services. According to the
client/server paradigm, clients (service requestors) perform
a Web service invocation by passing SOAP messages to a
server hosting the corresponding service. These messages
include a reference to the target service to invoke as well

{sebastian.richly,ual } @inf.tu-dresden.de

1

Sebastian Richly, Mike Grasselt,
Uwe Assmann Albert Maier
Dresden University of Technology IBM Boblingen
Software Technology Group Germany

{grasselt,amaier } @de.ibm.com

as any number of parameters and data to be transmitted to
the service. Reply messages may be transmitted either syn-
chronously or asynchronously from the server back to the
client. The SOAP protocol defines an XML-based format
for the messages to be used in a Web service invocation.

Various application areas, like business-to-business com-
munication, enterprise application integration, e-Science or
service-oriented computing, have implemented Web ser-
vices. In many of those application scenarios, an exchange
of large amounts of structured data between Web services
is required. Embedding such massive structured data sets in
SOAP messages is possible but not a suitable solution from
the performance perspective.

Consider the following example: A service requestor
manages its own massive data sets in a local data manage-
ment system, e.g. in a relational database system. On a
subset of these data, an analysis function should be applied
and a Web service should offer the required analysis func-
tion. To use such a Web service, the service requestor has
to extract the data from the data management system in or-
der to be able to transfer them in XML-marshaled SOAP
messages to the Web service. The Web service deserial-
izes the incoming SOAP messages and inserts the contained
massive data set into the local database system before the
processing starts. This procedure is typical in data-centric
environments, since it cannot be taken for granted that the
received data can be managed in the main memory during
the whole processing time.

Based on this example, we investigated the transfer time
of the SOAP approach between the service requestor and the
Web service. In this experiment, we transmitted 50, 000 tu-
ples with different numbers of columns, where each column
included string values of length 60. The measured transfer
times includes the times for (1) the data extraction from the
database system, (2) the transfer of the SOAP message from
the requestor to the service, and (3) the insertion of the re-
ceived data into the database system. Figure 1(a) depicts
the transfer times for the different numbers of columns. As
we can see, the transfer time increases with the complexity

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, 2007". ISBN0-7695-2924-0.
https://doi.org/10.1109/ICWS.2007.69

500 140

SOAP = Pure SOAP . Speedup .
ETL] 120 | Data Insertion € P A Y
400] Data Extraction L] o
" 100 15 . ®
N - ssetssssaBs B BLBeS ..
& 300 - £ 80 3 s
g - g g 0.
E 200 . -.-' g 80 -4
= - 40 5
100 «™
. 20
0eee0@ceop00090 090 U\ 0990 0o Eea e a0 a0 0
2 4 6 8 10 12 14 16 18 20 2 4 6 & 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
number of columns number of columns number of columns
(a) Times (b) Distribution (c) Speedup

Figure 1. Data Propagation Evaluation - SOAP versus ETL.

of the data structure (more columns). The distribution over
the essential transfer steps is depicted in Figure 1(b). As
illustrated, the pure SOAP transfer, including XML serial-
ization and deserialization at the requestor and the service,
causes up to 90%. This experiment confirms the following
well-known drawbacks of SOAP:

1. When the data, and thus the SOAP message structure,
get more complex, the performance of the SOAP trans-
mission gradually gets worse compared to large mes-
sages with simple structures [3,13,16].

vice environments, this framework allows the efficient and
scalable data handling within Web services.

Our description focuses on Web services with a dynamic
data aspect. Such services receive massive data sets on
which they apply the provided functionality. Furthermore,
they may return a large amount of structured data. In detail,
we discuss the following points:

1. We introduce a data framework that will be responsi-
ble for the handling of massive data sets within Web
service environment. This concept oversees the com-
plete management of the data aspect.

2. The process of XML serialization and deserialization
represents a bottleneck when processing large SOAP 2. Based on the first concept, we enhance the Web ser-
messages, since the XML processing is a time- and vice interface with special properties for the transfer of
main-memory-consuming process [3,13,16]. large amounts of structured data. The new Web service
. . interface offers all necessary data-related information.

If the Web service exposed that a database system is used,
the service requestor could apply more specialized, and 3. Finally, we present the interaction between Web ser-

therefore more efficient, data propagation tools, like ETL
or replication. In the database area, the Extract-Transform-
Load (ETL) system [17] is such a specific approach. ETL
systems are designed to extract data from various systems,
apply transformation rules on data and load those trans-
formed data into a different database system. In our experi-
ment, we used an ETL system for the exchange of data be-
tween the database systems of the service requestor and the
Web service. Figure 1(a) depicts the resulting transmission
times. As Figure 1(c) illustrates, we obtain a transmission
speedup of up to 16 compared to the SOAP approach.

Since the performance is an important factor in many ap-
plication areas, an integration of such data-specialized prop-
agation approaches would be beneficial. In this case, the fol-
lowing challenges arise: (i) creation of data-grey-box Web
services offering more information on the data persistence
aspect within the service and (ii) the integration or trigger-
ing of data propagation tools in the Web service invocation
process.

Our Contribution: In this paper, we present an extended
Web service framework which explicitly considers the data
aspects of functional Web services. Aside from the possibil-
ity to integrate specialized data transfer methods in Web ser-

2

vice invocations and specialized data propagation
tools. In this paper, we focus on database technologies.

The remainder of the paper is structured as follows: In
the following section, we review related work to distinguish
our work from previous research activities. Our new data
framework is introduced in Section 3, followed by a descrip-
tion of our new Web service interface and the invocation
process in Section 4. A detailed performance evaluation is
described in Section 5. We conclude our paper with a sum-
mary and an outlook on future work.

2. Related Work

Recently, the performance of the SOAP protocol has re-
ceived a lot of attention from the research community as
well as from the industry. One prominent technique to en-
hance the performance is caching at the client site, server
site or in dedicated hardware components [1]. Other tech-
niques try to reduce the network bandwidth requirement
by using compression [2], Binary XML or binary metadata
[18]. All applied compression techniques, like gZip, XMill,
and Millau [6], produce high compression ratios. In [13], a
Table-Driven XML approach (TDXML) is proposed offering

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, 2007". ISBN0-7695-2924-0.

https://doi.org/10.1109/ICWS.2007.69

a more compact message size, a simpler message structure
and easier access to individual elements when compared to
SOAP. The drawback of such methods in data-centric envi-
ronments is that structured data is exchanged on a functional
application level instead of triggering a data-level transfer
method.

SOAP messages with Attachments (SwA) are another
possibility to avoid the inefficiency of XML, i.e. requiring
more bandwidth, more storage and more processing power
than equivalent binary implementations. There are two ap-
proaches for SwWA: MIME (Multipurpose Internet Mail Ex-
tension) and DIME (Direct Internet Message Encapsula-
tion). Both of them define an abstract model for SOAP
attachments and the mechanism for encapsulating a SOAP
message and zero or more attachments in either MIME or
DIME messages. Attachments are applied to the encap-
sulation of binary data in the form of image files and en-
capsulation of other XML documents as well as XML frag-
ments [8]. An application to structured data is not practical,
since all schema specifications will be lost.

Moreover, Patcas et al. [14] integrated a Data-Flow Dis-
tribution Protocol for Web Services (DFDP-WS) into the
Web service stack. Their application area is the Business
Process Execution Language for Web services (WSBPEL)
and they want to establish a decentralized data-flow model.
The proposed protocol is used to encapsulate both control-
flow information and data in the messages it carries. The
focus is similar to us, but the data propagtion is still done
with an SOAP-like protocol approach, while we present an
flexible approach to integrate various existing data propag-
tion tools.

The problem of data access and data sharing accross var-
ious Web services has also been examined in the Grid ap-
proach. In this special environment, the OGSA-DAI frame-
work has been established to produce common middleware
allowing uniform access to data resources using a service-
based architecture [12]. The produced Grid Data Services
allow consumers to discover the properties of structured data
stores and to access their contents. Aside from the access to
structured data, the OGSA-DAI framework offers the possi-
bility of moving data between services with gridFTP [12].

Moreover, the database research community has paid a
lot of attention to the field of data exchange between dif-
ferent database systems. A well-known method is the ETL
(Extract-Transform-Load) approach, loading data from dif-
ferent data sources into a common data warehouse [17].
Such ETL processes consist of three parts: (1) extraction
of data from the different source systems, (2) application of
a series of rules and functions to the extracted data to de-
rive the data to be loaded, and (3) loading of the data into
a data warehouse system. This ETL approach is a data-
spezialized technique to efficiently transmit structured data
to various different data management systems, e.g. rela-
tional or XML database systems. A further popular data

3

propagation method is replication [10]. In database sys-
tems, this is used to provide redundancy or to balance the
load across multiple database servers.

3. Data Framework within Web Services

As already mentioned, we focus on Web services with a
dynamic data aspect here. Such services are characterized
by receiving massive structured data sets with additional
functional parameters, applying the provided functionality
and returning the result to the service requestor. This re-
sult can also be a large amount of data. Typical examples
are analysis services, e.g. from the data mining area. As
our ongoing example, we use a Web service implement-
ing the k-means [4] clustering algorithm. This is an algo-
rithm to cluster objects into k partitions based on attributes.
As input, the function expects a number of data points (n-
dimensional) and a parameter k. The Web service returns as
result the data points with an additional attribute indicating
if data points belong to the same partition.

Such data-intensive Web services typically require a lo-
cal database system for the processing of the received data,
since it cannot be taken for granted that all data can be man-
aged in the main memory during the whole processing time.
A further advantage of using a database system is that such
systems usually offer efficient methods for the processing of
massive data sets, which can be exploited then [9].

An important general property of Web services is that for
each invocation a new instance will be created, and there-
fore, several Web service instances can run in parallel. Hav-
ing regard to that we use a database, the dynamic data as-
pect has to be put in correlation with the corresponding
Web service instance, which then affects the handling of the
database system.

3.1. Framework Description

In order to allow the efficient and scalable handling of
both input and output data within Web services in a stan-
dardized way, we introduce our data framework for Web
services. We still assume that the data exchange with the
service requestor is done via SOAP messages. Our frame-
work consists of the following two essential components:

1. An abstract, object-oriented access interface, which al-
lows unified access to different data sources, such as
relational databases, XML databases or even CSV and
XML files.

2. A coordinator responsible for the management of the
access interface and the available database systems. In
general, the coordinator is the central control instance.

We realize the abstract access interface with the help of
the Service Data Objects technology (SDO) [15]. The SDO
technology is an object-based specification for unified ac-
cess to different data sources, like databases, files or EJBs.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, 2007". ISBN0-7695-2924-0.

https://doi.org/10.1109/ICWS.2007.69

Available
Databases

17 Database
1

“"-» Database
2

Web Service Framework —

SDO
Instance 3 -

Instance 1

Figure 2. Data Framework.

In this paradigm, an application works on a data graph con-
taining one or more data objects. This data graph is a tree-
like connection of concrete data object instances. SDO me-
diators represent the mappings of the data graphs to various
data sources. In order to do so, a variety of techniques may
be employed, e.g. EJB or JDBC, allowing flexible storage
strategies.

Aside from this abstract data access interface, we intro-
duce a coordinator (Data Container Administrator Service,
DCAS), which is responsible for the handling of the com-
plete management of the data aspect. The management tasks
cover: (i) the correlation of the data with the Web service
instance, (ii) the appropriate preparation of the data source,
e.g. the creation of tables based on the input and output
schemas, and (iii) the dynamic instantiation of the SDO me-
diators. The DCAS is implemented as a singleton [5], i.e.
there exists only one instance of DCAS and all WS instances
access this one instance. Furthermore, this controlling com-
ponent allows the use of extended management activities,
such as load balancing over a number of data sources. Such
load balancing avoids potential bottlenecks at a certain data
source. These bottlenecks might result from a lot of par-
allel service calls by requestors, which then again result in
the demand for too many parallel read or write operations or
even in a lack of storage space at a data source.

Figure 2 shows our framework with three WS instances.
As can be seen in the figure, there are two static connections.
The first static connection represents the access to the coor-
dinator, whereas the second static link is for the allocation
of the databases to the WS framework. The instantiation
of the SDOs for each WS instance and the assignment to a
database are conducted dynamically at runtime.

3.2. Application Details

The DCAS and the SDOs are the central components of
our framework. Obviously, the resulting explicit separation
of the functional aspect from the data aspect affects the way
the Web services are implemented. Figure 3 illustrates our
realization approach based on the application server JBoss
as WS runtime environment. First, we expect that a separate
XML file exists, containing general access information of
available and useable databases.

Moreover, for each function provided by a Web service,
the respective schema specification for input and output data

4

Database Access
Information

AN N

\ Schema |}
Java -
|| Spec. ||

|] Pl

Web enhanced We_b
Service JBoss Service |||+ DCAS
Interface ws Bean
¥

SDO

¥
Data Data
base base

Figure 3. Realization Approach with JBoss.

Web Services

|
JBoss 4

is available explicitly, e.g. in a separate XML file or in the
form of annotations. The services are implemented as state-
less session beans using the inferface of the DCAS offering
the following functionalities:

o String:getSession(String functionID), closeSes-
sion(String sessionID). The correlation of the data
with the WS instance is implemented through a session
concept. When generating the session, the DCAS has
to be informed of the function of the service wishing
to be executed. This is realized by handing over the
functionID (unique identifier) when creating the ses-
sion. During this call, the DCAS executes all essential
steps on the currently optimal database. For example,
all tables for input and output data of the function
are created according to the schema specifications.
The method getSession returns a sessionID as unique
identifier. After the processing and loading of the
output data from the database, which is necessary to
send the result via SOAP messages, the session can be
closed and the database can be cleaned up.

o getlnput(String sessionlD), getOutput(String ses-
sionID): With the help of these two DCAS methods,
the WS function gets access to the respective SDO
data graphs and can thus process the data.

During the deployment of new Web services, the schema
specification for each provided function is registered at the
DCAS. This registration procedure is essential to allow that
the SDOs can be generated and instantiated at runtime us-
ing concepts from the Model-Driven Architecture [7]. This
means that programmers do not have to worry about the data
aspect any longer; instead, this will be taken care of by the
coordinator. Figure 4 shows the usage of our framework on
the k-means function.

To summarize, we have implemented an explicit sepa-
ration of the functional aspect from the data aspect within

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, 2007". ISBN0-7695-2924-0.

https://doi.org/10.1109/ICWS.2007.69

public outData kmeans(int k, inData in)

{
String sID = DCAS.createSession (UUID) ;
SDO input = DCAS.getInputContainer (sID) ;
SDO output = DCAS.getOutputContainer (sID) ;

Transform input data ,in"
into output data ,out“ (Algorithm);

returnData = (outData)output.getData() ;
DCAS.closeSession(sID) ;

return returnData;

Figure 4. Using our Data Framework.

Web services through our data framework. This separation
is now the perfect foundation to integrate specialized data
propagation tools in the invocation procedure of Web ser-
vices. Without such a data framework, the integration would
be much more difficult.

4. Data-Grey-Box Web Services

In the previous section, we realized the separation of the
functional aspect from the data aspect within Web services
through the introduction of our data framework. So far,
this separation has been completely transparent for the ser-
vice requestor. As the experiment in Section 1 illustrated,
the data exchange with specialized data propagation tools is
more efficient than with SOAP messages.

In this section, we extend the separation of the functional
aspect from the data aspect regarding the interface descrip-
tion in order to get data-grey-box Web services. The goals
of these data-grey-box Web services are listed below:

1. Web services are considered stateless services; data-
grey-box Web services will still be stateless.

2. The data exchange between service requestors and Web
services shall be transparent for both sides.

3. The approach shall be flexible regarding the seamless
integration of further data propagation tools.

4.1. Interface Description

In a first step, we outline our modifications of the inter-
face description of Web services. The Web Service Descrip-
tion Language (WSDL) is a language based on XML which
consists of two main components. In the abstract part of the
WDSL description of a service, its functionalities are de-
fined. With the help of the elements operation, message and
type in abstract form, the WSDL portType defines what kind
of functionalities a service provides via what kind of inter-
faces. For the use of the service, it is subsequently important
to know how the operations can be called. In the concrete
part of the WSDL description, the binding (WSDL element
binding) for the abstract service descriptions is performed.
Protocols and transfer formats calling mechanisms of the

operations as well as employed message formats are de-
fined. Finally, the Web service endpoint is specified, where
the service is available with the described protocols and call-
ing mechanisms.

<!-- parameter message for k -->

<wsdl:message_parameter name="k">
<wsdl:part element="impl:k"/>

</wsdl:message parameter>
<!-- data messages -->

<wsdl:message_data name="InputDataKMeans">
<wsdl:part element="impl:InputDataKMeans"/>
</wsdl:message data>

<wsdl:message_data name="OutputDataKMeans">
<wsdl:part element="impl:OutputDatakKMeans"/>
</wsdl:message data>

Figure 5. Message Definitions.

The first measure in our attempt to separate the data as-
pect from the functional aspect is that we split the pre-
viously used unified message concept into messages for
data and messages for parameters. In this case, the ser-
vice requestor is able to differentiate between data and
parameters for the individual functions of the Web ser-
vice. Thus, the general construct wsdl:message is split into
wsdl:message_parameter and wsdl:message_data, without
any further changes of the actual type definitions. The
message definitions for the parameters are implemented as
usual, while the message definitions for the input and out-
put data are generated based on the available schema infor-
mation. Figure 5 shows the message definitions for our k-
means Web service example. The function expects the pa-
rameter k for the number of clusters as input. Furthermore,
there are two different schemas for data, and on this basis,
messages for input and output data are specified.

After this differentiation between messages in data mes-
sages and parameter messages, the next step is to adjust the
abstract definition of the individual operations, as shown in
Figure 6. An operation can now receive either a parameter
message or a data message as input. The same applies to the
output. From this abstract description, the service requestor
can learn what the operation considers parameters and what
it sees as data and how the schemas look like.

In the concrete part of the WSDL description, the bind-
ing for the abstract service descriptions is realized by defin-

<wsdl:portType name="KMeansPortType">
<!-- function KMeans -->
<wsdl:operation name="KMeans">
<wsdl:input_parameter message_ parameter="impl:k"
name="k"/>
<wsdl:input_data message_data=“impl:InputDataKMeans™
name="InputDataKMeans™“
<wsdl:output_data message_data="impl:OutputDataKMeans"
name="OutputDataKMeans" />
</wsdl:operation>
</wsdl:portType>

Figure 6. Abstract Definition of Operations.

5

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, 2007". ISBN0-7695-2924-0.

https://doi.org/10.1109/ICWS.2007.69

Soap-Framework

Result —_—
— Call(Method, Parameter, Access) 1

Web Service Environment

Soap-Framework

Call Data-Layer Data-Layer Invoker
T
/ Parameter, DataSession
X1, Access
Result
Invoke(Client+Server Access)
Client Service
[\ A
1
Data

Access

l«—— Data —»|

Mediator-
Service

<—— Data

X1 = Service, Method, Parameter

Figure 8. Data-Grey-Box Web Service Invocation Process.

<wsdl:binding name="KMeansServiceSoapBinding"
ty] "impl:KMeansService">
<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"
datalayer="http://org.tud.dbs/datalayer™/>
<!-- function KMeans -->
<wsdl:operation name="KMeans">
<wsdlsoap:operation soapAction=""/>
<wsdl:input_parameter name="k">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:input_data name="“InputDataKMeans“>
<wsdl:datalayer use=“database"“/>
<wsdl:output_data name="OutputDataKkMeans">
<wsdl:datalayer use=“database"“/>
</wsdl:operation>
</wsdl:binding>

Figure 7. Binding for Operations.

ing protocols and transfer formats. As before, the param-
eter messages are handed over via SOAP when calling the
function, and thus, there are no changes in this regard. For
the data messages, a new transfer format data-layer is in-
troduced, as shown in Figure 7. Through this new trans-
fer format, the operation signals that the data are not to be
transferred via SOAP but that there is a separate data layer
instead. In this binding description, the Web service offers
information on the used data management system within the
Web service. In our example, the operation uses a database
system (use="database”) for the handling of the data.

Howeyver, these structural modifications of the interface
description are not sufficient. Next, we describe the invoca-
tion process for Web services.

4.2. Invocation Process

Before we are able to describe the entire WS invocation
process for our data-grey-box Web services, we take a look
at possible data transfer methods. Fundamentally, there are
three different principles for the initiation, and hence for the
execution, of the data exchange. With the first approach —

6

the push approach — the service requestor is responsible for
(1) sending the input data to and (ii) acquiring the output
data from the Web service. This approach conflicts with our
goal of transparent data transfer because the requestor has
to tackle the data propagation explicitly.

The second principle — the pull approach — stands in clear
contrast to the push principle. Here, the Web service is re-
sponsible for the complete data transfer. The drawback of
this principle is the monolithic approach, since all necessary
functionalities regarding the data propagation must be avail-
able on the Web service side. This again conflicts with the
following aims: (i) transparent data transfer between both
partners (since the Web service has to tackle the data prop-
agation) and (ii) seamless extensibility (because the data
propagation tools must be integrated on the server side).

The most flexible approach is to use mediators as 3rd par-
ties providing the data propagation tools behind Web service
interfaces. These mediators are used to initialize the corre-
sponding tools. The advantage of such mediators is that (i)
the transparent data propagation is possible, (ii) Web ser-
vices have to care for the pure functionality only and (iii)
flexible and scalable integration of new data propagation in-
frastructures is possible.

In the first part of this section, we described our data-
grey-box Web service interface extension; in particular, we
introduced a new data binding format. To handle this new
binding, we extend the SOAP framework by the integration
of a novel data-layer component. The entire invocation pro-
cess of our data-grey-box Web service is illustrated in Figure
8.

On the client side, enhanced Web service call semantics
are necessary. Aside from the transmission of the endpoint
and regular parameters in the SOAP message, the client has

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, 2007". ISBN0-7695-2924-0.

https://doi.org/10.1109/ICWS.2007.69

80 120

.

&

40
number of tuples * 1000

SOAP - Pure SOAP
70 | Database Replication a 100 Data Insertion
- Data Extraction
60 . i
G - 80 (g
§ 50 - = >
£ 40 E 8 0
o - @
E ' w0
20 o b
wof " P | 20 By o o
0 & e 0
0 20 40 60 a0 100 0 20
number of tuples * 1000
(a) Times

(b) Distribution

. Speedup .
[a8
P
g 6
k=1
§. 4 . 9 ® . . -—
@ R
- 2 ”‘
i) }
.
o]
60 80 100 0 20 40 60 80 100

number of tuples * 1000

(c) Speedup

Figure 9. Experiment 2 - SOAP versus Database Replication.

to deliver access information for (i) where the input data is
available and (ii) where the output data should be stored.
That means the new binding format is translated into no
more than two additional parameters for access information
for input and output data at the client site. These new param-
eters are included in the SOAP message for the invocation
of Web services.

Actually, our data-grey-box Web services specify in the
binding the type of the internally used data source. Further-
more, we include the types of data sources to be expected
at the client site with the help of the additional attribute re-
quired in the binding, e.g. (required="database,xml-file”).
Only requestors satisfying these constraints can invoke the
Web service. For each possible data source type, our data
layer includes an access specification. Based on these ac-
cess specifications and the data binding, the structure of the
additional parameters is created. The clients deliver the re-
quired access information according to the specification.

On the service side, our SOAP framework receives the
SOAP message and conducts a separation into the functional
aspect and the data aspect. The associated data layer can
now call an appropriate mediator for the data propagation
based on the access information of the client and the ser-
vice. The data access information of the requestor is located
in the received SOAP message, while the data access infor-
mation for the service must be queried from our proposed
DCAS, which is part of the infrastructure. Therefore, our
DCAS is now involved in the invocation process of Web ser-
vices. Either the appropriate mediator is known or it must
be determined by a lookup in the UDDI registry.

Through the explicit integration of the DCAS in the WS
invocation process, a data session is created on the service
side in a first step. This session concept is used for the
correlation of the data to the Web service instance. Fur-
thermore, the WS instance knows its data session. As a
second step, the mediator service for the input data is in-
voked synchronously. Once this data propagation step is
complete, the input data is available on the service side and
the proper functionality can be triggered. After the func-
tional processing of the input data, a mediator service is in-
voked synchronously to transfer the output data to the ser-

7

vice requestor. Once this transmission is complete, the WS
invocation is finished.

An advantage of this invocation principle is that clients
do not require to create a session explicitly, while a neces-
sary data session is implicitly created during the Web service
invocation. Therefore, our data-grey-box Web services are
still stateless. Furthermore, the data propagation is transpar-
ent for both partners and new data exchange tools can be
seamlessly integrated.

A drawback of the current solution is the requirement of
static and typed access specifications in the binding. In the
following step, we want to develop a dynamic solution. Fur-
thermore, we are going to integrate a cost-based approach to
decide which mediator should be used for the data propaga-
tion.

5. Evaluation

In this section, we evaluate our proposed approach re-
garding the performance gain. The foundation for all ex-
periments is our ongoing example: A service requestor (re-
alized as Web service) sends data from a local relational
database system to our k-means Web service. This Web ser-
vice processes the received data with the help of a relational
database system. The application server JBoss 4 serves as
implementation platform for our proposed approach. The
service requestor and the Web service were running on dif-
ferent servers.

As separate data propagation tools, we used (1) the open-
source ETL tool Kettle [11] and (2) a database replication
approach. Those propagation tools ran on a third server be-
hind service interfaces which are triggered during the Web
service invocations. We measured the data exchange time
from the service requestor to the Web service. The obser-
vation can be transcribed to the data transfer time from the
Web service to the requestor.

The first conducted experiment was already described in
Section 1. In this experiment, we transmitted 50, 000 tuples
with different numbers of columns, where each column in-
cluded string values of length 60. As described in Section 1,
the data exchange with the ETL tool is sixteen times faster
than the SOAP approach (see Figure 1(c)).

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, 2007". ISBN0-7695-2924-0.

https://doi.org/10.1109/ICWS.2007.69

In the second experiment, we varied the number of tu-
ples of the data set and we did not change the structure. The
structure corresponds to a table with two double columns.
Figure 9(a) shows the transmission times regarding differ-
ent numbers of tuples for the SOAP and the data replication
approach. As we can see, the database replication approach
outperforms the SOAP approach. The larger the data, the
larger the benefit (Figure 9(c)). Moreover, Figure 9(b) illus-
trates that the SOAP transfer, including XML serialization
and deserialization at the requestor and the services, makes
up almost 80% of the whole SOAP approach.

As the results of our experiments indicate, the integration
of specialized data propagation tools is benefical with regard
to the performance of the data exchange between service
requestor and Web service.

6. Conclusion

In various application scenarios, like business-to-
business communication or service-oriented computing, an
transmission of large amount of structured data to and from
Web Services is required. In service-oriented environments,
the Simple Object Access Protocol has been established as
the main transport protocol. However, the SOAP data trans-
mission approach is not efficiently applicable indicated by
our evaluation results. Furthermore, we have shown that
spezialized data propagation tools outperforms the SOAP
data transmission.

Therefore, we have proposed our data-grey-box Web ser-
vices allowing the integration of data propagation tools in
the Web service invocation procedure. In detail, we have
discussed the following points: (1) We have introduced a
data framework that is responsible for the handling of mas-
sive data sets within Web services; (2) Based on the first
concept, we have enhanced the Web service interface with
special properties regarding the data aspect; and (3) we have
presented the invocation process for our data-grey-box Web
services.

Our ongoing research activities cover two directions.
One is that we want to further optimize our data-grey-box
Web services in order to guarantee the optimized data prop-
agation between service requestor and service. The other
direction is concerned with the extension of WSBPEL by
data transitions to allow the explicit consideration of data
flows together with the function flow as well. Thereby, we
expect extended optimization strategies on the one hand and
modification options that can be controlled much more ef-
ficiently on the other hand so that we will be able to better
react to dynamic changes.

References

[1] D. Andresen, D. Sexton, K. Devaram, and V. P. Ranganath.
Lye: A high-performance caching soap implementation. In
Proc. of the 33rd International Conference on Parallel Pro-
cessing, 2004.

8

(2]

(3]

(4]
(3]
(6]

(7]

(8]

(9]

(10]

(11]
(12]

(13]

[14]

[15]

[16]

(17]

(18]

M. Cai, S. Ghandeharizadeh, R. R. Schmidt, and S. Song.
A comparison of alternative encoding mechanisms for web
services. In Database and Expert Systems Applications, 13th
International Conference, 2002.

K. Chiu, M. Govindaraju, and R. Bramley. Investigating the
limits of soap performance for scientific computing. In //th
IEEE International Symposium on High Performance Dis-
tributed Computing, 2002.

E. Forgy. Cluster analysis of multivariate data: Efficiency vs.
interpretability of classifcations. Biometrics, 21:768, 1965.
E. Gamma, R. Helm, and R. Johnson. Design Patterns.
Addison-Wesley, 1995.

M. Girardot and N. Sundaresan. Millau: an encoding for-
mat for efficient representation and exchange of xmlover the
web,http://www9.org./w9cdrom/154/154.html.

D. Habich, S. Richly, and W. Lehner. GignoMDA - Exploit-
ing cross-layer optimization for complex database applica-
tions. In Proc. of the 32nd International Conference on Very
Large Data Bases, 2006.

S. Heinzl, M. Mathes, T. Friese, M. Smith, and B. Freisleben.
Flex-swa: Flexible exchange of binary data based on soap
messages with attachments. In Proceedings of the IEEE In-
ternational Conference on Web Services (ICWS’06), Wash-
ington, DC, USA, 2006. IEEE Computer Society.

A. Hinneburg, W. Lehner, and D. Habich. Combi-operator:
Database support for data mining applications. In Proc. of
29th International Conference on Very Large Data Bases,
2003.

B. Kemme and G. Alonso. A new approach to develop-
ing and implementing eager database replication protocols.
ACM Trans. Database Syst., 25(3):333-379, 2000.

Kettle ETL Tool. http://kettle.pentaho.org/.

Mario Antoniolett et al. The design and implementation of
grid database services in ogsa-dai. Concurrency - Practice
and Experience, 17(2-4):357-376, 2005.

A. Ng. Optimising web services performance with table
driven xml. In Proc. of the 17th Australian Software En-
gineering Conference, 2006.

L.-M. Patcas, J. Murphy, and G.-M. Muntean. Middleware
support for data-flow distribution in web service composi-
tion. In Proceedings of the combined Doctoral Symposium
and 15th PhDOOS Workshop at the 19th European Confer-
ence on Object Oriented Programming(PhDOSS, Glasgow,
Scotland, July 25), 2005.

Service Data Objects. http://www-128.ibm.com/-
developerworks/library/specification/ws-sdo/.

R. van Engelen. Pushing the soap envelope with web ser-
vices for scientific computing. In Proc. of the International
Conference on Web Services (ICWS’03), 2003.

P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual
modeling for etl processes. In Proc. of the 5th ACM inter-
national workshop on Data Warehousing and OLAP, pages
14-21, New York, NY, USA, 2002. ACM Press.

P. Widener, G. Eisenhauer, and K. Schwan. Open metadata
formats: Efficient xml-based communication for high perfor-
mance computing. In 10th IEEE International Symposium
on High Performance Distributed Computing, 2001.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

	Data-Grey-BoxWeb_Services_in_Data-Centric_Environments_Vorsatzblatt
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Dirk Habich, Steffen Preissler, Wolfgang Lehner, Sebastian Richly, Uwe Assmann, Mike Grasselt, Albert Maier
	Data-Grey-BoxWeb Services in Data-Centric Environments

	Data-Grey-BoxWeb_Services_in_Data-Centric_Environments_PP.pdf

